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INTRODUCTION

In response to the current crisis of worldwide
amphibian decline, in which over a third of amphi -
bian species face population decline or extinction
(Stuart et al. 2004), scientists have been racing to
identify the key drivers of this trend and understand

their dynamics. Pathogens such as Batrachochytrium
dendrobatidis (Bd) and viruses in the genus
Ranavirus contribute heavily to this decline, along
with other factors such as climate change, habitat
loss, pollution, species introduction, and exploitation
(Beebee & Griffiths 2005, Rohr & Raffel 2010, Chan et
al. 2014, Polo-Cavia et al. 2016, Whitfield et al. 2016).
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ABSTRACT: Amphibian populations are in decline worldwide as they face a barrage of chal-
lenges, including infectious diseases caused by ranaviruses and the amphibian chytrid fungus
Batrachochytrium dendrobatidis (Bd). Here we describe seasonal dynamics of Bd and ranavirus
detection in free-ranging post-metamorphic wood frogs Lithobates sylvaticus, boreal chorus frogs
Pseudacris maculata/triseriata, and gray treefrogs Hyla versicolor/chrysoscelis, sampled over a 3
season gradient in Minnesota (USA) wetlands. We detected Bd in 36% (n = 259) of individuals
sampled in 3 wetlands in 2014, and 33% (n = 255) of individuals sampled in 8 wetlands in 2015.
We also detected ranavirus in 60% and 18% of individuals sampled in 2014 and 2015, respec-
tively. Ranavirus and Bd were detected concurrently in 26% and 2% of animals sampled in 2014
and 2015, respectively. We report clinical signs and associated infection status of sampled frogs; of
the clinical signs observed, skin discoloration was significantly associated with ranavirus infection.
Using generalized estimating equations, we found that species, season, wetland, and a species ×
season interaction term were significant predictors of Bd detection, whereas test year approached
significance as a predictor of ranavirus detection. The odds of detecting both pathogens concur-
rently was significantly influenced by species, season, a species × season interaction term, year,
and environmental ammonia. We propose an amphibian health monitoring scheme that couples
population size surveys with seasonal molecular surveys of pathogen presence. This information
is crucial to monitoring the health of remaining strongholds of healthy amphibian populations, as
they face an uncertain future of further anthropogenic change.
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However, these phenomena are not mutually exclu-
sive, and there is likely synergism among these fac-
tors. For instance, seasonal temperature fluctuations
have been shown to decrease immune function in
amphibians (Raffel et al. 2006), which suggests that
in creased temperature variability attributable to cli-
mate change could affect disease prevalence in the
future; however, temperature variability could also
potentially influence pathogen viability. Environ-
mental pollution interacts with pathogens in complex
ways. Negative synergistic effects have been do -
cumented between ranavirus and the insecticides
carbaryl and thiamethoxam (De Jesús Andino et al.
2017, Pochini & Hoverman 2017), while studies have
yielded mixed results on the interactions of atrazine
and Bd (Hanlon & Parris 2012, Paetow et al. 2012).
In addition, introduced species have the potential
to act as carriers of both Bd and ranavirus, highlight-
ing the importance of animal movement and trade
(Daszak et al. 1999, Sharifian-Fard et al. 2011). Clearly,
many factors contributing to amphibian decline are
dynamic, and several likely work synergistically.
Thus, baseline data describing pathogen dynamics in
stable amphibian populations are necessary for
detecting shifts in environmental factors and patho-
gen presence that could threaten these strongholds
in the future.

Both Bd and ranavirus have been detected on all
continents except Antarctica (Duffus et al. 2015,
USGS National Wildlife Health Center 2016). Bd is
an aquatic chytrid fungus that parasitizes amphibian
skin cells, leading to disruption of osmotic regulation,
and in severe cases, to death (Voyles et al. 2011). Bd-
related mass mortalities, some contributing to spe-
cies-level declines, are frequently reported from
tropical regions in Central America, South America,
and Australia (Skerratt et al. 2007), as well as the
western regions of the USA (Muths et al. 2003, Vre-
denburg et al. 2010); however, relatively few studies
have investigated the ecology of Bd and ranavirus in
amphibian populations in the temperate Midwestern
region of North America, which has distinct patterns
of temperature and rainfall.

