NOTE

Occurrence of *Psorospermium haeckeli* in the stone crayfish *Austropotamobius torrentium* from a population naturally mixed with the noble crayfish *Astacus astacus*

Günter Vogt¹, Max Keller², Dirk Brandis³

¹Department of Zoology 1 (Morphology/Ecology), University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany
²First Bavarian Crayfish Hatchery, Habsburgstr. 14, D-86199 Augsburg, Germany

ABSTRACT: The crayfish parasite ‘*Psorospermium haeckeli*’, which supposedly includes several species, is reported for the first time from the stone crayfish *Austropotamobius torrentium*. The infected specimens were from the Kammlach river in Bavaria (Germany), a place where *A. torrentium* and the noble crayfish *Astacus astacus* have coexisted for more than 20 yr. Screening of the mixed crayfish population for *P. haeckeli* revealed that both species were infected with the elongate morphotype of *P. haeckeli*, which is typical of *A. astacus*. The distribution pattern of the parasite was similar in both species; most spores were in the collagenous wall of the blood vessels and the subepidermal connective tissue underneath the carapace. In the noble crayfish there was practically no immune response against *P. haeckeli*, whereas in the stone crayfish ca 10% of the spores were encapsulated by haemocytes, and approximately 1% were melanised. Since stone crayfish collected from other creeks were free of *P. haeckeli*, we presume that the parasite may have been transmitted to *A. torrentium* from *A. astacus*.

KEY WORDS: *Psorospermium haeckeli*, *Astacus astacus*, *Austropotamobius torrentium*, Crayfish Parasite

Psorospermium haeckeli is an organism of unknown taxonomic identity and life cycle which is frequently found in the connective tissue of freshwater crayfish (Alderman & Polglase 1988). Although it is not clear whether *P. haeckeli* causes damage to the host, it is generally referred to as a parasite. *P. haeckeli* seems to have been associated with crayfish from early times of radiation because it has been detected in geographically very distant locations in species of all families of the Astacidea, the Astacidae, Cambaridae and Parastacidae. Aside from crayfish, *P. haeckeli* has been found only once in tissues of the freshwater amphipod *Gammarus lacustris* from a lake in the Baikal region in Russia (Voronin 1975).

In Europe, *Psorospermium haeckeli* has been documented as occurring in native crayfish species *Astacus astacus* in Germany (Haeckel 1857, Scheer 1934), Poland (Grabda 1934), Sweden (Ljungberg & Monné 1968, Cerenius & Söderhäll 1993), Finland (Nylund & Westman 1978) and Norway (Taughbol & Skurda 1992), and *Astacus leptodactylus* in France (Vey 1978) and in Bavana (Germany), a place where *A. torrentium* and the noble crayfish *Astacus astacus* have coexisted for more than 20 yr. Screening of the mixed crayfish population for *P. haeckeli* revealed that both species were infected with the elongate morphotype of *P. haeckeli*, which is typical of *A. astacus*. The distribution pattern of the parasite was similar in both species; most spores were in the collagenous wall of the blood vessels and the subepidermal connective tissue underneath the carapace. In the noble crayfish there was practically no immune response against *P. haeckeli*, whereas in the stone crayfish ca 10% of the spores were encapsulated by haemocytes, and approximately 1% were melanised. Since stone crayfish collected from other creeks were free of *P. haeckeli*, we presume that the parasite may have been transmitted to *A. torrentium* from *A. astacus*.

In America, the parasite was found in the indigenous species *Orconectes virilis* in Alberta, Canada (Aiken 1989), *Orconectes immunis* and *Orconectes rusticus* in Minnesota and Wisconsin, USA (Henttonen et al. 1994), *Procambarus clarkii* and *Procambarus zonangulus* in Louisiana, USA (Henttonen et al. 1992), *Procambarus alleni* and *Procambarus fallax* in Florida, USA (Henttonen et al. 1994), *Procambarus clarkii* from Texas, USA (Lee et al. 1985) and in *Pacifastacus leniusculus* from western USA (Henttonen et al. 1994). In Australia, *P. haeckeli* was detected in *Cherax tenuimanus* and *Cherax quinquedecarinatus* in Western Australia (Owens & Evans 1989) and *Cherax quadricarinatus* in Queensland (Herbert 1987).

