NOTE

Sequence analysis of the internal transcribed spacer (ITS) region reveals a novel clade of *Ichthyophonus* sp. from rainbow trout

C. Rasmussen¹, M. K. Purcell¹, J. L. Gregg², S. E. LaPatra³, J. R. Winton¹, P. K. Hershberger²,*

¹Western Fisheries Research Center, US Geological Survey, 6505 NE 65th Street, Seattle, Washington 98115, USA
²Western Fisheries Research Center, US Geological Survey, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, Washington 98358, USA
³Research Division, Clear Springs Foods, Inc., PO Box 712, Buhl, Idaho 83316, USA

ABSTRACT: The mesomycetozoean parasite *Ichthyophonus hoferi* is most commonly associated with marine fish hosts but also occurs in some components of the freshwater rainbow trout *Oncorhynchus mykiss* aquaculture industry in Idaho, USA. It is not certain how the parasite was introduced into rainbow trout culture, but it might have been associated with the historical practice of feeding raw, ground common carp *Cyprinus carpio* that were caught by commercial fisherman. Here, we report a major genetic division between west coast freshwater and marine isolates of *Ichthyophonus hoferi*. Sequence differences were not detected in 2 regions of the highly conserved small subunit (18S) rDNA gene; however, nucleotide variation was seen in internal transcribed spacer loci (ITS1 and ITS2), both within and among the isolates. Intra-isolate variation ranged from 2.4 to 7.6 nucleotides over a region consisting of ~740 bp. Majority consensus sequences from marine/anadromous hosts differed in only 0 to 3 nucleotides (99.6 to 100% nucleotide identity), while those derived from freshwater rainbow trout had no nucleotide substitutions relative to each other. However, the consensus sequences between isolates from freshwater rainbow trout and those from marine/anadromous hosts differed in 13 to 16 nucleotides (97.8 to 98.2% nucleotide identity).

KEY WORDS: *Ichthyophonus hoferi* · Rainbow trout · Ribosomal gene complex · ITS1 · ITS2

INTRODUCTION

Taxonomic uncertainties have accompanied the identification of *Ichthyophonus hoferi* since its original description by B. von Hofer in 1893 (reviewed by McVicar 1999). More recently, sequence analysis of the small subunit (SSU, also termed 18S) region of the ribosomal RNA gene complex (rDNA) confirmed that *Ichthyophonus* belongs to a primitive protistan group that is related to the common ancestor of animals and fungi (Wainright et al. 1993). This novel group initially consisted of *Dermocystidium*, the rosette agent, *Ichthyophonus* and *Psorospermium*, giving rise to the acronym ‘DRIP clade’ (Ragan et al. 1996) that was later reorganized into the newly created class Mesomycetozoa (Herr et al. 1999).

A lack of distinguishing characteristics in the original species description (von Hofer 1893), combined with a high degree of morphological plasticity in life history stages (Okamoto et al. 1985), likely resulted in the grouping of several closely related organisms into a species assemblage that is collectively referred to as *Ichthyophonus hoferi* (Alderman 1982, Spanggaard et al. 1996). Phylogenetic studies using 18S rDNA sequences of *I. hoferi* have revealed only 5 SSU rDNA haplotypes worldwide (Criscione et al. 2002). In the NE
Pacific, 2 SSU haplotypes that share 99.5% nucleotide similarity have been reported, with sequences from coastal rockfishes *Sebastes* spp. differing from those of sympatric Pacific herring *Clupea pallasii*, Chinook salmon *Oncorhynchus tshawytscha* (Criscione et al. 2002) and Puget Sound rockfish *Sebastes emphaeus* (Halos et al. 2005). Additionally, a phenotypic difference in salinity tolerance has been reported among *I. hoferi* isolates from freshwater rainbow trout *O. mykiss* and marine fish, although they share 100% SSU rDNA nucleotide identity (Hershberger et al. 2008). To avoid the confusion surrounding the *I. hoferi* species complex in this paper, the organism will hereafter be referred to generically as *Ichthyophonus*.

The rDNA complex of eukaryotes consists of a tandem set of genes and spacers, including the 18S rRNA, an internal transcribed spacer 1 (ITS1), the 5.8S rRNA, a second internal transcribed spacer (ITS2), the 28S rRNA, and a second external transcribed spacer (ETS2) (Cooper 2000). The goal of this study was to use the rDNA sequences of the less conserved ITS1 and ITS2 regions to assess potential genetic differences among *Ichthyophonus* isolates that were derived from a range of marine, anadromous and freshwater fish species in the NE Pacific. The isolates that were used included representatives of the most common SSU rDNA sequence types that were observed in the NE Pacific (Criscione et al. 2002, Halos et al. 2005, Hershberger et al. 2008).

