Consistent isotopic differences between *Schistocephalus* spp. parasites and their stickleback hosts

Antti P. Eloranta¹,²,*, Rune Knudsen³, Per-Arne Amundsen³, Juha Merilä⁴

¹Norwegian Institute for Nature Research, PO Box 5685 Sluppen, 7485 Trondheim, Norway
²University of Jyväskylä, Department of Biological and Environmental Sciences, PO Box 35, 40014 Jyväskylä, Finland
³UiT The Arctic University of Norway, Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology, 9037 Tromsø, Norway
⁴University of Helsinki, Department of Biosciences, Ecological Genetic Research Unit, PO Box 65, 00014 University of Helsinki, Finland

ABSTRACT: Parasite–host systems show markedly variable patterns in isotopic fractionation: parasites can be either depleted or enriched in 15N and 13C as compared to their hosts. However, it remains unknown whether isotopic fractionation patterns are similar in comparable parasite–host systems from markedly different ecosystems. Results of this study show that large-sized *Schistocephalus* spp. endoparasites are consistently depleted in 15N (by on average -2.13 to -2.20%) as compared to their nine-spined stickleback *Pungitius pungitius* and three-spined stickleback *Gasterosteus aculeatus* hosts. The differences between parasites and host for both δ^{15}N and δ^{13}C were consistent in both study systems despite marked biogeographical differences between the study localities. Although the stable isotope values in general were strongly correlated between the hosts and their parasites, *Schistocephalus* specimens occupying the same nine-spined stickleback host showed sometimes substantial individual variation in δ^{13}C. This might be due to selective use of different carbon sources, or different metabolic or feeding rates. Further studies on selective feeding, physiology and metabolism of parasites are needed to better understand the role of parasites in the structure and functioning of aquatic food webs.

KEY WORDS: Endoparasite · *Pungitius pungitius* · *Gasterosteus aculeatus* · Tapeworm · Platyhelminth · Stable isotope analysis · Nutrient assimilation

INTRODUCTION

Recent ecological studies have highlighted the central role of parasites in aquatic food webs (Lafferty et al. 2008), both as consumers (Amundsen et al. 2009) and as prey (Thieltges et al. 2013). For instance, parasites have been shown to increase food-chain length and the degree of omnivory, thereby affecting the structure and function of aquatic food webs (Lafferty et al. 2008, Amundsen et al. 2009, Thieltges et al. 2013). During the past decade, stable isotopes have been widely used in studies of food webs (Boecklen et al. 2011, Layman et al. 2012, and references therein), host–parasite interactions (e.g. Pinnegar et al. 2001, Deudero et al. 2002, Navarro et al. 2014), as well as starvation and nutrient stress in e.g. fish and humans (Reitsema 2013, Bowes et al. 2014). However, it has remained unclear why parasites, which are expected to be assimilating energy and nutrients at a higher apparent trophic level than their host, can be either depleted or enriched in 15N (Pinnegar et al. 2001, Deudero et al. 2002), and hence show inconsistent trophic enrichment as compared to most diet–consumer relationships (cf. McCutchan et al. 2003).

One example of a widely studied parasite–host system that shows an unexpected isotopic fractionation

*Corresponding author: antti.eloranta@nina.no

© Inter-Research 2015 · www.int-res.com
pattern (i.e. depletion in 15N) is the large-sized *Schistocephalus solidus* (Cestoda) tapeworm and its three-spined stickback *Gasterosteus aculeatus* host. *S. solidus* has 3 consecutive hosts during its lifecycle: a cyclopoid copepod, the three-spined stickback and a fish-eating bird (Barber et al. 2008). As the total mass of *S. solidus* tissue can exceed that of the three-spined stickback, it can reduce the growth and fecundity of the host (Barber 2007). In addition, in order to increase transmission success to its final bird host, *S. solidus* can also manipulate the behavior of its fish host (Barber 2007 and references therein).

