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1.  INTRODUCTION

The changing climate over recent decades has re -
sulted in extensive effects on society and natural sys-
tems. Anthropogenic greenhouse gas emissions have
risen since the pre-industrial age, driven mainly by
an increase in population and economic growth
(IPCC 2014). Both precipitation and temperature
averages and variation are directly affected by these
increased emissions. Furthermore, there is a strong
linkage be tween the changes in daily weather condi-

tions and hazardous events such as droughts, wild-
fires, floods, and other phenomena (Salehnia et al.
2018). Monitoring and assessment of these changes
will play a vital role in making robust decisions about
water allocation for use in agriculture, water re -
source management, and management of climate
risk (Kha rin et al. 2007). Evaluation of future climate
change will increase our knowledge and assist in
developing adaptive management programs to limit
impacts on agriculture (Ullah al. 2018). General cir-
culation models (GCMs) and their outputs are one
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ABSTRACT: The goal of this study was to compare the ability of the k-nearest neighbors (k-NN)
approach and the downscaled output from the MIROC5 model for generating daily precipitation
(mm) and daily maximum and minimum temperature (Tmax and Tmin; °C) for an arid environment.
For this study, data from the easternmost province of Iran, South Khorasan, were used for the
period 1986 to 2015. We also used an ensemble method to decrease the uncertainty of the k-NN
approach. Although, based on an initial evaluation, MIROC5 had better results, we also used the
output results of k-NN alongside the MIROC5 data to generate future weather data for the period
2018 to 2047. Nash-Sutcliffe efficiency (NSE) between MIROC5 estimates and observed monthly
Tmax ranged from 0.86 to 0.92, and from 0.89 to 0.93 for Tmin over the evaluation period (2006−
2015). k-NN performed less well, with NSE between k-NN estimates and observed Tmax ranging
from 0.54 to 0.64, and from 0.75 to 0.78 for Tmin. The MIROC5 simulated precipitation was close to
observed historical values (−0.06 < NSE < 0.07), but the k-NN simulated precipitation was less
accurate (−0.36 < NSE < −0.14). For the studied arid regions, the k-NN precipitation results com-
pared poorly to the MIROC5 downscaling results. MIROC5 predicts increases in monthly Tmin and
Tmax in summer and autumn and decreases in winter and spring, and decreases in winter monthly
precipitation under RCP4.5 over the 2018−2047 period of this study. This study showed that the
k-NN method should be expected to have inaccurate results for generating future data in com -
parison to the out puts of the MIROC5 model for arid environments.
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of the most useful tools for estimating future climates
and measuring their changes (Mandal et al. 2016,
Faiz et al. 2018). Alternatively, non-parametric weather
generators such as k-nearest neighbors (k-NN) have
also been used for the generation of  future data (Eum
et al. 2010, King et al. 2015).

One of the weaknesses of the GCM projections is
their coarse spatial scale (>100 km2). GCM outputs
cannot capture the impacts of climate change at a
local scale, and this native resolution limits the re -
presentation of mesoscale processes. Therefore, down -
scaling is used to convert low spatial resolution GCM
output to high spatial reso lution climate variables.
There are 2 general ap proaches for downscaling: sta-
tistical downscaling (SD) and dynamical downscal-
ing (DD). DD requires initial boundary conditions
and additional details to create local-scale predictions.
Therefore, it is time-consuming, costly, and prone to
error (Maurer & Hidalgo 2008, Fita et al. 2017).