Ranaviruses belong to the family Iridoviridae, and
also persist in aquatic ecosystems. Unlike Bd, rana -
viruses can infect multiple ectothermic taxa, includ-
ing fish, reptiles, and amphibians (Brenes et al.
2014). Ranaviral infection causes cutaneous and vis-
ceral hemorrhage, and necrosis, and often results in
death (Gray et al. 2009, Miller et al. 2015). Rana -
viruses have been associated with amphibian mass
mortalities, although more studies are needed to clar-
ify the role of these pathogens in population-level

decline (Price et al. 2014). Mortalities in free-ranging
populations can be difficult to detect, especially at
the beginning of an epidemic (Todd-Thompson 2010),
and relatively high prevalences have been noted in
populations in which no clinical signs were observed
(Duffus et al. 2008, Greer et al. 2009). Therefore,
studies of apparently healthy populations, carried out
over a seasonal gradient, are needed to clarify the
dynamics of ranavirus ecology (Teacher et al. 2010,
Brunner et al. 2015, Gray et al. 2015).

Analysis of museum specimens revealed that Bd
has been present in the Midwestern USA since at
least 1888 (Talley et al. 2015), while the first de -
scribed ranavirus came from specimens collected in
Wisconsin and Minnesota in the 1960s (Granoff et al.
1966). Sporadic mass mortalities of amphibians have
been recorded in Minnesota and surrounding states
since 1996, several of which are likely attributable to
Bd and ranavirus infection (Green et al. 2002). Given
the recognized synergistic effects of amphibian pop-
ulation threats (e.g. environmental contamination,
climate change) and disease, it is important to under-
stand the ecological dynamics of these pathogens in
otherwise stable populations, particularly in the
North American Midwest, where relatively little is
known regarding the dynamics of these pathogens.
The aim of this study was to document the seasonal
variation in Bd and ranavirus prevalence in 3 region-
ally common species of anurans, and to provide base-
line data on the dynamics of Bd and ranavirus ecol-
ogy in anuran populations in temperate North
American wetlands.

MATERIALS AND METHODS

Study site and field sampling

This study was conducted from May to September
2014 and 2015 across wetlands in Dakota County,
Minnesota (Fig. 1). In 2014, we collected disease and
water quality data from 3 wetlands within undevel-
oped areas of the Minnesota Zoo grounds (44.768° N,
93.199° W). Wetlands with distinct vegetation com-
munities were selected based on the habitat delin-
eations assessed by Applied Ecological Services, Inc.
as part of a habitat management plan for the site;
habitat types included vernal pool, mixed emergent
marsh, mixed emergent marsh (seasonally flooded),
palustrine open water, and tamarack swamp (Chap-
man et al. 2012). To expand the study to include
a greater spectrum of wetland areas and land uses,
we included 5 additional sampling locations in the
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neighboring Lebanon Hills Regional Park and a
 public golf course in the 2015 field season, for a total
of 8 wetlands in 2015.

To understand the influence of seasonality on pa-
thogen presence, we sampled frogs from each
wetland 3 times yr−1. In 2014, the spring sampling ses-
sion occurred from 29 May to 11 June, the summer
session from 23−25 July, and the fall session from
17−20 September. In 2015, the spring session took
place from 19 May to 4 June, the summer session from
6−23 July, and the fall session from 14−29 September.

During each sampling session, we captured post-
metamorphic juvenile and adult wood frogs Lithobates
sylvaticus, boreal chorus frogs Pseudacris maculata/
triseriata (species distinctions unresolved), and gray
treefrogs Hyla versicolor/ chrysoscelis (species mor-
phologically indistinguishable); these species were
selected because they were the most frequently ob-
served species among the study locations. Sampling
was conducted from late afternoon into evening, with
the goal of sampling 20 or more individuals of each
species per site. Each frog was captured by hand and
placed in an individual, vented container, along with
water from the wetland being sampled. To avoid re-
dundant sampling, frogs were maintained in individ-
ual holding containers, and released into the wetland
of origin at the end of each sampling session.