S. solidus lives in the body cavity of the three-spined stickback, where it is fuelled by nutrients from assimilated food ingested by the host (Barber et al. 2008). In spite of this, Pinnegar et al. (2001) observed that *S. solidus* occupied a lower apparent trophic level than its three-spined stickback host as inferred from stable nitrogen isotopes (δ^{15}N). For most predator–prey isotopic relationships, it is usually observed that predators are enriched in 15N by 2 to 4‰ as compared to their prey (cf. Post 2002, McCutchan et al. 2003). As such, it has been argued that the unexpected isotopic differences between parasites and their fish hosts (i.e. parasites being depleted rather than enriched in 15N) could be due to a range of physiological or behavioural processes including prey selectivity, diet quality and feeding rate (Pinnegar et al. 2001, Power & Klein 2004, and references therein). However, Pinnegar et al. (2001) analysed only a small number (n = 5) of parasites and hosts collected from a single lake, and it is possible that isotopic differences between *S. solidus* parasites and their fish hosts differs between populations. Moreover, it is unknown how nitrogen and carbon (δ^{13}C) stable isotopes fractionate in ostensibly similar parasite–host systems, or whether parasites occupying the same individual host can show individual differences in isotope ratios and/or niche use, similar to that observed among numerous consumer taxa (Bolnick et al. 2003).

The aim of this study was to explore the differences in stable nitrogen and carbon isotopes between *Schistocephalus* spp. endoparasitic tapeworms and their stickback hosts. The differences between parasite and host δ^{15}N and δ^{13}C values were studied in 2 similar parasite–host systems inhabiting biogeographically different ecosystems: (1) in a lake inhabited by three-spined stickbacks and *S. solidus* parasites, and (2) in a pond inhabited by nine-spined stickbacks *Pungitius pungitius* and *S. punctitii* parasites. In both study systems, the δ^{15}N and δ^{13}C values of parasites and their stickback hosts were hypothesized to show significant correlation, with parasites having consistently lower δ^{15}N values than their fish hosts, as observed for several endoparasite–fish relationships (e.g. Pinnegar et al. 2001, Deudero et al. 2002). Secondly, differences between parasite and host δ^{15}N and δ^{13}C were hypothesized to be similar in both studied parasite–host systems, despite biogeographical differences between the study locations. Thirdly, if the fish host was infected by several *Schistocephalus* individuals, the parasites were hypothesized to have equal isotope values, and hence niche use, inside the body cavity of the stickback host. Fourthly, parasitized stickbacks were hypothesized to have equal isotope values, and hence niche use, inside the body cavity of the stickback host. Fifthly, parasitized stickbacks were hypothesized to have equal isotope values, and hence niche use, inside the body cavity of the stickback host.

MATERIALS AND METHODS

Parasitized (n = 20) and unparasitized (n = 40) nine-spined stickbacks of similar size were collected from a small (surface area ca. 0.05 km², maximum depth ca. 5 m), isolated pond in northeastern Finland (Rytilampi; 66° 23’ N, 29° 18’ E) during 7 to 10 August 2012. Apart from introduced whitefish Coregonus lavaretus, which may already be extinct, the nine-spined stickback is the only fish species present in this locality (Herczeg et al. 2009). The fish were caught with metallic minnow traps set overnight (see Merilä et al. 2013 for details).

Infected three-spined stickbacks (n = 6) were collected from Lake Sagelvvatn in northwestern subarctic Norway (69° 11’ N, 19° 06’ E) during 9 to 11 August 2010. Sagelvvatn is an oligotrophic and relatively deep lake (maximum depth ca. 80 m, surface area ca. 5 km²) harbouring 2 sympatric salmonid species, Arctic charr Salvelinus alpinus and brown trout Salmo trutta. The three-spined stickbacks were caught with gillnets from the shallow littoral zone (see Eloranta et al. 2013 for details). Their parasite community is described by Kuhn et al. (2015). The three-spined stickback and *Schistocephalus* spp. parasite samples from Sagelvvatn were originally collected for another study (Eloranta et al. 2013) and were thus not measured or weighed, but otherwise the preparation procedure followed that in Rytilampi.

Fish from both localities were stored at −20°C until examination in the laboratory. Each nine-spined stickback from Rytilampi was measured (total length to nearest 1 mm) and weighed (wet mass to nearest 0.1 g), and a piece of dorsal white muscle
tissue was dissected for stable isotope analysis. This tissue was used for isotope analyses because it is usually the major contributor to fish body mass (Plimmer 1921). Schistocephalus spp. parasites were isolated from the fish body cavity, weighed, identified and rinsed with distilled water. The frozen fish muscle tissue and Schistocephalus spp. parasite samples were freeze-dried (Alpha 1-4 LD Plus, Martin Christin Gefriertrocknungsanlagen) for 48 h, homogenized with a metallic pestle and weighed (0.500–0.600 mg) into tin cups. The samples were analysed with a FlashEA 1112 elemental analyser connected to a Thermo Finnigan DELTAplus Advantage mass spectrometer at the University of Jyväskylä, Finland. Analytical precision (i.e. SD of an internal standard made from pike Esox lucius white muscle tissue) was <0.15‰ for both δ15N and δ13C in each run.