SD utilizes the statistical relationship between a
local station weather data (the predictand) and the
GCM data output (the predictors). The many itera-
tions required by the SD method are easily run by a
simple computer with one core, so it is comparatively
computationally inexpensive and efficient (Hell ström
et al. 2001, Cavazos & Hewitson 2005, Boé et al. 2007).
SD is broadly categorized into linear methods, sto-
chastic weather generators, and weather pattern-
based approaches (Semenov & Barrow 1997, Hanssen-
Bauer et al. 2005, Vrac et al. 2007). Linear SD
methods include various sub-methods such as simple
and multiple linear regression, the delta method, and
canonical correlation analysis (CCA). The stochastic
weather generator SD category is exemplified by the
Long Ashton Re search Station Weather Generator
(LARS-WG)  (Semenov & Barrow 1997), the WGEN
(Weather GENerator) model,  MarkSim GCM and k-
NN. The weather pattern-based SD category in -
cludes the analog method, cluster analysis, and the
artificial neural network (ANN) (Wu et al. 2012).
Many studies have compared a large number of SD
methods during the past two decades, including in -
vestigation of the impact of climate change on hydro -
logy and water resources (Fowler et al. 2007, Chen et
al. 2011a,b), producing weather data such as precip-
itation and temperature, and generating extreme
values of climate variables.

Many recent studies have compared various SD
methods to determine the best approach for a specific
region. For example, Wilby & Wigley (1997) compared
the performance of 6 statistical downscaling methods
(e.g. regression-based methods, ANN, and weather
generators) for downscaling daily precipitation in

North America. Their results showed that regression-
based methods provided better assessments. Bürger
et al. (2012) compared 5 statistical downscaling meth-
ods for temperature and precipitation extremes in
western Canada and found that the weather pattern-
based approach performed best. For British Columbia,
Canada, SD methods have been used (Mandal et al.
2016). Several studies have compared SD approaches
for Europe, including Haylock et al. (2006) for north-
west and southeast England, Piani et al. (2010) across
Europe, Boé et al. (2007) for northwestern France,
Maraun (2013) for central northern Germany, and
Schmidli et al. (2007) for the European Alps.

A promising nonparametric technique for gene -
rating weather data is the k-NN resampling ap -
proach. Forecasting weather data through analogue
ap proaches has been applied in several studies, in -
cluding Lorenz (1969), Barnett & Preisendorfer (1978),
and Shabbar & Knox (1986). Van den Dool (1994)
assessed these methods in his research over the USA.
Young (1994) employed k-NN to generate tempera-
ture and precipitation values for Tucson and Safford,
Arizona, USA. Lall & Sharma (1996) as sessed and fur-
ther developed this method. The delta method bias
correction approach is a downscaling method that
has been used for as ses sing extreme rainfall estima-
tion (Sunyer et al. 2012), estimation of future dis-
charge (Lenderink et al. 2007), and hydrological
impact studies (Fowler et al. 2007, Dessu & Melesse
2013).

One of the main questions raised here for generat-
ing future data is to determine whether the k-NN
method or CMIP5 downscaled data is more precise
for generating future weather data. The main objec-
tives of the present study were to: (1) improve the
result of k-NN through the ensemble method and
investigate its use for generating weather variables
in arid regions, (2) compare the relative performance
of the k-NN method with MIROC5 downscaled
(through the delta method) outputs for generating
weather variables in arid environments, and (3) de -
velop a user-friendly tool for applying k-NN ensem-
ble outputs.

2.  MATERIALS AND METHODS

2.1.  Study area and climate data

The study area is located in the easternmost prov -
ince of Iran, South Khorasan. It lies between 30° 35’
and 34° 14’ N latitude and 57° 46’ and 60° 57’ E lon-
gitude, an arid location with an area of 151 193 km2.

100



Golkar Hamzee Yazd et al.: Comparison of k-NN method with MIROC5

The maximum annual temperature is 44°C, and the
lowest recorded temperature is −5.21°C. Because
Southern Khorasan is located in the desert climate,
rivers are seasonal. The Lut Desert, one of the driest
and hottest deserts in the world, is located in the
immediate vicinity of this province and affects its
climate. The average annual precipitation in South
Khorasan is 134 mm and the average annual tem-
perature is 17.5°C. Historical daily weather data of 4
different meteorological station locations (Birjand,
Ferdows, Tabas, and Nehbandan) were collected
from 1986 to 2015. These data include maximum
and minimum temperature (°C), precipitation (mm),
wind speed (m s−1), humidity (%), and sunshine
hours (h). The prediction period was 2018− 2047 and
the evaluation period was 2006− 2015. The geo-
graphical location of the stations is shown in Fig. 1,
and the physiographic details of locations are pre-
sented in Table 1.