MATERIALS AND METHODS

Ichthyophonus isolates. *Ichthyophonus* was isolated and cultivated from heart tissue explants of 4 host species (Table 1) as previously described (Hershberger et al. 2008). Briefly, heart tissue was aseptically removed and placed in an isolation medium consisting of Eagle’s MEM supplemented with foetal bovine serum (5% v/v), penicillin (100 IU ml⁻¹), streptomycin (100 µg ml⁻¹) and gentamycin (100 µg ml⁻¹), and buffered to pH 7.8 with 1 M Tris (MEM, pH 7.8). Cultures were incubated at 15°C for ~14 d, after which excess host tissue was removed. To generate sufficient quantities of *Ichthyophonus* for nucleic acid extraction, parasite growth was stimulated by passing the isolates into a hyphenation medium consisting of MEM that was adjusted to pH 3.5 and supplemented with 1% glucose (Spanggaard et al. 1994). Resporulation was then stimulated by returning the isolates to pH 7.8 for several days before genomic DNA was isolated. The rainbow trout RBT2 sample (Table 1) was not cultured prior to molecular analysis.

Isolation of genomic DNA. Genomic DNA was isolated from cultured *Ichthyophonus* or from infected heart tissue using a DNeasy blood and tissue kit (Qiagen) following the manufacturer’s recommendations...
for tissue extraction, with several modifications. *Ichthyophonus* spores or hyphae were initially placed in a tube containing beads (lysing matrix D; Bio 101) and incubated with 360 µl of tissue lysis buffer and 40 µl of proteinase K (Qiagen) at 55°C for 2 h before being homogenized in the Fast Prep FP120 instrument (Bio 101) for 40 s. The samples were centrifuged at 7200 x g for 1 min, an additional 40 µl of proteinase K was added, and the homogenates were incubated overnight at 55°C. The *Ichthyophonus* homogenates were then subjected to a second round of bead homogenization, and the samples were extracted with no further modifications to the manufacturer’s protocol.

PCR amplification, cloning, and sequencing of SSU (18S) and ITS (ITS1-5.8S-ITS2) rDNA regions. PCR amplification and sequencing of 2 segments (A and B) of the SSU rDNA were performed as previously described (Criscione et al 2002, Halos et al 2005). Briefly, region A primers amplify a 640 bp segment, while region B primers amplify a 673 bp segment. Segments were direct sequenced in the forward and reverse directions using the ABI Big Dye Terminator v1.1 and an ABI 3700 automated sequencer (Applied Biosystems).

The region spanning ITS1, 5.8S and ITS2 was amplified using the following primers: 5’-GTT TCC GTA GGT GAA CCT GC-3’ and 5’-TCC TCC GCT TAT TRA TAT GC-3’. DNA amplification was achieved using the GoTaq PCR enzyme and buffer system (Promega) with 1 cycle of 95°C for 5 min, followed by 35 cycles of 94°C for 45 s, 62°C for 45 s, and 72°C for 1.5 min. PCR products were cloned using the pGEM-T easy vector system (Promega) or Topo-TA cloning kit for sequencing (Invitrogen), to assess intra-isolate sequence variation. Clone insert sizes were assessed by PCR amplification using vector primers. Multiple clones of PCR products from each isolate containing inserts of expected size were sequenced using the high-throughput genomic unit at the University of Washington (Seattle, WA, USA). A total of 5 to 16 clones were sequenced per isolate (Table 1).

Sequence and phylogenetic analyses. Sequence chromatograms were visually assessed and edited using the Sequencher v4.5 software (Gene Codes). Phylogenetic comparisons were performed after the sequences had been aligned using ClustalX (Thompson et al. 1997), with default parameter settings including the pairwise and multiple alignment gap-opening/extension penalties of 10/0.10 and 3/1.8, respectively. Phylogenetic analyses were performed using either the majority consensus sequences for each isolate (derived from all PCR clones for each isolate) or all individual PCR clone sequences. Alignments were examined by eye and no adjustments were deemed necessary. The ITS1-5.8S-ITS2 sequence from a related mesomycetozoan, *Amoebidium parasiticum* (AY388646), was used as an outgroup species. Phylogenetic inferences were made using the neighbor-joining and maximum parsimony methods in the MEGA v4.0 software package (Tamura et al. 2007). Tree topologies were validated by bootstrapping 1000x.

