NOTE

Occurrence of a microsporean with characteristics of *Glugea anomala* in ornamental fish of the family Cyprinodontidae

J. Lom¹, E. J. Noga², I. Dyková¹

¹Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic
²College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, North Carolina 27606, USA

ABSTRACT: Ornamental fishes of the species *Nothobranchius eggersi* and *N. korthausae* (Cyprinodontidae) were infected by a microsporean of the genus *Glugea*. In various body organs, primarily in the intestinal wall, it elicited the formation of xenomas with a structure typical of *Glugea anomala* (Moniez, 1887). In fact, the shape and size of spores coincided with *G. anomala* and there was no significant difference in ultrastructural features of either the xenoma, its developmental stages, or mature spores. However, because the cyprinodontid hosts are from a different family and there was no known contact with the original hosts of *G. anomala*, the identification of the present parasite as this species cannot be confirmed and requires further study. Microsporean infection was also found in *Fundulopanchax filamentosus* and *Cynolebias nigripinnis*, and there are indications that it might be identical with that of *Nothobranchius*.

KEY WORDS: *Glugea* · Microsporea · Ultrastructure · Ornamental fishes · *Nothobranchius* · *Cynolebias* · *Fundulopanchax*

Materials and methods. The precise origin of the infected fishes is not certain. Hobbyists in the USA reported receiving infected fishes from Germany and Canada. These killifishes are commonly shipped throughout the world making it difficult to determine the precise source of infection. Thus the fish which developed the infection had been propagated in captivity. Fresh spores were observed and photographed. Tissue with xenomas was fixed in 10% neutral buffered formalin and histological sections were stained with hematoxylin and eosin or Brown and Brenn Gram's stain. For transmission electron microscopy, isolated xenomas were fixed in McDowell and Trump's fixative (McDowell & Trump 1976), postfixed in 1% OsO₄ in 0.10 M phosphate buffer (pH 7.3), dehydrated through a series of graded ethanols, transferred to 100% acetone, and embedded in Spurr's resin. Thin sections were cut at 80 nm on a Reichert Ultracut-E microtome, stained with methanolic uranyl acetate and Reynold's lead citrate, and then viewed on a Phillips 410 LS transmission electron microscope.

Results. Microsporea from *Nothobranchius* spp.: When the disease appeared in tanks of *Nothobranchius* spp., it almost invariably affected virtually all individuals, resulting in 100% mortality (R. Goldstein & K. Doering pers. comm.). The xenomas mostly affected intestine, but also occurred in spleen, kidney, peritoneal cavity, subcutaneously and in the eye. Grossly, groups of xenomas often formed white masses up to 5 mm in diameter in various tissues. Individual xenomas ranged from about 25 to 850 μm in size in fresh and stained material, the diameter of a mature xenoma was 250 to 750 μm. Mature xenomas resembled those of *Glugea anomala* (Moniez, 1887); the laminated xenoma wall covered the peripheral cytoplasm with a mass of merogony stages (Fig. 1) and separate fragments of host cell nucleus; more centrally were the...
sporophorous vesicles with maturing sporoblasts and spores; the center had a mass of mature spores released from their sporophorous vesicle walls.

Fresh spores (Fig. 4) were elongated, ovoid, and 2.6 (2.4 to 2.8) × 4.9 (4.5 to 5.5) μm in size (n = 20). A large posterior vacuole occupied the broader posterior half, reaching sometimes up to mid-spore length; the anterior border of the vacuole was slightly convex.

Transmission electron microscopy: The laminae of the xenoma wall — in fact the shed cell coat layers — were indistinct and closely apposed (Fig. 6); there were proportionately more laminae in larger xenomas. The xenoma plasmalemma gave rise to numerous pinocytotic vesicles which lined the periphery of the xenoma. More centrally were merogony stages (spherical and uninucleate to cylindrical and multinucleate) with closely adhering cisternae of host endoplasmic reticulum (Fig. 2). Most meronts had stacks of smooth endoplasmic reticulum, but in some, the cisternae were largely dilated, appearing as many vesicles filled with amorphous, lucent material.

Sporogony began as described by Canning et al. (1982). There was a blister-like detachment of the thin sporophorous vesicle membrane from the sporont surface, with a thick surface coat deposited on the sporont plasmalemma. Later, division of the sporont produced sporoblast mother cells, which initially retained a discontinuous, opaque, surface coat (Fig. 3). Sporoblasts were produced by sporoblast mother cells and later matured into spores.

In immature spores, the exospor surface had finger-like villiforms; as the spore gradually matured, the exospor became more even, but had numerous narrow tubules (Fig. 5). The tubules had about 40 nm in diameter and had an inner core lined with fuzzy material. The inner core was filled with an indistinct matrix. The tubules were already formed when the early sporophorous vesicles had dividing sporonts.

In mature spores, the polaroplast had an opaque anterior end consisting of compact lamellae, and a posterior end composed of tubular sacs. There were 11 to 16 turns (mode = 14) of the isofilar polar tube. Depending on the level of section, the anchoring disc appeared either apical or slightly lateral. The tubules often adhered closely to the surface of the exospor layer of the spore wall.

The host cell nucleus was broken into numerous, peripheral fragments. In the xenoma cytoplasm, chains of small globules were sandwiched between endoplasmic reticulum membranes ('annulate lamellae', Sprague & Vernick 1968).

Microsporea from Fundulopanchax filamentosus: The only material available for study was specimens processed for electron microscopy.