Because our study was originally conceived as a
model for a non-invasive ranavirus monitoring pro-
gram, we collected diagnostic samples through skin
swabs, rather than toe clips. Sampling included the
collection of separate oral and skin swabs, and docu-
mentation of any observed clinical signs of disease

from each individual. Swabbing methods and materi-
als followed Pessier & Mendelson (2010); briefly, this
included swabbing the oral cavity of each frog to
sample for ranavirus, and collecting samples for Bd
by gently rolling a swab along the ventral surfaces of
the pelvic patch, toe webbing, and inner thighs. We
assessed the health of each frog by noting the pres-
ence or absence of clinical signs of disease including
bloating, swelling, lacerations, discoloration, and
morphologic abnormality (Fig. 2). Dead frogs were
fixed in 10% neutral buffered formalin and sent to
the Amphibian Disease Laboratory (San Diego, CA)
for necropsy and histopathology.

To prevent the spread of Bd and ranavirus, each
field member wore nitrile gloves during sampling,
and changed them between handling individual
frogs. Field members also wore rubber boots during
sampling; after each session, boots were scrubbed
of organic debris and rinsed in a Virkon-S bath
(DuPont), followed by fresh water (Pessier & Mendel-
son 2010). Amphibian holding containers and nitrile
gloves were discarded after use.

During each sampling session, we also collected a
1 l sample of surface water from the focal wetland,
collected approximately 5 m from the shoreline. Each
wetland had dedicated collection bottles to avoid
cross contamination between sites. We restricted our
analyses of water quality to ammonia, as it is known
to be toxic to aquatic organisms. Samples were kept
at ambient temperature and were tested for ammonia
within 24 h at the Minnesota Zoo’s Life Support lab.
In 2014, we quantified unionized ammonia using a
test kit (Hach 2428700; range of 0−2.4 mg l−1, quanti-
fied in steps of 0.2 mg l−1), and in 2015, we used both
the test kit and dipstick-style test strips (Hach
2755325; range of 0−6 mg l−1, quantified in steps 0,
0.25, 0.5, 1.0, 3.0, and 6.0 mg l−1).

PCR analyses for Bd and ranavirus

Skin swab samples for Bd Taqman qPCR were ana-
lyzed using the methods, primers, and probe of Boyle
et al. (2004), with modifications as previously de -
scribed (Jones et al. 2012). Samples were analyzed
in triplicate and scored as positive, equivocal, or neg-
ative (Hyatt et al. 2007). Positive samples tested pos-
itive in 2 or more wells; equivocal samples tested
positive in 1/3 wells; and negative samples were neg-
ative in 3/3 wells. Oral swab samples for ranavirus
were also analyzed through Taqman qPCR, using the
primers and probe of Pallister et al. (2007) with mod-
ifications as previously described (Cheng et al. 2014).
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Statistical analyses

To evaluate factors associated with pathogen de -
tection, we built multivariate mixed regression mod-
els. Samples that were reported as equivocal by the
Amphibian Disease Laboratory were characterized
as positive for these analyses. This decision was
based on appropriate performance of all qPCR con-
trols for DNA contamination suggesting that the
equivocal results were due to a low number of Bd
zoospores in the original sample (Hyatt et al. 2007).
Ammonia data did not meet the normal distribution
assumption and were log transformed for analyses.
To deal with a large number of 0-level detection data
within the ammonia data set that remained skewed

toward very low values even after
transformation, we analyzed log10

(measurement + F), where F is the
2.5th percentile of the positive meas-
urements; F is needed to avoid taking
the logarithm of 0.

Multivariate mixed logistic regres-
sion models were created as general-
ized estimating equations (GEEs)
through PROC GENMOD in SAS soft-
ware, Version 9.4 of the SAS System
for Windows (© 2002−2012, SAS In -
stitute). Three sets of models were
created with Bd detection, ranavirus
detection, and co-detection as de -
pendent variables. In all models, we
included a nested season and wetland
variable as a random effect to account
for repeated sampling in wetlands
within seasons, resulting in a 20-level
random effect variable. The indepen -
dent correlation matrix was specified
as the working covariance structure.
Species was considered a confound-
ing variable due to an a priori under-
standing of its association with patho-
gen susceptibility and season (e.g.
distribution in habitat, and thus re -
searchers’ ability to locate, can vary
based on the seasonal behavior of dif-
ferent species) (Rosenblum et al.
2010). Thus, species was included as a
fixed effect in all multivariate models.
Fixed effects that were varied by
model included season, wetland, cap-
ture year, ammonia, and an interac-
tion term for species and season. We
used a forward stepwise approach to

fitting our models; best models were selected using
the lowest quasi-likelihood under the independence
model criterion (QICu) (Cui 2007).