RESULTS

All isolates that were used in this study were identical across the A and B regions of the SSU rDNA (Table 1), and the sequences were identical to those of *Ichthyophonus hoferi* (e.g. AF467798 and AF467797). Primers that were designed to amplify the ITS1-5.8S-ITS2 region of *Ichthyophonus hoferi* produced an amplicon of ~740 bp. Sequencing of multiple clones for each isolate showed that intra-isolate variation ranged from 2.4 to 7.6 nucleotides in the region examined (p-distances range: 0.003 to 0.010) (Table 1). The isolate from copper rockfish *Sebastes caurinus* (IA11) had the highest level of intra-specific variation (7.6 changes out of 729 nucleotides). Majority consensus sequences were derived from all the clones for each isolate. Consensus sequences from the 6 isolates from herring or shad had no nucleotide substitutions relative to each other, and those from the 8 isolates from trout had no nucleotide substitutions relative to each other. The majority consensus sequence from the single rockfish isolate differed from those of herring/shad isolates by 3 nucleotides and from those of trout isolates by 16 nucleotides (Table 2). The consensus sequences from herring/shad differed from those of trout by 13 nucleotides.

The ITS2 region had the greatest mean number of nucleotide differences (8.7 changes out of 311 nucleotides) from all other isolates. Distinct differences were found in nucleotide sequences of IA2 (herring) and IA11 (rockfish). The majority consensus sequence for IA2 differed from IA11 and IA52 by 13 nucleotides, from IA2 and IA52 by 16 nucleotides, and from IA2 and IA14 by 3 nucleotides.

Table 2. Pairwise differences among representative *Ichthyophonus* isolates for the ITS rDNA regions (ITS1-5.8S-ITS2). The p-distance is shown above the diagonal, while the number of nucleotide differences (out of 637 aligned nucleotides) is shown below the diagonal. IA2 (herring) is shown as the representative for IA2, IA113 (herring), IA51 (herring), IA6 (shad), IA52 (shad), and IA14 (shad), whose majority consensus sequences had no nucleotide substitutions relative to each other. RBT2 is shown as the representative for all isolates from rainbow trout (RBT2, RBT48, RBT27, RBT11, RBT12, RBT13, RBT15, and RBT16), whose majority sequences had no nucleotide sequences relative to each other.

<table>
<thead>
<tr>
<th></th>
<th>IA2 (herring)</th>
<th>IA11 (rockfish)</th>
<th>RBT2 (trout)</th>
<th>A. parasiticum</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA2 (herring)</td>
<td>0.005</td>
<td>0.020</td>
<td>0.190</td>
<td></td>
</tr>
<tr>
<td>IA11 (rockfish)</td>
<td>3</td>
<td>0.025</td>
<td>0.190</td>
<td></td>
</tr>
<tr>
<td>RBT2 (trout)</td>
<td>13</td>
<td>16</td>
<td>–</td>
<td>0.193</td>
</tr>
<tr>
<td>A. parasiticum</td>
<td>121</td>
<td>119</td>
<td>123</td>
<td>–</td>
</tr>
</tbody>
</table>
otides) among the consensus sequences from herring (represented by IA2), rockfish (IA11) and rainbow trout (represented by RBT2). The ITS1 region also varied among these 3 representative isolates (2.7 changes out of 230 nucleotides). The rainbow trout 5.8S rDNA sequence had a single nucleotide change (out of 109 nucleotides) relative to the herring/rockfish consensus sequences.

Phylogenetic analysis using the entire ITS region consensus sequence for each isolate (Table 1) supports a genetic division between freshwater and marine isolates of *Ichthyophonus*. Neighbor-joining and maximum parsimony analyses gave similar topologies (Fig. 1). All isolates that were derived from either marine or anadromous host species clustered to the exclusion of isolates from freshwater rainbow trout. Phylogenetic analysis using all PCR clone sequences, rather than the consensus sequences, gave a similar topology (data not shown).