2.2.  Statistical downscaling method and the
MIROC5 model

We used the outputs of the GCM Model for Inter-
disciplinary Research on Climate (MIROC5; Wata -
nabe et al. 2010) using Representative Concentration
Pathways (RCP) 4.5. We applied the delta method for
statistical downscaling on MIROC5 under RCP4.5.
The characteristics of the MIROC5 model are pre-
sented in Table 2. The MIROC5 model has been
widely used (Fettweis et al. 2013, Gaetani & Mohino
2013, Harding et al. 2013, Hsu et al. 2013, Chen &
Frauenfeld 2014). We choose the RCP4.5 scenario be -
cause many applications are based on this scenario
(Hsu et al. 2013). RCP4.5 represents a ‘medium’ sce-
nario under radiative forcing of 4.5 W m−2 by 2100.
The CO2-equivalent concentration in the year 2100
for RCP4.5 is 538 ppm, the emissions in RCP4.5 peak
around 2040 (Meinshausen et al. 2011) and then
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Fig. 1. Geographical location of Birjand, Ferdows, Nehbandan, and Tabas stations within South Khorasan, Iran

Location            Latitude      Longitude       Elevation      Average Tmax    AverageTmin         Average total        Average no. 
                              (°N)                (°E)                  (m)                    (°C)                    (°C)              precipitation (mm)       wet days

Birjand                32°52’            59°12’               1491                   24.6                   8.5                          165                         38
Ferdows              34°10’            58°10’               1293                   24.5                   10.5                          142                         37
Nehbandan        36°16’            58°48’               1213                   27.2                   13.1                          119                         27
Tabas                  33°36’            56°55’               711                   29.1                   16.4                          87                         26

Table 1. Physiographic details of study locations and weather data during the observation period (1986−2015), on a mean 
annual scale. Tmax: maximum temperature; Tmin: minimum temperature
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decline. As we have projected data for ~30 yr into the
future (2018−2047), we decided to apply RCP4.5 for
the evaluation of reliable outputs.

The delta method was selected because it is the
most widely used method for downscaling GCM out-
puts (Maraun et al. 2010, Themeßl et al. 2011). This
method was used to derive downscaled weather
data, computing the ratio between averaged obser-
vation and GCM-simulated climate and multiplying
this ratio by the GCM data. It is calculated as a sepa-
rate equation for precipitation and temperature
(Eqs. 1 & 2):

                                     (1)

                                     (2)

where PSD
Delta and TSD

Delta are downscaled data of pre-
cipitation and temperature, respectively. ⎯PObs de -
notes the mean observed (obs) precipitation and
P⎯ GCM refers to GCM precipitation data over a future
period. The subscripts GCMrcp and GCMhist rep -
resent the GCM outputs under the RCP scenario
and the GCM historical outputs, respectively. The
subscript Obs represents the observation values. In
Eq. (2), all subscripts are the same as in Eq. (1) but for
temperature instead of precipitation.

2.3.  The k-NN method

The k-NN method is based on selecting a specified
number of days similar in characteristics to the day
of interest from the historical record. In other words,
k-NN has a resampling strategy for generating data
on the basis of ‘similarity’ to the historical period of
weather data. The vector of input data consists of p
variables across each station for each day of the his-
torical record. We selected data from the 4 stations.
The choice of the nearest neighbors number (k) is
essential to ensure good performance of the method
(Sharif & Burn 2006).

