
DISEASES OF AQUATIC ORGANISMS
Dis Aquat Org

Vol. 55: 247–252, 2003 Published August 4

INTRODUCTION

Bonamia ostreae (Pichot et al. 1980) is a protistan
parasite of Ostrea edulis Linné, a commercially impor-
tant flat oyster that occurs widely in Europe and locally
on both coasts of North America. It proliferates within
oyster hemocytes (Balouet et al. 1983), often resulting
in massive inflammation and death of its host (Bucke
& Feist 1985). A haplosporidian protist (Pichot et al.
1980, Perkins 1990, Carnegie et al. 2000), B. ostreae
was described after causing catastrophic oyster mor-
tality in 1979 in Brittany, France (Comps et al. 1980,
Pichot et al. 1980), but was first observed in California,
USA a decade earlier (Katkansky et al. 1969, Elston
et al. 1986). It now occurs in Europe from Ireland to
Spain and in California, Washington, and Maine, USA
(Comps et al. 1980, Pichot et al. 1980, Bucke & Feist
1985, van Banning 1985, Elston et al. 1986, Friedman
et al. 1989, McArdle et al. 1991, Montes et al. 1991,

Barber & Davis 1994, Friedman & Perkins 1994, Zaba-
leta & Barber 1996). The disease B. ostreae causes,
bonamiosis, is notifiable to the Office International des
Epizooties (OIE), and is a serious threat to flat oyster
aquaculture.

Bonamia ostreae transmission is direct (Elston et al.
1987). Bonamiosis outbreaks in Europe began when B.
ostreae was transmitted to naïve French O. edulis pop-
ulations from infected juvenile O. edulis imported
commercially from California (Elston et al. 1986). This
may not have occurred if the oysters had been
screened before transfer, B. ostreae had been recog-
nized as an infectious agent, and the transfer had been
denied. Bonamia ostreae is not easily detected, how-
ever. Because it is small (2 to 3 µm in diameter; Pichot
et al. 1980), it may be overlooked in microscopic exam-
inations of lightly infected oysters (Bucke & Feist
1985). Such oysters may seem healthy. Early B. ostreae
infections are typically focal (Bucke & Feist 1985,
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Bucke 1988); foci may be missed during sampling.
Recently developed PCR assays for B. ostreae
(Carnegie et al. 2000, Cochennec et al. 2000), on the
other hand, may detect the parasite too sensitively.
Degraded or non-viable pathogen DNA may generate
false positive PCR results. False negative results, as
with histopathology, may arise because of sampling
error (Burreson 2000). 

In situ hybridization (ISH) is a powerful complement
to traditional and PCR-based detection methods. It
combines advantages of both. Like traditional histo-
pathology (i.e. the microscopic examination of fixed
and stained tissue sections), ISH reveals the tissue
location of an infection and the host response. Like
PCR, ISH is specific and very sensitive. Successful
hybridization provides an unambiguous phylogenetic
confirmation that a specific pathogen is associated
with a specific host tissue. The usefulness of ISH goes
beyond routine diagnostics. An ISH for Haplosporid-
ium nelsoni (Stokes & Burreson 1995), for example, has
been used with PCR in attempts to resolve this oyster
parasite’s life cycle (Stokes et al. 1997), and was used
to discover its geographic source (Burreson et al. 2000).
An ISH for Bonamia ostreae, similarly, could confirm
routine PCR results, illuminate B. ostreae’s life cycle
and transmission dynamics, and resolve its transplan-
tation history. The development of a fluorescent ISH
(FISH) for B. ostreae was the objective of this project.

MATERIALS AND METHODS

Sample collection and histological processing. Sev-
enty Ostrea edulis were collected at Gun Point Creek,
Maine, USA (43° 46’ 28’’ N, 69° 56’ 50’’ W) on 4 June
2000. Hemolymph was non-destructively drawn from
the adductor muscle of each, diluted in artificial sea-
water (~1:10; 30‰), and placed on a glass slide. Hemo-
cytes adhering after 10 min were fixed and stained
using Hemostat solutions (Fisher Scientific; see Culloty
& Mulcahy 1996, Zabaleta & Barber 1996). Slides were
screened for Bonamia ostreae using a compound micro-
scope at 400 ¥ magnification until 5 oysters with abun-
dant B. ostreae were identified. These individuals
were sacrificed and fixed whole in Davidson’s Solution
(Shaw & Battle 1957) for 24 h. Transverse sections
(~4 mm) posterior to the palps were dehydrated,
cleared, and embedded in paraffin. Serial sections
(5 µm) were cut from these blocks and dried at 50 to
55°C on 3-aminopropyltriethoxysilane (APTS)-treated
slides (Schwarzacher & Heslop-Harrison 2000). The
first slide in each series was stained with hematoxylin
and eosin (H&E) for standard histopathological evalua-
tion. Others were used for FISH. Thin sections (5 µm)
of paraffin-embedded Crassostrea virginica infected

with Haplosporidium nelsoni were included to test for
cross-reactivity of the B. ostreae-specific probes.