Pearson correlation was used to test for relationships between host and parasite δ15N and δ13C values. As the normality and homoscedasticity assumptions for parametric tests were met, pairwise comparisons of δ15N and δ13C values were made between each fish host and its respective parasite using a paired t-test. The ‘Anova’ function in the ‘car’ package (Fox & Weisberg 2011) was used to perform analysis of covariance (ANCOVA) for testing differences in parasite–host isotopic differences between Rytilampi and Sagelvvatn parasite–host systems, with parasite isotope values being treated as response variables, host isotope values as covariates and lake as a fixed factor. Finally, the δ15N and δ13C values and C:N ratios of parasitized and unparasitized nine-spined sticklebacks from Rytilampi were compared using t-tests. All statistical analyses were performed in R 3.1.1 (R Core Team 2014).

RESULTS

The parasitized nine-spined sticklebacks caught from Rytilampi ranged from 45 to 88 mm (mean ± SD = 56 ± 1 mm) in total length and from 0.7 to 3.4 g (mean 1.4 ± 0.8 g) in wet mass. Most of these fish (65%) had only 1 Schistocephalus pungitii parasite in the body cavity, but some fish had more: 3 fish had 2 parasites, 2 fish had 3, 1 fish had 4, and 1 fish had 5 parasites, the latter making up to 34% of the host’s total wet mass. The wet mass of individual S. pungitii ranged from 0.03 to 0.32 g (mean = 0.12 ± 0.08 g).

The δ15N and δ13C values of the Schistocephalus spp. parasites and their hosts were strongly correlated, both in Rytilampi and in Sagelvvatn (Table 1, Fig. 1). Schistocephalus spp. parasites had significantly lower δ15N values than their Pungitius pungitius and Gasterosteus aculeatus hosts (Table 1). In contrast, there were no significant differences in δ13C values between Schistocephalus spp. parasites and their P. pungitius and G. aculeatus hosts (Table 1, Fig. 1).

The results from ANCOVA indicated no significant differences in parasite–host isotopic differences between the 2 parasite–host systems (δ15N: F2,37 = 0.84, p = 0.12; δ13C: F2,37 = 0.03, p = 0.97). The mean difference of δ15N between the parasite and the fish host was −2.13 ± 0.45‰ in Rytilampi and −2.20 ± 0.18‰ in Sagelvvatn, whereas the respective mean differences of δ13C were −0.18 ± 0.90‰ and −0.45 ± 1.12‰.

The differences between individual parasite and host δ15N values ranged from −2.23 to 1.51‰ in Rytilampi and from −1.64 to 1.40‰ in Sagelvvatn. In Rytilampi, individual parasites occupying the same host showed a maximum of 2.18‰ difference in δ15N values (Fig. 2). Contrary to δ13C, the differences between parasites and individual host δ15N values were much more consistent, ranging from 0.68 to 2.78‰ in Rytilampi and from 1.92 to 2.34‰ in Sagelvvatn. Individual parasites occupying the same host in Rytilampi showed a maximum difference of 0.54‰ in δ15N values (Fig. 2). In most cases, larger parasites were more enriched in 13C and 15N than their smaller conspecifics (see Fig. A1 in the Appendix).

The parasitized nine-spined sticklebacks from Rytilampi were significantly enriched in 15N (by an average of 0.33‰) but not in 13C as compared to unparasitized conspecifics of the same size (δ15N: t35.98 = −2.17, p = 0.04; δ13C: t39.68 = −1.09, p = 0.28). The parasitized nine-spined sticklebacks had also significantly higher C:N ratios than the unparasitized individuals (t40.56 = −2.36, p = 0.02).

DISCUSSION

Both Schistocephalus spp. species had consistently lower δ15N values than their stickleback hosts as also observed in some other endoparasite–fish host systems (e.g. Pinnegar et al. 2001, Deudero et al. 2002, Power & Klein 2004). The host and parasite isotope values were strongly correlated, although parasites occupying the same individual host showed marked isotopic variation, particularly in δ13C. As hypothesized, the differences between parasite and host for δ15N (by ca. −2.1‰) and δ13C (by ca. 0.2‰) were similar in both study locations, indicating similar isotopic routing in parasite–host systems consisting of ecolog-
Table 1. Mean ± SD and range of stable nitrogen (δ^{15}N) and carbon (δ^{13}C) isotopes analysed from stickleback hosts and their Schistocephalus spp. parasites. Results from Pearson correlation (r) and paired t-test comparisons of hosts and their parasites are also reported (statistically significant differences shown in bold).