Based on significant differences in size, morphology and mode of embedding into the connective tissue of the host, at least 4 different morphotypes of *Psorospermium haeckeli* can be distinguished, 2 in Europe, 1 in America and 1 in Australia. *Astacus astacus* can harbour both European types, an ovoid spore of ca 100 × 60 × 60 μm with lipid globules of very heterogeneous diameter and a narrow envelope of connective tissue around the spore (Nylund et al. 1983, Henttonen et al. 1992, Vogt & Rug 1995) and a more elongate spore of ca 150 × 50 × 50 μm with small, uniform lipid globules and a broad envelope (Haeckel 1857, Grabda 1934, Rug & Vogt 1995). Both morphotypes develop...
within the connective tissue of the crayfish from small, membrane-bound stages (Rug & Vogt 1994, 1995). The existence of separate developmental lines (Rug & Vogt 1995) and the abovementioned data on the variety of species infected and on the geographical distribution of the parasite suggest that the term 'Psorospermium haeckeli' may include several species.

Thus far, the occurrence of Psorospermium haeckeli has been documented in Germany only in Astacus astacus (Haeckel 1857, Scheer 1934, Rug & Vogt 1995). A further paper by Scheer (1979) reported on P. haeckeli in Orconectes limosus, but the parasite was found only within the lumen of the digestive tract and not in tissues of the crayfish. Nothing was known of the presence or absence of P. haeckeli in the 2 other native German crayfish species (Troschel & Dechus 1993), the stone crayfish Austropotamobius torrentium and the white-clawed crayfish Austropotamobius pallipes, in Germany or in other countries.

Materials and methods. Specimens of the noble crayfish Astacus astacus (Linnaeus, 1758) and Austropotamobius torrentium (Schrank, 1803), both belonging to the family Astacidae (Crustacea, Decapoda), were collected in August 1995 from the Kamlach river north of Loppenhausen (District of Schwaben, Bavaria, Germany). The Kamlach is a tributary of the Danube. At the trapping area, about 500 m above sea level, the river meanders through cultivated meadows and is lined either by grass and weeds or by bushes and small trees. The river bed is approximately 5 m wide and 0.5 to 1.5 m deep with some deeper hollows. The earthen river banks are mostly steep and either bare or covered with grass, other plants or roots. The river bottom is gravel with smaller patches of sand and mud.

Sampling of both crayfish species was done at night with 80 'pirate traps' (Bock-Ås, Parainen, Finland) over a distance of ca 600 m. From this catch we removed 3 Astacus astacus and 3 Austropotamobius torrentium for screening for Psorospermium haeckeli Hilgendorf, 1883. This was done by scraping subepidermal connective tissue inclusive of blood vessels from the inner side of the carapace. These samples were examined either as fresh mounts or after treatment with 10% KOH. In addition, we examined the hepatopancreas, antennal gland, gills, musculature, testis, vas deferens, nerve cord and intestine. Photographic records of the results were made using a Leitz Aristoplan microscope. For comparison, we have included some micrographs (Fig. 1) of P. haeckeli from A. astacus collected in earlier years from ponds and streams in the District of Schwaben, where the Kamlach is located.

Results. In earlier samples of Astacus astacus from ponds and streams in the District of Schwaben we found both European morphotypes of Psorospermium haeckeli (Fig. 1a–c). The crayfish harboured either the elongate morphotype (Fig. 1b), the ovoid morphotype (Fig. 1c) or both of them (Fig. 1a). Most of the spores were embedded in the collagenous wall of the dorsal thoracic arteries (Fig. 1a) or in the subepidermal connective tissue underneath the carapace. Both morphotypes had an architecture characterised by a 3-layered shell with solid outer plates and many globules in the interior. They differed with respect to size, shape, embedding in the host connective tissue and appearance of the globules. The spore of the elongate morphotype had a size of roughly 150 × 50 × 50 μm, was enclosed by a broad envelope of connective tissue (Fig. 1b), and included many small lipid globules, 10 to 20 larger non-lipid globules, and 2 closely associated nuclei as revealed by histochemical investigations (Rug & Vogt 1995). The ovoid type measured ca 100 × 60 × 60 μm, had a less distinct and much narrower envelope of connective tissue, and also comprised 10 to 20 non-lipid globules of medial size and 2 closely associated nuclei (Vogt & Rug 1995) but had very heterogenous lipid globules (Fig. 1c).