We ran the k-NN method with different numbers of
weather variables and we have added this option to
software that has been developed as part of this pro-

ject. For each run, the results of the neighbor’s vector
were maintained. Then the efficiency criteria were
applied to all variables and the vector of the most
desirable neighbor was selected. We used the k-NN
method for daily maximum temperature (°C), mini-
mum temperature (°C), and precipitation (mm) data
over 4 stations for the period 1986−2015, and applied
the vectors to maximum temperature (°C), minimum
temperature (°C), precipitation (mm), wind speed
(m s−1), humidity (%), and sun hours (h) on a daily
scale.

Suppose that the daily historic weather vector
includes p variables. For example, for p = 3, the vari-
ables Tmin, Tmax, and Pr refer to minimum tempera-
ture (°C), maximum temperature (°C), and precipita-
tion (mm), respectively. In this study, the number of
stations is equal to 4. Consider that the simulation
begins on day t, which is considered here to be 1
 January. The procedure cycles through various steps
to obtain the weather data for day t + 1. The process
continues for all 365 d of a year and is repeated to
produce data for 30 yr (in the present study). For run-
ning the k-NN method, there are sequential steps,
which are listed as follows, according to the variables
that were involved in our research:

(1) Create a feature vector for the weather vari-
ables (p = 3) and for each station and each day of the
historical period, 1986−2015, as follows:

Xt = [x1,t, x2,t, …xp,t]                       (3)

where Xt refers to the vector of weather variables for
day t and the selected station. x1,t is the value of
weather variable 1 (e.g. precipitation) at time step t
for the selected station.

(2) Develop a vector for all potential neighbors,
called the matrix of neighbors, the length of which is
L. To compute L, a new concept must be  defined:
w refers to a window of chosen width centered on
the feature day. We set this value as a 14-d window
with a 7-d lag and a 7-d lead based on Yates et al.
(2003). For example, we can place a 14-d window
 centered on 10 January (i.e. 3 January to 17 January),
and then select all of the historical day pairs inside
the window, over the 30 yr. Now, the data block of

P P
P

PSD
Delta

GCMrcp
Obs

GCMhist
= ×

T T T TSD
Delta

GCMrcp Obs GCMhist( )= + −
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Modeling center                                                                                               Spatial resolution            Horizontal resolution 
                                                                                                                                                               (latitude × longitude) (deg)

Atmosphere and Ocean Research Institute (The University of Tokyo),            128 × 256                        1.4062 × 1.4008 
National Institute for Environmental Studies, and Japan Agency for 
Marine-Earth Science and Technology, Japan

Table 2. The characteristics of the MIROC5 model
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 potential neighbors from which to resample consists
of L = (w + 1) × N − 1 d. So, in the present study, L =
(14 + 1) × 30 − 1 = 449. Raja go palan & Lall (1999) and
Yates et al. (2003) recommended the use of a heuristic
method for choosing k, according to which k = √⎯L, so
the k nearest neighbors compute as k = √⎯L, and thus
k = √⎯⎯449 = 21.

With these numbers, the weather on the first day t
comprising all p = 3 variables at each station is ran-
domly chosen from the set of all 1 January values for
N = 30 yr during the observation period. The proce-
dure cycles through the following steps to select one
of the nearest neighbors to show the weather for day
t + 1 of the simulation period.

(3) Determine Mahalanobis distances between the
mean vector of the current day’s weather,⎯Xt, and the
mean vector⎯Xi for day i, where i = 1,…, L. The Maha-
lanobis distance can be determined as follows:

                                     (4)

where T refers to the transpose operation and Ct
–1 is

the inverse of the covariance of the neighbors’
matrix.

(4) Sort the Mahalanobis distances in ascending
order and maintain the first k nearest neighbors.
Then, the probability distribution should compute to
achieve higher weights for the closer neighbors. De -
termine weights for each of the j neighbors according
to the cumulative probability function:

                                     (5)

(5) The weather on the feature day in the simula-
tion period (i.e. the day t +1) is selected among the k
nearest neighbors using Eq. (5). Then, generate a
random number (r) as r ⊂ (0,1), and if p1 < r < pk, then
the day j for which r is closest to pj is selected. If r ≤
p1, the day corresponding to d1 (Eq. 4) is selected,
and if r ≥ pk, then the day corresponding to dk is
selected. Finally, steps 3 to 5 are repeated to produce
synthetic data for the required number of years. In
this study, these steps are repeated to generate 30 yr
in the first evaluation; for the second evaluation dur-
ing 2006−2015, the k-NN method is performed again.