GEEs were also used to examine associations
between clinical signs and pathogen detection. Mod-
els were structured as above, but the following clini-
cal sign variables were modeled individually as bino-
mial predictors of Bd, ranavirus, or co-detection:
bloating, swelling, lacerations, discoloration, and mor -
phologic abnormality. A final clinical sign variable
was created to represent the presence of any combi-
nation of the former clinical signs and modeled as an
ordinal variable, with ‘0’ as absence of clinical signs,
‘1’ as mild to moderate clinical signs, and ‘2’ as mori-
bund or dead. Species was included as a confound-
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Fig. 2. Examples of clinical signs of disease, including bloating, swelling, dis-
coloration, lacerations, and morphological abnormalities: (A) Bloating: gray
treefrog Hyla versicolor/chrysoscelis. (B) Swelling: hindlimb edema in a boreal
chorus frog Pseudacris maculata/triseriata. (C) Discoloration: dermal ulcer in a
gray treefrog. (D) Morphological abnormalities: ventral hernia in a gray tree -
frog. (E) Morphological abnormalities: raised lateral spots on a wood frog Litho -
bates sylvaticus. (F) Lacerations: dorsal lacerations on a boreal chorus frog
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ing variable based on a significant
association with pathogen detection
in the previous models and the a pri-
ori understanding that the detection
sensitivity of the specified clinical
signs by researchers in the field may
vary by species.

RESULTS

In 2014, wetland ammonia values
ranged from 0.02−0.94 mg l−1, and in
2015, values ranged from 0−1 mg l−1.
During the 2014 and 2015 field sea-
sons, 259 and 255 post-metamorphic
frogs were sampled, respectively;
data represented both adult and juve-
nile frogs. Both ranavirus and Bd
were detected in all species sampled,
during all seasons sampled, in both
2014 and 2015 (Table 1). In 2014, 36%
(95% CI = 30−42%, n = 259) of sam-
ples tested positive for Bd, while 33%
(95% CI = 28−39%, n = 255) tested
positive for Bd in 2015. There were 3
models of factors associated with Bd
detection that fit the data best (ΔQICu
< 2) and differed by only a single
additional variable (year or ammo-
nia). Among these 3, the best (QICu =
456.66) was the most parsimonious
and included species, season, the sea-
son × species interaction term, and
wetland as predictors (Table 2). This
model revealed significantly higher
odds of detecting Bd in spring and fall
than in summer (χ2 = 55.4, df = 2, p <
0.0001). Gray treefrogs had signifi-
cantly lower odds of Bd detection
than boreal chorus frogs or wood
frogs (χ2 = 117.85, df = 2, p < 0.0001),
and the interaction between season
and species (χ2 = 12.43, df = 4, p =
0.0145) was significant. Finally, wetland was also a
significant predictor of Bd detection in frogs (χ2 =
50.46, df = 6, p < 0.0001).

Ranavirus was detected in 60% (95% CI =
54−66%, n = 259) of samples in 2014, and 18% (95%
CI = 13−23%, n = 255) in 2015 (Table 1). Among the
ranavirus models, the best model (QICu = 575.63,
ΔQICu >2) included species, wetland, year, and
ammonia as predictors (Table 3). Although this

model demonstrated a significantly better fit to the
data, year was the only variable that approached sig-
nificance as a predictor of detection (χ2 = 3.61, df = 1,
p = 0.0574), with odds of ranavirus detection 7.6
times higher in 2014 than 2015 (95% CI = 0.94−61.9).

Both pathogens were detected in 26% (95% CI =
21−32%, n = 259) of samples in 2014, and 2% (95%
CI = 1−5%, n = 255) of samples in 2015. Of the mod-
els examining factors in association with detection of
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Variable Year n Bd Ranavirus Co-detection

Season
Spring 2014 69 72 (61−82) 90 (81−95) 67 (55−77)

2015 106 57 (47−66) 4 (1−9) 0 (0−4)

Summer 2014 96 20 (13−29) 66 (56−74) 17 (11−25)
2015 97 16 (10−25) 3 (1−9) 0 (0−4)

Fall 2014 94 24 (17−34) 32 (23−42) 6 (3−13)
2015 52 17 (9−30) 73 (60−83) 10 (4−21)