DISCUSSION

We demonstrate that genetic variation in the ITS regions can be informative in distinguishing among isolates of *Ichthyophonus* that have 100% sequence identity in the more highly conserved SSU rDNA region, and that phylogenetic analysis of these ITS sequences supports the presence of a major division between *Ichthyophonus* isolates from rainbow trout in Idaho and those from marine and anadromous hosts in the NE Pacific (Fig. 1). The genetic difference between the 2 clades appears to mirror phenotypic differences between representative isolates that include differences in stability in freshwater and seawater (Hershberger et al. 2008). Because rDNA regions exist as multi-copy genes, we expected some level of sequence variation among clones that were generated from individual isolates. However, the *Ichthyophonus* isolates that were used in this study did not originate from single cell cultures; thus, we cannot exclude the possibility that some of the sequence variation among the clones of a given isolate was due to genetic differences between individual cells within that isolate. Nevertheless, the level of ITS sequence variation between marine and freshwater clades was substantially greater than that among clones from individual cultures (Table 1).

Ichthyophonus is generally considered to be a pathogen of wild, marine fish (McVicar 1999), and reports in fish from the eastern North Pacific began surfacing in the late 1970s and early 1980s (reviewed by Hershberger et al. 2002). The pathogen is currently ubiquitous in many marine hosts throughout the NE Pacific, where it has been implicated as a population-limiting factor (Marty et al. 1998, Hershberger et al. 2002). *Ichthyophonus* was first reported in freshwater rainbow trout from intensive culture facilities in Washington State during an epizootic in 1952 (Rucker & Gustafson 1953). Early epizootics in Idaho trout culture were linked to the practice of feeding raw tissues from common carp *Cyprinus carpio* (Erickson 1965). Epizootics due to *Ichthyophonus* ceased when this practice was stopped, and there were no reports of the parasite for ~40 yr. It is not clear whether *Ichthyophonus* remained endemic in the trout industry or if the con-

![Fig. 1. Evolutionary relationships of *Ichthyophonus* isolates based on the majority consensus sequence of the ITS region (ITS1-5.8S-ITS2) as inferred using the neighbour-joining method (1000 bootstrap iterations). A similar tree topology was obtained using the maximum parsimony method (not shown). Isolates are derived from rainbow trout (RBT-11, 13, 2, 27, 12 16, 15 and 48), Pacific herring (IA2, IA113 and IA51), American shad (IA6, IA52 and IA14), and copper rockfish (IA11). *Amoebidium parasiticum* (AY388646) was used as an outgroup.](image-url)
temporary isolates represent a new introduction. Typing of contemporary and historical archived samples from a larger host and geographical range will be needed to determine if the unique ITS lineage that is identified in rainbow trout reflects (1) divergence from the common Pacific northwest marine type within the aquaculture setting, (2) a unique parasite source (e.g. North American carp), or (3) both.

It is unlikely that a single species occupies the broad host and geographical ranges reported for *Ichthyophonus hoferi* that include a near-circum polar distribution in more than 80 host species, including freshwater and marine elasmobranch and teleost fish, amphibians, reptiles, and fish-eating birds (reviewed by McVicar 1999). Morphological (Rand 1994) and SSU rDNA sequence differences in *I. hoferi* isolates from fish in the Atlantic Ocean provided initial evidence for speciation within the genus (Rand et al. 2000), and it is likely that additional variation will be found on a larger biogeographical scale. In addition to identifying genetic separation between freshwater and marine isolates of *Ichthyophonus* in the Pacific northwest, preliminary evaluations of the ITS regions also indicate genetic separation between marine isolates in the Atlantic and Pacific Oceans (P. K. Hershberger & M. K. Purcell unpubl. data). In the future, sequence analysis of ITS or other informative regions of the *Ichthyophonus* genome may assist in the understanding of phenotypic and epidemiological differences among isolates (e.g. host-specific virulence, route of infection, mechanisms of transmission and features of the life cycle), including the identification of alternate hosts.

Acknowledgements. We thank C. Grady and J. C. Woodson from the Western Fisheries Research Center, and B. Shewmaker, M. Gonzales and R. Burkhart from Clear Springs Foods, Inc. for technical assistance. Funding was provided by the Exxon Valdez Oil Spill Trustee Council, Project # 070819, and the US Geological Survey Fisheries and Aquatic Resources Program. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the US Department of Interior or the US Geological Survey of any product or service to the exclusion of others that may be suitable.

LITERATURE CITED

Erickson JD (1965) Report on the problem of *Ichthyopsporidium* in rainbow trout. Prog Fish-Cult 27:179–184

Rucker RR, Gustafson PV (1953) An epizootic among rainbow trout. Prog Fish-Cult 15:179–181

Editorial responsibility: David Bruno, Aberdeen, UK

Submitted: August 6, 2009; Accepted: November 17, 2009

Proofs received from author(s): February 13, 2010