The k-NN method — as a stochastic and nonpara-
metric technique — has remarkable advantages: de -
spite it having several steps to run, the steps are not
complicated, and they are simple and easy to imple-
ment; in addition, there is no normality assumption
for the residuals. However, this approach only works
well with a large sample size (Bannayan & Hoogen-
boom 2008).

Further details on the k-NN model can be found
in Sharif & Burn (2006). The stochastic processes in
weather generators create random outputs and the
climate might not be represented adequately if only
one outcome is used. Since the k-NN approach is a
stochastic weather generator, we used an ensemble
method to decrease the uncertainty of the outputs.
We applied ‘weighted averaging’ for the ensemble
method; weighted averaging obtains the combined
output by averaging the outputs of an individual run
of the k-NN method with different weights implying
different importance. Specifically, weighted averag-
ing gives the combined output H(x) as Eq. (6):

                                     (6)

where wi is the weight for the run hi, and the weights
wi are usually assumed to be constrained by Eq. (7):

                                     (7)

where T is the number of iterations or runs of the k-
NN method. For further details of the calculation, see
Zhou (2012).

2.4.  Efficiency criteria

To assess the relative performance of the down-
scaling and k-NN methods against observation data,
we used root mean square error (RMSE), Pearson’s
correlation coefficient (r), the Nash-Sutcliffe coeffi-
cient of efficiency (NSE), and mean absolute error
(MAE) on a monthly scale, computed as follows: 

                                     (8)

                                     (9)

                                   
(10)

                                   (11)

where SIM and OBS refer to ‘simulated or predicted
data’ and ‘observation data’, respectively; n is the
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total number of pairs of simulated and observed data;
i is the ith value of the simulated and observed data;
and and are the mean values of simulated
and observed data, respectively.

RMSE evaluates the average error magnitude
between simulated and observed data. Pearson’s cor-
relation was used to determine the agreement be -
tween simulated and observed data. MAE measures
the average magnitude of the errors in a set of pre-
dictions but is less sensitive to extreme values than
RMSE. NSE was used to quantify how well the plot of
observed versus simulated data fits the 1:1 line. For a
perfect model, NSE is 1.

2.5.  Software

In this project, the k-NN-WG software package
(AgriMetSoft 2017; https:// agrimetsoft. com/KNN-
WG. aspx) was developed using C#. In this package,
users can generate weather variables through k-NN
and compare outputs with those of other methods in
a user-friendly interface. The tool provides a suite of
efficiency criteria methods for the evaluation process.
Furthermore, the users can plot the baseline data
graph versus k-NN’s outputs. Further information is
available in the Supplement at www. int-res. com/
articles/ suppl/ c077 p099 _ supp. pdf.

3.  RESULTS AND DISCUSSION

In this study, the ability of the k-NN method versus
MIROC5 downscaled data under RCP4.5 for generat-
ing weather data was compared with observation
data. Then, the methods were assessed with a com-
mon base of observation data to check their per -
formance through efficiency criteria. Finally, the out-
comes of the 2 methods were compared in terms of
their utility in predicting weather data for future
decades. The weather data characteristics of data
generated by the 2 methods were compared with
 historical precipitation, minimum temperature, and
maximum temperature data on a daily time scale,
and the results are presented on a monthly scale.