Species
Boreal chorus 2014 67 43 (32−55) 57 (45−68) 19 (12−30)
frog 2015 86 63 (52−72) 8 (4−16) 3 (1−10)

Gray treefrog 2014 135 16 (11−23) 51 (43−59) 15 (10−22)
2015 125 15 (10−23) 26 (19−35) 1 (0−4)

Wood frog 2014 57 72 (59−82) 84 (73−91) 61 (48−73)
2015 44 27 (16−42) 11 (5−24) 2 (0−12)

All samples 2014 259 36 (30−42) 60 (54−66) 26 (21−32)
2015 255 33 (28−39) 18 (13−23) 2 (1−5)

Table 1. Detection prevalence (%) of Batrachochytrium dendrobatidis (Bd)
and ranavirus, and co-detection of both pathogens, by season and species in
Dakota County, MN (USA), in 2014 and 2015. Prevalence ranges given in 95% 

confidence intervals

Independent variable OR 95% CI p Coefficient SE

Species
Gray treefrog 0.09* 0.04−0.19 <0.0001 −1.81 0.53
Boreal chorus frog 1.14 0.43−2.98 0.7970 0.09 0.44
Wood frog 0.00 0 0 0.0 0.00
Boreal chorus frog vs. 12.756* 7.06−23.05 <0.0001
Gray treefroga

Season
Spring 17.53* 7.78−39.51 <0.0001 2.26 0.31
Fall 2.71* 1.19−6.22 0.0181 2.17 0.83
Summer 0.00 0 0 0.0 0.00
Fall vs. Springa 0.15* 0.08−0.31 <0.0001
Species × Season 0.0145
Wetland <0.0001
aThese figures represent the differences of the least squares means
between the 2 named variables

Table 2. Results of best fitting multivariate generalized estimating equations
model of environmental and species factors for association with Batracho -
chytrium dendrobatidis detection (n = 514). OR: odds ratio; measures of associ-
ation are adjusted for correlation within seasons and wetlands by inclusion of

a season−wetland random effect variable. *Significant at alpha = 0.05
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both pathogens, 2 models performed similarly well
(ΔQICu < 2), the difference between the 2 being the
inclusion of ammonia. The best model (QICu = 277.5)
included species, season, the species × season inter-
action, year, and ammonia (Table 4). According to
this model, gray treefrogs and boreal
chorus frogs had significantly lower
odds of pathogen co-detection than
wood frogs (χ2 = 19.6, df = 2, p <
0.0001). There were significantly
higher odds of co-detection in spring
than in summer and fall (χ2 = 8.7, df =
2, p = 0.0126), and the interaction
between species and season was sig-
nificant (χ2 = 16.3, df = 4, p = 0.0027).
There were significantly higher odds
of co-detection in frogs screened in
2014 than 2015 (χ2 = 6.5, df = 1, p =
0.0108). Increases in ammonia (χ2 =
7.3, df = 1, p = 0.0068) were associated
with significantly increased odds of
detecting both ranavirus and Bd.

Clinical signs were noted in 82 ani-
mals over both study years. Of these, 2
displayed bloating, 7 had swelling, 10
had lacerations, 49 had discoloration of
the skin, 14 demonstrated morphologi-
cal abnormality, and 9 were found
dead or moribund. In 2014, 8 post-
metamorphic frogs were found dead or
moribund at capture; in 2015, we found

1 dead frog. Of the 8 dead and mori-
bund frogs collected in 2014, 6 were
histologically examined. Rana virus was
de tected in 4 of these individuals
through PCR analysis, and 2 of these,
both wood frogs, had histo pathologic
lesions consistent with significant rana -
viral disease. These lesions included
splenic congestion and hemorrhage
with basophilic intracytoplasmic inclu-
sion bodies in reticuloendothelial cells,
hemorrhage in the gastrointestinal
tract, and varying de grees of multifocal
hepatocellular and epidermal necrosis
with similar inclusion bodies. Bd was
detected in 1 dead wood frog through
PCR, and histologically, this individual
had mild to moderate epidermal hyper-
plasia and hy perkeratosis with intrale-
sional chytrid fungal thalli consistent
with Bd (chy tridiomycosis). A dead bo-
real chorus frog was PCR negative for

both Bd and ranavirus, and death was attributed to
acute traumatic injury to a leg. A dead gray treefrog,
PCR negative for Bd and positive for ranavirus, had
atrophy of the gonadal fat bodies and small to moder-
ate numbers of echinostome-type trematode parasites
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Independent variable OR 95% CI p Coefficient SE