<table>
<thead>
<tr>
<th>Host</th>
<th>Parasite</th>
<th>δ^{15}N (%)</th>
<th>δ^{13}C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P. pungitius$</td>
<td>$S. pungitii$</td>
<td>6.0 ± 0.5</td>
<td>−24.7 ± 0.3</td>
</tr>
<tr>
<td>$G. aculeatus$</td>
<td>$S. solidus$</td>
<td>11.5 ± 1.2</td>
<td>−28.3 ± 0.3</td>
</tr>
</tbody>
</table>

Fig. 1. Relationships between (a, b) nitrogen and (c, d) carbon isotopes in Schistocephalus pungitii and S. solidus parasites and their respective nine-spined stickleback $Pungitius pungitius$ and three-spined stickleback $Gasterosteus aculeatus$ hosts. Dashed lines indicate 1:1 diagonals between host (x-axis) and parasite (y-axis) isotope values.

Fig. 2. Relationships between (a) nitrogen and (b) carbon isotopes from individual nine-spined stickleback $Pungitius pungitius$ hosts and their respective Schistocephalus pungitii parasites in Rytilampi pond, northeastern Finland. Only nine-spined sticklebacks (n = 7) with multiple parasites (n = 2–5) are shown to illustrate isotopic variation among parasites occupying the same individual host.
ically similar species living in markedly different ecosystems. As hypothesized, the parasitized nine-spined sticklebacks from Rytilampi were enriched in 15N and had higher C:N ratios as compared to unparasitized conspecifics, indicating nutrient stress and catabolism within the host muscle tissue (Reitsema 2013, Bowes et al. 2014).

Stable isotope analyses have been widely used in studies of food webs (Boecklen et al. 2011, Layman et al. 2012, and references therein) and trophic interactions between hosts and their parasites (e.g. Gómez-Díaz & González-Solís 2010, Sánchez et al. 2013, Navarro et al. 2014). Based on stable isotope data, Doucett et al. (1999) proposed 3 criteria to judge whether an organism is truly parasitic. Firstly, the parasite should be more enriched in 15N and 13C than its host. Secondly, isotopic differences between the host and the parasite should fall within the expected values for diet–consumer fractionation measured in laboratory studies. Thirdly, the isotope ratios should be correlated across individual hosts and their parasites. Several studies have now tested these predictions in fish parasite–host systems, and found that these expectations are frequently not met (e.g. Pinnegar et al. 2001, Deudero et al. 2002, Power & Klein 2004, Navarro et al. 2014). Our findings are in agreement with previous stable isotope studies showing that S. solidus parasites are consistently depleted in 15N as compared to their stickleback hosts (Pinnegar et al. 2001, Power & Klein 2004). This phenomenon has also been observed in roach R. rutilus hosts and their L. intestinalis parasites, which have a similar life-history strategy and life cycle as the 2 S. cilia reticulata species studied here. It has also been observed in many other parasite–host relationships, including both teleost and elasmobranch fish as well as invertebrate hosts, and cestode, nematode and trematode parasites (Iken et al. 2001, Persson et al. 2007, Dubois et al. 2009, Navarro et al. 2014). This suggests that depleted δ^{15}N values of parasites, particularly of endoparasites, may represent a general pattern in many parasite–host relationships.