3.1.  Analyzing k-NN results

In the first step, k-NN was run with different
weather variables, including maximum and mini-
mum temperature (°C), precipitation (mm), wind
speed (m s−1), humidity (%), and sunshine hours (h),

to determine the best composition for the neighbor’s
vector. Statistical indices, including RMSE, MAE, r,
and NSE, were calculated to compare the k-NN out-
puts with the weather data from 4 synoptic stations.
These results are presented in Table 3 on a monthly
time scale. For Tmin and Tmax at all stations, the vector
of neighbors with 6 variables was the best selection.
For example, the best result of efficiency criteria of
Tmax between station data and k-NN outputs was for
the Birjand station, with RMSE of 5.70°C mo–1, MAE
of 3.18°C mo–1, r of 0.81, and NSE of 0.58 across all 6
variables. There was a high correlation between
observed station data and k-NN data for Tmax (r =
0.71 to 0.83) and Tmin (r = 0.74 to 0.90) for all locations,
while precipitation showed a much lower correlation
(r = 0.15 to 0.40; Table 3). Precipitation amounts on a
given day are notably highly variable when com-
pared to similar days in past years due to the arid cli-
mate, so analyzing and generating precipitation
amount can be difficult. Table 3 shows that for pre-
cipitation no combination of neighbor’s vectors
across the 4 stations was acceptable. However, the 6
variables of the neighbor’s vector were selected to
generate precipitation predictions.

3.2.  Comparison of simulation and observation
outputs in the evaluation process

k-NN and MIROC5 downscaled outputs were plot-
ted against observed Tmax, Tmin, and precipitation for
the observation period. k-NN and MIROC5 had very
similar results for Tmax and Tmin values from different
study stations for the evaluation period from 2006 to
2015 (Figs. 2 and 3). Clearly, both methods are
capable of closely tracking monthly variations in Tmax

and Tmin. The statistics in Table 4 show the comparison
between the baseline record and the simulated record
of weather variables, and reveal that MIROC5 is
slightly better than k-NN for both temperature vari-
ables. For the 4 stations, MIROC5 Tmax data versus ob-
served Tmax (at monthly time scale) had an NSE >0.86,
RMSE <3.36°C mo–1, and MAE <2.87°C mo–1. For
MIROC5 output Tmin versus observed Tmin, NSE
ranged from 0.89 to 0.93; for k-NN, the NSE ranged
from 0.75 to 0.78. This agrees well with previous stud-
ies that have shown that k-NN has the potential to
 accurately generate temperature data (Yates et al.
2003). Statistical criteria such as MAE show similar
patterns, im plying that MIROC5 has better results
than k-NN for Tmax and Tmin. Therefore, MIROC5 is a
better choice than k-NN for  future temperature pre-
dictions in the study region (Table 4); however, we

OBSSIM
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used both for projecting weather
data for future decades.

Precipitation prediction accuracy
for the 4 locations was also asses -
sed (Fig. 4). These outputs show a
much wider spread between the
model’s outputs and observed data
in the evaluation period, with much
lower correlations for precipitation
than for temperature. This is in
part due to the stochastic nature of
precipitation in arid regions, with
many zero values in its daily time
series. This limitation has been
noted before (e.g. Richardson 1981,
Dibike & Couli baly 2005, Sirangelo
et al. 2007). Our case study location
is characterized by an arid climate,
and it has been af fected by climate
change, drought, and water scar -
city. This should be considered
when evaluating the performance
of the k-NN method. The MIROC5
precipitation outputs underesti-
mated monthly precipitation for
some months such as December
and overestimated amounts for
April (Fig. 4, Table 4). For the
 remaining months, the MIROC5-
simulated precipitation is very
close to the observed historical
 values. The k-NN model was un-
able to reproduce the historical
precipitation values, with only a
weak correlation between simu-
lated k-NN precipitation and ob-
served values; on a monthly time
scale, r ranged from 0.19 to 0.32,
while NSE ranged from −0.14 to
−0.37, RMSE ranged from 10 to
18 mm mo−1, and MAE ranged
from 5.3 to 10 mm mo−1.