In the August 1995 trapping we caught 403 crayfish in the Kamlach river with 80 traps on a stretch of about 600 m. 369 Astacus astacus (224 males, 145 females) and 34 Austropotamobius torrentium (14 males, 20 females). In 46 traps we found only A. astacus, in 5 traps only A. torrentium, in 21 traps both species, and 8 traps were empty. The smallest-sized A. astacus caught had a total length of 62 mm (14 g); the heaviest was almost 200 g. The smallest A. torrentium in the traps had a total length of 63 mm and a weight of 9 g. The maximal total length was 93 mm and the maximum weight 49 g.

The 3 male Astacus astacus examined for Psorospermium haeckeli had a total length of 91, 104 and 109 mm and a weight of 32, 46 and 60 g, respectively. All 3 crayfish were moderately infected with the elongate morphotype of P. haeckeli (Fig. 2a–f). Around 50 to 150 spores per crayfish were found in the connective tissue and blood vessels scraped from the inner side of the carapace, and only a few spores were distributed among other tissues. As usual in A. astacus, this elongate morphotype displayed considerable variation in shape and size. Approximately 70% had the typical elongate shape displayed in Fig. 2a. Others were somewhat broader (Fig. 2b), elliptic (Fig. 2c), ovoid, slightly curved or even heavily curved like a boomerang (Fig. 2d). Occasionally, we found developmental stages of the parasite (Fig. 2e–f). The youngest stage was limited by a membrane only but was already enclosed by the typical broad envelope (Fig. 2e). More mature stages showed various degrees of shell differentiation (Fig. 2f). Encapsulation of the spores by haemocytes or melanisation was not observed in the 3 noble crayfish examined.
The 3 male stone crayfish investigated had a total length of 65, 92 and 93 mm and a weight of 11, 49 and 35 g, respectively. The 92 mm, 49 g specimen was totally free of *Psorospermium haeckeli*. The smallest individual (65 mm) had roughly 50 parasites of the elongate morphotype in the thoracic subepidermal connective tissue including blood vessels. The 93 mm crayfish was rather heavily infected. Around 150 spores of the elongate type were located in the connective tissue and blood vessels underneath the carapace. Some further 50 spores were detected in the connective tissue along the vas deferens and around the anterior part of the gut. Only a few spores were found in the antennal gland, hepatopancreas, gills and nerve cord. As in *Astacus astacus* most spores had the typical elongate shape (Fig. 3a), but others were spindle-shaped (Fig. 3b), banana-like (Fig. 3c), rhombus-like (Fig. 3d), elliptic (Fig. 3e) or ovoid (Fig. 3f). Developmental stages of the parasite were also present in smaller numbers (Fig. 3g), particularly in the walls of the blood vessels and around the anterior part of the gut. Around 10% of the spores were encapsulated by haemocytes, and around 1% were additionally melanised (Fig. 3h).

Discussion. For the stone crayfish *Austropotamobius torrentium* there are no data published thus far on infections with *Psorospermium haeckeli*. If the stone crayfish is susceptible to the parasite, one should most likely find it in specimens living sympatrically with a species which is almost regularly infected with *P. haeckeli* such as *Astacus astacus*. As suspected, 2 of the 3 stone crayfish examined from the mixed population of *A. torrentium* and *A. astacus* in the Kammlach harboured the same elongate morphotype of *P. haeckeli* as the cohabiting noble crayfish. One stone crayfish was free of the parasite. Since we have found no *P. haeckeli* at all in stone crayfish from 2 tributaries of the Rhine river, the Steinach and Steinbach, we presume that, in the Kammlach, *P. haeckeli* may have been transmitted to *A. torrentium* from *A. astacus*.