Several factors may contribute to the observed 15N-depletion between endoparasites and their hosts: (1) the parasites may utilize 15N-depleted nitrogen (e.g. ammonia) that have excreted themselves (Barrett 1981, Olive et al. 2003); (2) they may take up 15N-depleted amino acids or ammonia from the host (Barrett 1981, Hare et al. 1991); and/or (3) they may be unable to synthesize amino acids and show a low rate of excretion, tegument diffusion and respiration (Dubois et al. 2009). In general, the critical difference in the metabolic processes between endoparasites and typical consumers, i.e. that the parasites often are relying on anaerobic and simplified metabolic systems to increase the efficiency of energy utilization (Barrett 1981), is probably the main factor explaining why commonly observed isotopic fractionation patterns do not directly apply to parasite–host relationships (Power & Klein 2004). In fact, similar isotopic fractionation patterns have also been observed in non-parasitic, fluid-feeding insects, which are 15N-depleted as compared to their diet plants (McCutchan et al. 2003). Bowes et al. (2014) demonstrated from experimental and field observations that starved guppies P. reticulata had significantly higher δ^{15}N values than guppies that were satiated. Parasitized hosts may starve due to the presence and energy drainage of the parasite, a phenomenon that is particularly well-known from S. cilia reticulata spp. and their stickleback hosts (Milinski 1990, Barber et al. 2008, Heins & Baker 2014). The starved host may accordingly become enriched in 15N relative to its parasites, which may explain the higher δ^{15}N values in the stickleback hosts observed here. Our results show that parasitized nine-spined sticklebacks indeed have higher δ^{15}N values and C:N ratios as compared to unparasitized conspecifics, likely resulting from the parasites’ energy and nutrient stealing, leading to host starvation, catabolism and thus 15N-enrichment (Reitsema 2013, Bowes et al. 2014). However, further studies are needed to confirm whether the higher δ^{15}N values of parasitized nine-spined sticklebacks is due to the parasite infection per se or due to e.g. specialized foraging on carnivorous copepod zooplankton, which in Rytilampi had much higher δ^{15}N values than most zoobenthos taxa (mean ± SD δ^{15}N: 3.10 ± 0.23 versus 1.10 ± 1.54; A. Eloranta & J. Merilä un publ. data).

As hypothesized, our results demonstrate that, despite the marked difference in lake size, climate and community structure in the studied ecosystems, the differences between parasite and host for δ^{15}N and δ^{13}C are similar in the 2 similar parasite–host systems. This observation is probably due to the ecological similarity of the three- and nine-spined stickleback hosts (Wotton 1976), but possibly also due to the specialized feeding and metabolism of S. cilia reticulata spp. endoparasites. Although previous stable isotope studies on three-spined sticklebacks and S. solidus parasites largely correspond to the present results, the reported mean differences between parasite and host δ^{15}N values have been variable, ranging from ca. –2.4% (Pinnegar et al. 2001) to ca. –1.4% (Power & Klein 2004). Whether this is due to differ-
rences in, for example, sampling period (e.g. pre- or post-spawning) or physiological status of the host or the parasite is unknown, and thus represents an avenue for future research. Nevertheless, the mean differences in $\delta^{13}C$ reported for three-spined sticklebacks and $S.\ solidus$ parasites have been more consistent, ranging from ca. -0.45% (this study) to 0.14% (Pinnegar et al. 2001, Power & Klein 2004).

The consistently higher $\delta^{15}N$ and $\delta^{13}C$ values of the three-spined sticklebacks and their parasites in Sagelvatn compared to the nine-spined sticklebacks and their parasites in Rytilampi can be due to differences in the fish diets and/or in isotopic baselines between the study locations (e.g. France 1995, Cabana & Rasmussen 1996). Based on unpublished and published data (Eloranta et al. 2013), sticklebacks in both study locations mainly feed on littoral benthic macroinvertebrates and thus isotopic differences at the bottom of the food webs (i.e. in $\delta^{15}N$ and $\delta^{13}C$ values of the pelagic and littoral primary producers and consumers) is a more likely explanation. Unlike Rytilampi with a pristine catchment area, Sagelvatn is surrounded by small patches of farmland and thus the lake is subjected to higher nutrient loading, which may have led to ^{15}N-enrichment of the entire food web (Cabana & Rasmussen 1996). In contrast, the small and shallow Rytilampi is surrounded by bog and forest areas and thus subjected to higher nutrient loading, which may have led to ^{15}N-enrichment of the entire food web (Cabana & Rasmussen 1996). In contrast, the small and shallow Rytilampi is surrounded by bog and forest areas and thus subjected to higher load of terrestrial carbon (i.e. allochthonous dissolved organic carbon), which may explain the generally lower $\delta^{13}C$ values of the organisms. In any case, our study focuses on isotopic fractionation within the systems and not on differences in $\delta^{15}N$ and $\delta^{13}C$ values of fish and their parasites between the study systems, making it unnecessary to consider any differences in isotopic end members and baselines between the 2 study locations (Layman et al. 2012).