Ammoniaa,b 1.25 0.77−2.05 0.3710 0.22 0.25

Year
2014 7.62 0.94−61.88 0.0574 2.03 1.07
2015 0 0 0 0 0

Species
Gray treefrog 0.67 0.30−1.49 0.3234 −0.41 0.41
Boreal chorus frog 0.44 0.12−1.64 0.2233 −0.81 0.67
Wood frog 0 0 0 0 0
Boreal chorus vs. 0.67 0.31−1.41 0.2906
Gray treefrogb

Wetland 0.2788
aTwo-fold change in effect
bThese figures represent the differences of the least squares means be -
tween the 2 named factors

Table 3. Results of best fitting multivariate generalized estimating equations
model of environmental and species factors for association with ranavirus
 detection (n = 514). OR: odds ratio; measures of association are adjusted for
correlation within seasons and wetlands by inclusion of a season−wetland

random effect variable

Independent variable OR 95% CI p Coefficient SE

Ammoniaa 1.32* 1.08−1.61 0.0068 0.28 0.10

Year
2014 19.42* 1.99−189.94 0.0108 2.97 1.16
2015 0 0 0 0 0

Species
Gray treefrog 0.14* 0.06−0.34 <0.0001 –1.87 0.79
Boreal chorus frog 0.31* 0.14−0.71 0.0055 0.26 0.41
Wood frog 0 0 0 0 0
Boreal chorus frog vs. 2.19* 1.12−4.28 0.0221
Gray treefrogb

Season
Spring 5.90* 1.78−19.51 0.0037 2.65 0.34
Fall 1.17 0.36−3.81 0.7907 0.77 1.15
Summer 0 0 0 0 0
Fall vs. Springb 0.20* 0.05−0.83 0.0272
Species × Season 0.0027
aTwo-fold change in effect
bThese figures represent the differences of the least squares means be -
tween the 2 named factors

Table 4. Results of best fitting multivariate generalized estimating equations
model of environmental and species factors for association with co-detection of
Batrachochytrium dendrobatidis and ranavirus (n = 514). OR: Odds ratio;
measures of association are adjusted for correlation within seasons and
 wetlands by inclusion of a season−wetland random effect variable. *Signi-

ficant at alpha = 0.05
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in the kidney. Ranavirus was detected by PCR on the
single individual found dead in 2015, but a sample for
Bd was not obtained; no histological analysis was per-
formed on this specimen because of its advanced state
of autolysis.

To evaluate associations between clinical signs and
pathogen detection, 509 frogs with complete data
sets were included in the models. As species was sig-
nificantly associated with the detection of Bd and co-
detection, it was included as a confounding variable
in these analyses, but not for ranavirus-only models,
which included clinical signs. Because of the low
number of frogs documented with bloating, associa-
tions with pathogen detection could not be esti-
mated. No other clinical signs were associated with
Bd detection, whereas discoloration was significantly
associated with ranavirus detection. Frogs with dis-
coloration had 1.5 times higher odds of ranavirus
detection than frogs without (95% CI = 1.01−2.18).
The presence of any clinical sign was also signifi-
cantly associated with co-detection of Bd and rana -
virus (χ2 = 17.2, df = 2, p = 0.0002), and frogs with
mild to moderate clinical signs had 1.9 times higher
odds of co-detection than frogs without clinical signs
(95% CI = 1.4−2.5).

DISCUSSION

Our results document relatively high detection pre -
valences of Bd compared to other surveys of appar-
ently healthy anuran populations (Kriger & Hero
2007, Whitfield et al. 2012, Love et al. 2016, Warne et
al. 2016). Comparison of ranavirus detection preva-
lence between 2014 and 2015 suggests a possible
epidemic during the 2014 field season. Al though
mass mortalities were not detected, more dead or
dying frogs were found in 2014 than in 2015, and the
majority were associated with ranavirus either by
qPCR detection or by observation of histopathologic
lesions typical of ranaviriosis. During the 2014 field
season, we also found a relatively high prevalence of
co-detection compared to similar studies (Souza et al.
2012, Whitfield et al. 2013, Warne et al. 2016). We
were surprised not to see clinical signs associated
with Bd infection, given its association with osmotic
dysregulation; however, skin discoloration may pro-
vide a potential syndromic indicator of ranavirus
infection. These findings underscore the importance
of monitoring both pathogen prevalence and popula-
tion demographics, as population de clines might be
difficult to detect in the absence of observed mass
mortality events, and such events are rare.