Design and preparation of probes. An alignment of
haplosporidian and oyster SSU rDNA gene sequences
was constructed for DNA oligonucleotide probe selec-
tion. Bonamia ostreae (GenBank accession number AF-
262995), Haplosporidium nelsoni (U19538), H. costale
(U20858), H. louisiana (U47851), Minchinia teredinis
(U20319), Urosporidium crescens (U47852), and Ostrea
edulis (U88709) sequences were aligned using the pro-
gram Se-Al (Oxford University Evolutionary Biology
Group). Seven probes were designed. UME-BO-1
(5’-CGAGGCAGGGTTTGT-3’), UME-BO-2 (5’-GGG-
TCAAACTCGTTGAAC-3’), and UME-BO-3 (5’-CGC-
TCTTATCCACCTAAT-3’) in theory were specific for
B. ostreae. They composed a multi-oligoprobe cocktail,
an effective way to increase sensitivity without sacri-
ficing specificity (Trembleau & Bloom 1995). Potential
cross-reactivity of these probes with other SSU rDNA
sequences was discounted after a GenBank BLAST
search for the probes and their targets revealed no
close matches. Negative control probes UME-BO-1M
(5’-CGAGCCAGGCTTTGT-3’), UME-BO-2M (5’-GGC-
TCAAACTCCTTGAAC-3’), and UME-BO-3M (5’-CCC-
TCTTATCCTCCTAAT-3’) each differed from corre-
sponding B. ostreae-specific probes by 2 substitutions.
Thus, they were slightly mismatched to theoretical
target sequences. UME-OE-385 (5’-TCATGCTCCCT-
CTCCGG-3’) was a positive control oligonucleotide
designed to bind to both O. edulis and B. ostreae. 

The probes were synthesized by Operon Technolo-
gies). Each carried a 5’ fluorescein iso(thio)cyanate
label (FITC; absorbance l = 490 to 496 nm; emission l
= 514 to 521 nm). All probes were purified using thin-
layer chromatography (TLC; plate: 20 cm ¥ 20 cm ¥
250 µm Whatman PE SIL G/UV, polyester-backed and
silica-coated; running buffer: 55 ml n-propanol, 35 ml
ammonium hydroxide, 10 ml H2O) and resuspended
in Tris-EDTA (pH = 7.4).

FISH. Our FISH methodology was derived from
published ISH protocols (Dubilier et al. 1995, Stokes &
Burreson 1995, Stokes et al. 1995). Four consecutive
Ostrea edulis sections and 2 Crassostrea virginica sec-
tions were deparaffinized in xylene (3 ¥ 10 min), rehy-
drated through a descending ethanol series (100, 95,
80 and 70% for 10 min each), and equilibrated in
phosphate-buffered saline (PBS; once for 10 min, once
for 5 min). The sections were then digested with Pro-
teinase K (100 µg ml–1 in PBS for 15 min at 37°C,
followed by a wash in PBS plus 0.2% glycine for 5
min); acetylated using acetic anhydride (5% [v/v] in
0.1 M triethanolamine-HCl [pH 8.0] for 10 min at
room temperature, followed by a wash in PBS for 10
min; see Schwarzacher & Heslop-Harrison 2000);
and equilibrated in 5 ¥ SET (750 mM NaCl, 6.4 mM
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EDTA, 100 mM Tris base) (10 min at room tempera-
ture). Excess SET was drained off, and 200 µl of pre-
hybridization buffer (5 ¥ SET, 0.02% bovine serum
albumin, 0.025% sodium dodecyl sulphate [SDS]) was
added to each section. After incubation for 30 min at
45°C, the prehybridization buffer was drained off and
replaced with 10 to 12 µl of prehybridization buffer
containing 2 to 10 ng µl–1 of the appropriate oligonu-
cleotide(s). One O. edulis section received theoreti-
cally Bonamia ostreae-specific probes UME-BO-1,
UME-BO-2, and UME-BO-3; a second received mis-
matched probes UME-BO-1M, UME-BO-2M, and
UME-BO-3M; a third received no probe; and a fourth
received the control probe UME-OE-385. The C. vir-
ginica sections (Haplosporidium nelsoni controls)
received probes UME-BO-1, UME-BO-2, and UME-
BO-3. The sections were coverslipped with parafilm
and incubated overnight in humid chambers at 45°C.
They were washed the next day in 0.2 ¥ SET (3 ¥ 5
min at 42°C), air dried, and then covered using Vec-
tashield Mounting Medium (Vector Laboratories) and
glass coverslips. 