There were marked individual differences in the $\delta^{13}C$ values among $S.\ pungitii$ parasites occupying the same nine-spined stickleback host. For example, some $S.\ pungitii$ individuals were depleted and some were enriched in ^{13}C relative to the host. Larger parasites were generally more enriched in ^{13}C and ^{15}N than their smaller conspecifics inhabiting the same fish host (Fig. A1). This may imply selective use of different carbon sources, or different metabolic or feeding rates of individuals of different sizes or occupying different locations in the host body cavity. Parasites having direct access to the host muscle tissue are probably more efficient in their energy utilization than those that are blocked by other, possibly larger and older individuals. Such individual differences in supply:demand ratios for carbon (energy) may further explain some of the individual differences in $\delta^{13}C$ observed among parasites infecting the same host (cf. Fry 2006). Additionally, sticklebacks—including the Sagelvatn three-spined sticklebacks (Kuhn et al. 2015)—are also infected by a range of other parasite species in variable densities, which may also explain variation in isotopic fractionation among the individual hosts. Furthermore, some of the observed minor (<0.2‰) individual differences may, of course, simply arise from analytical measurement error. Although we cannot currently differentiate in between these alternative explanations, the differences between parasite and host for both $\delta^{13}C$ and $\delta^{15}N$ showed negative, albeit statistically non-significant, correlations ($\delta^{13}C$: $r = -0.49, p = 0.06$; $\delta^{15}N$: $r = -0.45, p = 0.10$), with increasing size of parasites (measured as parasite:host mass ratio) infecting the same host. In other words, large parasites seemed to isotopically resemble their host more than small parasites, possibly due to a more neutral nitrogen balance of large, non-growing parasites (Martinez del Rio et al. 2009).

In conclusion, the present study gives further support that endoparasites can be consistently depleted in ^{15}N as compared to their host. Despite living in markedly different ecosystems, the 2 studied parasite–host pairs (i.e. $S.\ pungitii$–$P.\ pungitius$ and $S.\ solidus$–$G.\ aculeatus$) revealed similar isotope routing for both $\delta^{15}N$ and $\delta^{13}C$. The results confirm that individual parasites infecting the same host can show marked differences in $\delta^{13}C$, possibly due to specialized feeding on different carbon sources or due to differential age, size and physiological status of the parasites. Moreover, our results demonstrate that parasites can cause nutrient stress and thereby lead to ^{15}N-enrichment of the host tissues, as observed among starving and sick humans (Reitsema 2013). Future studies applying e.g. compound specific stable isotope methods and/or fatty acid analyses (see Boecklen et al. 2011 and references therein) could increase our understanding of the trophic relationships between different host and parasite taxa, thereby enabling better evaluation of the role of parasites in the structure and functioning of aquatic food webs.

Acknowledgements. We thank Hanna-Kaisa Lakka for help with the field work and Oulanka Research Station (University of Oulu) for logistic support. Jacqueline DeFaveri kindly provided comments on this manuscript. Our research was supported by the Ellen and Artturi Nyyssönen Foundation (personal grant to A.P.E.), the Research Council of Norway (project number NFR 213610/F20 to P.A.A.) and the Acad-
The nine-spined sticklebacks were collected with permission from Metsähallitus (permission number 3087/41/2011).

LITERATURE CITED

Eloranta AP, Knudsen R, Amundsen PA (2013) Niche segregation of coexisting Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) constrains food web coupling in subarctic lakes. Freshw Biol 58:207–221

Merilä J, Lakka HK, Eloranta A (2013) Large differences in catch per unit of effort between two minnow trap models. BMC Res Notes 6:131

Pimmer RHA (1921) Analysis and energy values of foods. HM Stationery Office, London

Sánchez MI, Varo N, Matesanz C, Ramo C, Amat JA, Green AJ (2013) Cestodes change the isotopic signature of...
Appendix

Fig. A1. Relationships between parasite wet mass and stable (a) nitrogen and (b) carbon isotopes from *Schistocephalus pungitii* occupying the same individual host (i.e. nine-spined stickleback *Pungitius pungitius* from Rytilampi pond, northeastern Finland), which are marked with different colours.

Editorial responsibility: Sven Klimpel, Frankfurt, Germany

Submitted: October 28, 2014; Accepted: June 12, 2015

Proofs received from author(s): July 14, 2015

Thieltges DW, Amundsen PA, Hechinger RF, Johnson PTJ and others (2013) Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission. Oikos 122:1473–1482