The distribution pattern of *Psorospermium haeckeli* in the body of *Austropotamobius torrentium* was like that in *Astacus astacus* (Vogt & Rug 1995). The highest number of spores was found in the collagenous walls of the blood vessels and the surrounding subepidermal connective tissue underneath the carapace. But the rate of encapsulation and melanisation of the parasite...
was much higher in *A. torrentium* than in *A. astacus*, which may indicate that the parasite is more adapted to the noble crayfish than to the stone crayfish. A rather intense immune response against the elongate morphotype was also reported for *Astacus leptodactylus* (Vranckx & Durliat 1981).

There is still controversy as to whether *Psorospermium haeckeli* can cause damage to crayfish populations. Söderhäll (1988) reported decreased catches in Swedish lakes but only when parasite numbers were high. Moreover, Cerenius et al. (1991) have shown that *P. haeckeli* has a measurable impact on the immune system of crayfish. They concluded that the parasite could contribute to failure of the immune system if the crayfish are subjected to other infections or stress (Söderhäll & Cerenius 1992). Because of these data and considerations, we strongly recommend against stocking stone crayfish in the wild without prior examination for *P. haeckeli* and other pathogens, particularly if autochthonous populations are present in the stocking area.

Currently, *Psorospermium haeckeli* has been clearly documented as occurring in 15 crayfish species, the 14 species listed in the ‘Introduction’ and in *Austropotamobius torrentium*. Data are lacking for some further 450 crayfish species distributed worldwide (Hobbs...
Fig. 3. Elongate morphotype of *Psorospermium haeckeli* in *Austropotamobius torrentium* from the Kammlach river. (a) Most frequent variant. (b) Spindle-shaped variant. (c) Banana-like variant. (d) Rhombus-shaped variant. (e) Elliptic variant. (f) Egg-shaped variant. (g) Very young developing stage. (h) Encapsulated and melanised spore. E: envelope of connective tissue; HC: haemocytic capsule; L: lipid globules; N: non-lipid globule. S: shell; arrow: inner shell layer; arrowhead: shell plate. Fresh (b, d, f–h) and KOH-treated (a, c, e) mounts. Scale bars = 20 μm.
1988). A better database on the biogeographical distribution of the parasite, the range of species infected and possible interspecific transmissions could contribute significantly to the resolution of the century-old enigma called 'Psorospermium haeckeli'.

Acknowledgements The authors thank the students of the field course 'Ecology of freshwater crustaceans' (University of Heidelberg, 1995), Olaf Czinczel, Frank Gottschalk, Jürgen Kaselowsky, Kerstin Richter, Christiane Schader, Cornelia Schulten, Markus Sonnberger and Anke Threimer, for their committed assistance and Gisela Adam for excellent reproduction of the micrographs. Collection of the stone crayfish was done with permission of the District of Schwaben for culture experiments in the Schwäbischer Fischereihof (Salgen).

LITERATURE CITED

Aiken D (1989) Marron fungus? [Answer to a letter to the editor], Wld Aquacultur 20(2):6-7
Grabbé E (1934) Recherches sur un parasite de l'écervisse (Potamobius fluviatilis L.) connu sous le nom de Psorospermium haeckelii Hildg. Mém Acad Pol Sci Lett, Cracovie (Sér B) 6:123-142
Lee BJ, Sis RF, Lewis DH, Marks JE (1985) Histology of select organs of the crayfish Procambarus clarkii maintained at various temperatures and levels of calcium and ammonia. J Wld Maricult Soc 16:193-204
Nylund V, Westman K (1978) Psorospermium haeckeli, a parasite on the European crayfish, Astacus astacus, found in Finland. Freshwat Crayfish 4:385-390
Scheer D (1979) Psorospermium orconectis n. sp., ein neuer Parasit in Orconectes limosus. Arch Protistenkd 121:381-391
Vey A (1978) Recherches sur une malaie des ecrevisses due au crayfish plague fungus, Aphanomyces astaci. FAO Report, Rome, Italy

Manuscript first received: September 6, 1995
Revised version accepted: November 20, 1995