Slides were examined (600 to 1000 ¥) using a Nikon
Labophot-2 epifluorescent microscope with a dual
FITC-Texas Red filter. Specific fluorescence patterns
were expected to result from the 5 experimental condi-
tions. Binding of the Bonamia ostreae-specific probes
to B. ostreae rRNA was expected to result in the ap-
pearance of green rings of 2 to 4 µm outside diameter
within oyster hemocytes. The mismatched probe con-
dition would display a near or complete absence of
green fluorescence. The no probe condition and the
Haplosporidium nelsoni control would show no green
fluorescent signal (orange background alone). Finally,
in the positive control, all tissues would exhibit green
fluorescence. 

Fluorescent images were captured on 35 mm slide film
and scanned. The images were prepared for publication
using Jasc Paint Shop Pro Version 7.00 (Jasc Software).
Diameters of stained structures were estimated by cal-
culation from pixel measurements using this software. 

RESULTS

Probes UME-BO-1, UME-BO-2, and UME-BO-3 hy-
bridized to Bonamia ostreae rRNA (Fig. 1A). Small
FITC-stained objects occurred in many hemocytes in
all tissues, and were sometimes free in hemolymph
sinuses. Each resembled a small green ring, as green
fluorescence surrounded an eccentric dark region.
They resembled rings because the labeled probes
were concentrated at the ribosomes within the cyto-
plasm, surrounding the eccentric B. ostreae cell
nucleus. The distribution of these small green rings

precisely matched the distribution of B. ostreae cells
observed in the H&E-stained section. The outside
diameter of these rings (2.4 to 5.6 µm) also conformed
to that expected for B. ostreae. 

Negative control treatments showed only an orange
background autofluorescent signal. Fig. 1B illustrates
the level of background autofluorescence in the ab-
sence of probes. The mismatched-probe control treat-
ment (Fig. 1C) and the Haplosporidium nelsoni control
treatment (Fig. 1D) resembled the no probe condition
in Fig. 1B. They displayed none of the green fluores-
cence characteristic of probe binding. The failure of
mismatched probes UME-BO-1M, UME-BO-2M, and
UME-BO-3M to hybridize (Fig. 1C) indicated that the
theoretically Bonamia ostreae-specific probes UME-
BO-1, UME-BO-2, and UME-BO-3 hybridized to specific
target sequences. The failure of UME-BO-1, UME-BO-
2, and UME-BO-3 to hybridize to H. nelsoni (Fig. 1D)
confirmed that these target sequences were, if not
unique to B. ostreae, restricted to certain haplosporidi-
ans. Importantly, the specific probes failed to hybridize
to one of B. ostreae’s closest phylogenetic relatives. 

DISCUSSION

This FISH assay for Bonamia ostreae provided signif-
icant advantages over traditional histopathological tech-
niques. The assay generated unambiguous signs when
B. ostreae was present. B. ostreae-specific fluorescence
possessed a characteristic color, shape, and size, and oc-
curred in a specific tissue. It was green, ring-shaped, and
small (2.4 to 5.6 µm), and was primarily observed inside
hemocytes. The color reflected specific binding of the
FITC-conjugated probes; the shape reflected the cyto-
plasmic location of the ribosomes to which the probes hy-
bridized; and the size reflected the actual diameter of B.
ostreae cells. The tissue location of the fluorescence re-
flected the tissue specificity documented for B. ostreae
itself (Balouet et al. 1983). Unambiguous B. ostreae-
specific staining possessed all 4 traits. 

Traditional histopathological detection of Bonamia
ostreae depends on 3 possible observations: small size,
a ‘fried egg’ appearance to the presumptive B. ostreae
cells, and association of these cells with hemocytes
(Bower et al. 1994). B. ostreae cells are easily observed
when they are numerous; for example, in oysters with
systemic infections. In oysters with light or prepatent
infections, however, small B. ostreae cells may be mis-
taken for routine intracytoplasmic inclusions (Bucke &
Feist 1985). Traditional histopathological detection of
B. ostreae is insensitive partly for this reason. With
FISH, even a small number of B. ostreae cells stand out
from the host tissue background because, in a section,
they alone are stained. Thus, FISH is more sensitive.
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FISH provided a phylogenetic confirmation of the
pathogen’s identity that histopathology could not.
The mismatched probe control indicated that the ex-
perimental (presumptively Bonamia ostreae-specific)
probes hybridized to very specific target sequences.