Seasonal and species-based differences in
pathogen detection

We observed seasonal fluctuation in Bd detection,
with the highest odds of detection in the spring, and
slightly higher odds of detection in fall compared to
summer. Similarly, odds of co-detection were signifi-
cantly higher in spring compared to summer and fall;
this trend was likely driven by the increased odds of
Bd detection in spring. Increased Bd prevalence dur-
ing cooler seasons has been reported in similar stud-
ies (i.e. Kriger & Hero 2007, Kinney et al. 2011, Whit-
field et al. 2012, Rowley & Alford 2013); this pattern is
likely a synergistic effect of increased Bd growth
(Piotrowski et al. 2004) and amphibian immuno -
suppression (Bradley et al. 2002, Raffel et al. 2006),
which both occur at cooler temperatures. The signifi-
cant species × season interaction term in the Bd and
co-detection models suggest that breeding phenol-
ogy plays a role in in the transmission of Bd and
ranavirus. Direct contact among individuals during
breeding is likely the most efficient route of intraspe-
cific Bd transmission, as individual zoospores travel
approximately 2 cm or less in water before encysting
(Piotrowski et al. 2004). This hypothesis is supported
by a lower likelihood of Bd detection in gray tree -
frogs compared to wood frogs and boreal chorus
frogs. In Minnesota, wood frogs and boreal chorus
frogs breed early in the spring (March−April), while
gray treefrogs breed in late spring and early summer
(May−June). Thus, boreal chorus frogs and wood
frogs are more likely to harbor Bd because they
breed earlier in the spring, during optimal tempera-
tures for Bd growth, and when amphibian immune
systems may not be functioning optimally.

These species-based differences in Bd detection
are consistent with previous studies showing that
wood frogs are susceptible to Bd infection (Searle et
al. 2011, Gahl et al. 2012), and that Pacific chorus
frogs (Reeder et al. 2012) can serve as reservoirs of
Bd. Differences in dermal microbial communities
and immune response among the species sampled
(Rollins-Smith et al. 2011) may contribute to the dif-
ferences in odds of Bd detection. This pattern of
detection may also be attributable to species-specific
differences in habitat use. Gray treefrogs use ele-
vated perches for foraging, calling, and shelter,
whereas wood frogs and boreal chorus frogs do not.
Dry, elevated perches would be expected to reduce
Bd zoospore exposure (but see Kolby et al. 2015), as a
previous study has shown decreased Bd prevalence
in boreal toads using terrestrial habitat, compared to
toads using aquatic habitat (Hossack et al. 2013).
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Perches could also facilitate behavioral fever in gray
treefrogs through basking, as has been seen in the
congener Hyla cinerea and other anuran species
(Kluger 1977, Richards-Zawacki 2010). From a con-
servation standpoint, ensuring adequate dry, warm
refuges may be key to managing species impacted
by Bd.

Effects of wetland pollution

Ammonia is the most toxic form of inorganic nitro-
gen in aquatic systems (Camargo & Alonso 2006),
and our models show increased levels of ammonia to
be associated with increased odds of detecting both
pathogens concurrently. Ammonia naturally occurs
in freshwater wetlands as waste from aquatic ani-
mals and decaying organic matter; however, agricul-
tural and residential fertilizer treatments, livestock
waste, and wastewater effluents can pollute wet-
lands through runoff (Marco & Ortiz-Santaliestra
2009). Many of the wetlands in our study system
were located adjacent to residential areas, likely
exposing them to lawn treatment runoff; the wet-
lands located on Minnesota Zoo grounds are also
likely exposed to livestock waste runoff from animal
exhibits. It is reasonable to hypothesize a synergistic
relationship between ammonia and pathogens, per-
haps through an increased challenge to the amphib-
ian immune system. Previous studies have shown
unionized ammonia to have detrimental effects on
amphibian development at concentrations as low as
0.6 mg l−1 for some species (Jofre & Karasov 1999),
and concentrations were much higher in several of
our wetlands.