3.3.  Projecting future weather
variables using the MIROC5
downscaled data and k-NN

We projected future climate for
30 yr including 2018 to 2047. The
period of 1986−2015 was used
as the baseline period. The box
plots between station data and
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Fig. 2. Comparison between k-NN, MIROC5 and observation (Obs) data for maximum temperature (Tmax) from 2006 to 2015 
on a monthly scale
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Fig. 3. Comparison between k-NN, MIROC5 and observation (Obs) data for minimum temperature (Tmin) from 2006 to 2015 on 
a monthly scale
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MIROC5 downscaled data under RCP4.5 (Figs. 5−7)
show the median and variation in the estimates of
Tmin, Tmax, and precipitation. Monthly Tmin is ex pected
to increase during the summer and autumn, and

decrease during the winter and spring for Birjand,
Ferdows, and Nehbandan (Fig. 5) during the projec-
tion period. For Tabas, the driest location (Table 1),
the future monthly Tmin is expected to increase dur-

107

                                                                 Tmax                                                   Tmin                                           Precipitation
                                               RMSE      MAE        NSE                RMSE      MAE        NSE                RMSE      MAE        NSE

Birjand           MIROC5          3.36         2.87         0.86                  2.59         2.13         0.90                  14.7         9.26        0.03
                       k-NN                5.70         3.18         0.58                  3.88         2.87         0.75                  18.0         10.0        −0.36

Ferdows         MIROC5          3.08         2.58         0.90                  2.77         2.32         0.89                  13.1         8.42        0.00
                       k-NN                5.74         3.14         0.64                  3.92         2.64         0.76                  16.0         8.90        −0.37

Nehbandan    MIROC5          3.31         2.85         0.87                  2.50         2.18         0.93                  15.7         9.54        0.07
                       k-NN                6.25         3.37         0.54                  4.19         2.76         0.78                  17.0         7.50        −0.14

Tabas              MIROC5          2.98         2.48         0.92                  2.84         2.48         0.91                  8.92         5.71        −0.06
                       k-NN                6.77         3.64         0.57                  4.51         2.66         0.76                  10.0         5.30        −0.37

Table 4. Statistical results between k-NN and MIROC5 with observation data over the evaluation period (2006−2015) on a
monthly scale. Tmax: maximum temperature; Tmin: minimum temperature; RMSE: root mean square error; MAE: mean absolute 

error; NSE: Nash-Sutcliffe coefficient of efficiency
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Fig. 4. Comparison between k-NN, MIROC5 and observation (Obs) data for precipitation from 2006 to 2015 on a monthly scale
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Fig. 5. Boxplots of monthly minimum temperature (Tmin; °C) from observation (Obs.) versus prediction (Pred.) periods for (A)
Birjand, (B) Ferdows, (C) Nehbandan, and (D) Tabas stations. The horizontal line in the middle of the box represents the me-
dian, the upper edge of the box represents the 75th percentile (upper quartile), while the lower edge is the 25th percentile
(lower quartile). The boxes extend between the 25th to the 75th percentiles (interquartile range), and the whiskers show the 

5th and 95th percentiles; points are values outside this range

Fig. 6. Boxplots of monthly maximum temperature (Tmax; °C) from observation (Obs.) versus prediction (Pred.) periods for 
(A) Birjand, (B) Ferdows, (C) Nehbandan, and (D) Tabas stations. See Fig. 5 for boxplot definitions
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ing the winter and autumn, but decrease during the
summer and spring. For Tabas, the maximum monthly
Tmin is predicted to be 29.5°C for July compared to
30.8°C for the baseline period. The change in maxi-
mum monthly Tmin for Birjand, Ferdows, and Neh -
bandan for the future period relative to baseline
is ex pected to be −0.93°C, −2.5°C, and +0.42°C,
respectively.