The absence of hybridization in the Haplosporidium
nelsoni control indicated that these target sequences
might be unique to B. ostreae. (In a partial SSU rDNA
sequence for B. exitiosus that appeared on GenBank
[AF337563] after this work was done, one probe bind-
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Fig. 1. Photomicrographs of the fluorescent in situ hybridization (FISH) trials (scale bars = 20 µm). (A) to (C) are serial images of
hemocytes aggregated at the gut wall of a Bonamia ostreae-infected flat oyster (A) B. ostreae-specific probe treatment. Green
rings indicate specific binding of the B. ostreae-specific probes to parasite cells. Arrowhead indicates 1 individual B. ostreae cell;
arrow indicates a cluster of cells. Inset: Detail of B. ostreae cells. Note the dark eccentric areas representing B. ostreae cell nuclei.
(B) No probe treatment, indicating the level of background autofluorescence in the absence of probes. (C) Mismatched probe
treatment. A cocktail of probes mismatched to target 2 positions failed completely to bind to B. ostreae target. (D) Haplosporidium
nelsoni (MSX) control. B. ostreae-specific probes failed to bind to MSX plasmodia, the 4 areas of intense yellow autofluorescence 

surrounded by Crassostrea virginica hemocytes
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ing site was identical to B. ostreae, while another
matched B. ostreae at only 11/15 positions. The
sequence at the third binding site was unknown, but
weak cross-hybridization to B. exitiosus should occur
because of the single perfectly matched probe.) Thus,
in the northern hemisphere where no other Bonamia
spp. are known to occur, this FISH assay should not
generate false positive results by cross-hybridization.
This is significant for 2 reasons. First, as H. nelsoni
advances northward (Ford & Tripp 1996, Barber et al.
1997), it may eventually co-occur with B. ostreae in the
northeastern USA. Second, the Pacific oyster Cras-
sostrea gigas parasite Mikrocytos mackini, while not a
haplosporidian (Hine et al. 2001), is indistinguishable
from B. ostreae at the light microscope level (Farley et
al. 1988), and infects Ostrea edulis in British Columbia,
Canada where C. gigas and O. edulis are cultured
together (Bower et al. 1997). 

The specificity of this FISH assay, therefore, should
compare favorably to Bonamia ostreae-specific PCRs
(Carnegie et al. 2000, Cochennec et al. 2000). This
assay is more specific than the B. ostreae-specific ISH
described by Cochennec et al. (2000), which cross-
reacted with both Bonamia sp. (now Bonamia exitio-
sus) from New Zealand and Haplosporidium nelsoni.
The sensitivity of this FISH relative to PCR awaits vali-
dation. While FISH may be less sensitive than PCR, it
should also generate fewer false positive results,
because a positive signal can be validated in terms of
tissue location and cell morphology. The degree of host
response can also be determined with FISH, but not
with PCR. In contrast, low cost and high throughput
are the PCR’s strongest advantages. 

Bonamia ostreae is directly transmissible between
oysters in a population (Elston et al. 1987). Infections
probably begin when oyster hemocytes phagocytose
B. ostreae cells that have penetrated the gill epithe-
lium or digestive tract. The parasite proliferates in
these hemocytes and disperses throughout the oyster.
With eventual necrosis and death of the host, B.
ostreae passes via the water column to nearby oys-
ters, and the cycle begins anew (Bucke 1988, Montes
et al. 1994). This hypothesized life cycle may be
tested using FISH. Prepatent infections may be
detected without the visual cues (e.g. host response)
that permit location of B. ostreae in H&E-stained sec-
tions. Cryptic forms may be identified as well. B.
ostreae-specific probe hybridization to objects of
unexpected size or shape or in an unusual tissue
location may reveal the presence of cryptic or non-
canonical B. ostreae cell types. Here fluorescent ISH
is particularly powerful. Probe signal is very pre-
cisely localized in FISH because the fluorescent
probes may be directly observed (Schwarzacher &
Heslop-Harrison 2000). Thus, morphological charac-

teristics of a stained object may be described more
completely than if a chromogenic ISH were used. 

This FISH assay is a powerful tool for detecting
Bonamia ostreae. It sensitively identifies B. ostreae
cells in situ. It provides a degree of morphological res-
olution that will expedite the search for cryptic parasite
forms and resolution of the parasite’s life cycle. Its pri-
mary weakness is low throughput. However, it is faster
than chromogenic ISH assays for Haplosporidium
nelsoni (Fong et al. 1993, Stokes & Burreson 1995),
Minchinia teredinis (Stokes et al. 1995), and Marteilia
refringens (Le Roux et al. 1999) because it requires
fewer post-hybridization steps. It has great potential to
advance our understanding of B. ostreae and improve
our management of the parasite in wild and cultured
flat-oyster populations. 
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