It is also possible that increased ammonia levels
could be a secondary effect of increased levels of
decaying animal tissue following the putative 2014
ranavirus epidemic. The significant relationship be -
tween wetland identity and Bd detection further sup-
ports the likelihood that factors such as wetland
water chemistry might affect the prevalence of
amphibian pathogens. Future studies should aim to
collect longitudinal water chemistry data to help clar-
ify the impact of water quality dynamics on the phys-
iology and life history of amphibian pathogens.

Co-detection of Bd and ranavirus

Thus far, few studies have investigated the pre -
valence of Bd and ranavirus concurrently in wild
post-metamorphic anurans (Whitfield et al. 2013,

Love et al. 2016, Patla et al. 2016, Warne et al.
2016), and none have yet done so in the Midwest-
ern region of North America. One of the most
notable features of our dataset is the remarkable
decline in co-detection from 2014 to 2015. The sig-
nificantly lower odds of co-detection in 2015 is
likely driven by the dramatically lower prevalence
of ranavirus in the 2015 samples, compared to the
2014 dataset. Indeed, our finding that both Bd and
ranavirus were detected in 61% of individual wood
frogs sampled in 2014 is higher than any yet
reported in wild amphibians, to our knowledge
(Souza et al. 2012, Whitfield et al. 2013, Love et al.
2016, Warne et al. 2016). Further studies are
needed to understand the effects of co-infection
within individual frogs, as well as the population-
level impacts of concurrent presence of both patho-
gens. Additional studies are also needed to validate
the use of clinical signs as syndromic indicators of
co-infection, as the significant association between
co-detection and clinical signs detected by our
model might be driven primarily by ranavirus.

Detecting potential epidemics

The striking decline in ranavirus detection from the
highest prevalence in spring 2014 to low prevalence
in spring and summer 2015, followed by a resur-
gence in fall 2015, suggests that we may have sam-
pled through epidemic and inter-epidemic periods. A
recent study has shown that PCR analysis of oral
swabs taken from frogs experimentally infected with
ranavirus does not detect the virus until advanced
stages of disease; thus, PCR of oral swabs underesti-
mates prevalence of ranavirus in asymptomatic ani-
mals, and the actual prevalence of ranavirus in our
population was likely higher than we observed
(Forzán et al. 2017). This, along with the documented
ranavirus-associated mortalities, supports the likeli-
hood of a 2014 epidemic.

Although mass mortalities of adults were not noted
during the 2014 field season, it is possible that they
occurred between sampling sessions, and therefore
went unnoticed. Also, it is possible that mass mortal-
ities of tadpoles, which are particularly susceptible to
ranavirus outbreaks, may have occurred unnoticed
(Miller et al. 2015). Because population declines are
extremely difficult to detect in the absence of mortal-
ity events, which might go unobserved, frequent
 surveys incorporating population size estimates of
adults and tadpoles are necessary for amphibian con-
servation. The results of our clinical sign data sug-
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gest that discoloration may be a sentinel indicator of
an outbreak; however, further validation of this syn-
dromic sign is needed.

Few studies of Bd and ranavirus prevalence have
paired estimates of population size and pathogen
prevalence over time, and this information is also
needed to determine endemic levels of these pa -
thogens. Such studies are of utmost importance in
the face of climate change and other anthropoge -
nic changes, which have the potential to affect both
amphibian behavior and pathogen ecology (Blau -
stein et al. 2001, 2010, Raffel et al. 2006, Woodhams
et al. 2008). Monitoring programs would ideally cou-
ple seasonal molecular sampling with population
abundance estimates, perhaps using an N-mixture
model applied to spatially replicated count data
(Royle 2004). However, because mass mortalities are
rarely seen in the North American Midwest, amphib-
ian pathogen monitoring has been a low priority for
many conservation programs. Alternatively, increas-
ingly popular citizen science-style anuran call sur-
veys offer a cost-effective and efficient method of
detecting relative shifts in population sizes and spe-
cies richness, and historical data are also available
through these programs (Shirose et al. 1997, Nelson
& Graves 2004). Coupling citizen science call surveys
with seasonal molecular pathogen sampling would
present a cost-effective means for monitoring am -
phibian health, especially in areas where mass mor-
talities have not been reported.
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