The xenoma structure was similar to that of the preceding hosts, except for the presence of electron-lucent regions in the xenoma cytoplasm, that were as large as sporophorous vesicles. The electron-lucent regions contained dense, concentric membranes within a finely granular matrix. These areas were surrounded by a meshwork of tubules and vesicles, the same as those beneath the xenoma plasmalemma in the pinocytotic zone.

The merogony and sporogony stages were identical to those in Nothobranchius spp. Younger meronts had cytoplasm replete with lucent vesicles. Sporogony plasmidium cleaved into sporoblast mother cells, which gave rise by binary fission to sporoblasts. Mature spores were identical to those in Nothobranchius; the isofilar polar tube had 11 to 14 coils (mode = 13).

Microsporea from Cynolebias nigripinnis: Spores appeared similar to both preceding populations, but could not be studied in detail, since only histological material was available. There were numerous xenomas pervading the intestinal wall (Fig. 7) as well as liver, mesentery and kidney. They revealed the same structure — fragmented host cell nuclei and developmental stages of the parasite at the periphery of the xenoma and a mass of mature spores in its center.

Discussion. An exact comparison of our parasites with existing microsporean species can only be done with the Nothobranchius spp. pathogen where both live and fixed material was available. The ultrastructural features of the Fundulopanchax filamentosus parasite suggest it might be the same species; the histological material from Cynolebias nigripinnis is less conclusive. According to some ornamental fish hobbyists, a (single?) species of microsporidian can infect all 3 genera, in the genus Nothobranchius also the species N. rubripinnis, the infection occurring at various aquaria in North America, and diagnosed at Belle Isle.

Figs. 1 to 7. Glugea sp. from Nothobranchius spp. (Figs. 1 to 6) and Cynolebias nigripinnis (Fig. 7). Fig. 1. Maturing xenomas located beneath the intestinal epithelium; semithin section, toluidine blue; scale bar = 100 μm. Fig. 2. Peripheral part of a mature xenoma with fragments of host cell nuclei (short arrows) and developmental stages of Glugea. Long arrow points to the xenoma wall; asterisks mark the sporophorous vesicles; semithin section; scale bar = 30 μm. Fig. 3. Sporoblast mother cell cleaving to produce sporoblasts; scale bar = 2 μm. Fig. 4. Fresh spores; scale bar = 10 μm. Fig. 5. Tubular structures within the parasitophorous vesicle space, scale bar = 0.5 μm. Fig. 6. Part of the xenoma wall. X: periphery of the xenoma. L: laminar layer; arrow points to the adhering host cell; scale bar = 0.5 μm. Fig. 7. Intestinal wall replete with small, maturing xenomas (arrows) and a mature xenoma (asterisk); semithin section; scale bar = 200 μm.
Aquarium in Detroit, MI, USA (Karl Doering pers. comm.). There have been claims that losses of whole tanks of fish occurred, meaning that the parasite can be a serious pathogen. This is a good reason to try to clarify its identity and assess its host specificity.

There is no doubt that our cases are caused by Glugea species, that form large xenomas typified as having a peripheral cytoplasmic layer with parasite developmental stages and fragments of the host cell nucleus. The pattern of merogonic development, formation of sporoblasts via sporoblast mother cells, origin of the sporophorous vesicle membrane, spore structure, and presence of annulate lamellae (Sprague & Vernick 1968) in the xenoma cytoplasm, are characteristic of this commonly reported Glugea group (G. anomala (Canning et al. 1982); G. weissenbergi (Sprague & Vernick 1968); G. stephani (Jensen & Wellings 1972; Takvorian & Cali 1983; Bekhti 1984); G. atherinae (Berrebi 1979); G. plecoglossi (Takahashi & Egusa 1977, Canning & Lom 1986)). The presence of tubules in developing sporophorous vesicles is common in Glugea species, and also occurs in many other genera of microsporidia (e.g. in Systenotrema alba tubules also have a central core lined with fuzzy material. Larsson 1988). However, the adherence of tubules to the exospore surface has thus not been reported in Glugea.

As to the species identity, our Glugea has spores under light microscopy that are indistinguishable from G. anomala (Moniez, 1887) Gurley, 1893 from sticklebacks Gasterosteus aculeatus and Fundulopanchax filamentosus. The size range of G. anomala spores as given by Canning & Lom (1983) is 1.9–2.7 × 3.5–5.6 μm [it may be extended to 1.9–2.8 × 3–6 μm to include Voronin’s (1987) data on G. gasteroste, an obvious junior synonym of G. anomala], and can easily accommodate the size of the Nothobranchius spp. parasite. The number of polar tube coils in G. anomala (about 12 to 14) also agrees with the present finding. No other Glugea species is so similar: other species with similarly shaped spores (e.g. Glugea luciopercae Dogel & Bykhovski, 1939) have a different xenoma structure or infect marine hosts. Some fish microsporeae are not very host specific; e.g. G. stephani (Hagenmüller, 1899) Woodcock, 1904 infects many species of marine flatfish and Pleistophora hypophysobryconis Schäperclaus, 1941 is known from 4 families of freshwater hosts (Canning & Lom 1986). G. anomala was recorded several times from fishes taxonomically very distant from its type host, the sticklebacks. These reports (e.g. Laird 1956 identified as G. anomala his findings from Malaysian fishes Aeliscus strigatus and Scatophagus argus) hardly gave more than spore dimensions. However, because of structural identity, we can assume that the Nothobranchius parasite might be G. anomala. Nevertheless, because the hosts belong to a different family

LITERATURE CITED


ID: 263385


Manuscript first received: July 1, 1994
Revised version accepted: November 28, 1994

Responsible Subject Editor: W. Körting, Hannover, Germany