The Tmax projections from MIROC5 show trends
similar to those of Tmin (Fig. 6), except that Tabas’
trends mirror those of the other 3 sites. For all 4 sta-
tions, the monthly Tmax is expected to decrease for
the winter and spring, and increase for summer and
autumn. For Tabas, the maximum monthly Tmax is
expected to increase to 47°C for July in the future,
compared to 45°C for the baseline period. The
changes of the maximum monthly Tmax for Birjand,
Ferdows, and Nehbandan in the future are projected
to equal −4.5°C, −4°C, and −4.5°C, respectively.

Under RCP4.5, the downscaled MIROC5 projec-
tions of monthly precipitation show a general reduc-
tion in winter precipitation and increase in autumn
precipitation (Fig. 7). A slight increase is projected
for early summer (June and July) and late spring
(April and May). In Birjand, the maximum monthly
precipitation for the historical period was 127 mm,

and in the future, this was projected to be 83 mm in
April, a dramatic decline of 43 mm. Similar declines
of 41 mm for Ferdows, 72 mm for Nehbandan, and
44 mm for Tabas were projected.

The precipitation data generated by k-NN show a
noticeable reduction in comparison to the past 30 yr
over the 4 locations (Fig. 8). As we discussed in Sec-
tion 3.2, we can state that in comparison to MIROC5
under RCP4.5, the k-NN method does not have
enough ability to generate precipitation data over
arid regions. The monthly average maximum tem-
perature is illustrated in Fig. 9; it can be noted that,
on average, the range of monthly Tmax of the k-NN
method during the future period (2018−2047) is gen-
erally lower than that during the observation period
(1986−2015). As well, the k-NN method showed that
the minimum Tmax is higher than the ob served Tmax,
whereas the maximum Tmax would be lower than
observation data, for all 4 stations. Generally, accord-
ing to the k-NN method, monthly average Tmin did
not change considerably during future de cades in
comparison to the past 30 yr (Fig. 10). The changes
generated by k-NN are slightly lower than the obser-
vation period for Tmin.

This finding demonstrates that the temperature
values during future decades are not the same
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Fig. 7. Boxplots of total monthly precipitation (mm) from observation (Pr. Obs.) versus prediction (Pr. Pred.) periods from 
(A) Birjand, (B) Ferdows, (C) Nehbandan, and (D) Tabas stations. See Fig. 5 for boxplot definitions
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through the MIROC5 downscaled data under RCP4.5
and the k-NN approach. Also, the projected precipi-
tation amounts are not the same using the 2 methods;
however, the results of MIROC5 revealed reliable
outcomes in comparison to the k-NN method, as the
efficiency criteria showed.

4.  CONCLUSIONS

The use of projected weather data is important
when attempting to account for weather and climate
changes in future decades, and this has a significant

effect on various meteorological projects, such as
water allocation, hydrological modeling, hazardous
events, and other environmental research. This study
compared MIROC5 with k-NN methods for generat-
ing future weather data projections (2018−2047) rel-
ative to baseline (1986−2015) over arid regions. A
user-friendly software program was presented, for
easy comparison of the k-NN method with other
models such as CMIP5. We presented a new method
for decreasing uncertainty in k-NN through an
ensemble method. To select the best composition of
neighbor’s vectors, k-NN was run with a different
number of weather variables. The vector of neigh-
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bors with 6 variables was the best selection. MIROC5
downscaled data performed better than k-NN over
the evaluation period, but both methods were used
for future projections. Our results predict increases in
monthly Tmax and Tmin in summer and autumn and
decreases in winter and spring for all locations. The
downscaled projections of monthly precipitation
show general reductions in winter.

Finally, according to the presented results in this
study, although the k-NN weather generator is one of
the most popular methods used in various studies —
especially for assessing the vulnerability of basins to
floods and droughts under climate change, manage-

ment of water allocations, and hydrological concepts
— we reveal that the outputs of the k-NN method are
less suitable in comparison to MIROC5 downscaled
future data over arid regions, especially for precipita-
tion. In this regard, we recommend that other re -
searchers use these 2 methods in different climate
regions across the globe to obtain more definitive
and meaningful results.
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