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INTRODUCTION

The channel catfish Ictalurus punctatus (Rafi -
nesque) is an important cultured food-fish species in
North America. Increases in production costs have
forced producers to examine ways to reduce on-farm
costs, including the use of dietary supplements such
as probiotics, prebiotics, synbiotics (products that
contain both prebiotics and probiotics), and essential
oils (aromatic compounds extracted from plants). The
use of dietary supplements in aquaculture has re -

cently been reviewed (Ringo et al. 2012, Pérez-
Sánchez et al. 2013, Newaj-Fyzul et al. 2014, Song et
al. 2014, Akhter et al. 2015, Huynh et al. 2017). In
general, studies have examined the effect of feed
additives on growth, feed conversion ratio (FCR), gut
microbiota, intestinal morphology, disease suscepti-
bility, and innate immune parameters. A recent re -
view attempted to explain possible mechanisms of
how synbiotics could improve growth and health sta-
tus in aquaculture (Huynh et al. 2017). The authors
suggest that synbiotics may cause intestinal epithe-
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essential oils may improve survival is through upregulation of RBL1a and RBL3b in the gill.
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lial cells to secrete cytokines which modulate im -
mune functional cells such as dendritic, T-, and B-
cells, and induce the ability of lipopolysaccharides to
trigger tumor necrosis factor-α and toll-like receptor
2, leading to increased phagocytosis, respiratory
burst activity, and nitric oxide production (Huynh et
al. 2017). While these mechanisms may be species-
 specific, they provide an attempt to understand
which regulatory pathways may be involved in regu-
lating the observed improved production efficien-
cies. The use of dietary supplements to improve
growth performance and reduce the incidence of dis-
ease in catfish is just beginning to be investigated.

The catfish farming industry is battling high dis-
ease loss to enteric septicemia of catfish (ESC)
caused by the bacterium Edwardsiella ictaluri. Cur-
rent methods to control this disease include vaccina-
tion, antibiotic therapy, and restricted feeding.
Another method that has been examined is the addi-
tion of essential oils to the diet. Essential oils have
proven beneficial in improving immune function and
survival, but more studies are needed. Fish fed
essential oils include channel catfish (Zheng et al.
2009, Peterson et al. 2014, 2015) and rainbow trout
Oncorhynchus mykiss (Walbaum) (Ahmadifar et al.
2011, Giannenas et al. 2012), and results varied sig-
nificantly with regard to weight gain, FCR, immunity
to disease, and species. Channel catfish fed carvacrol
and thymol, the 2 main active components of oregano
essential oil, enhanced growth performance, hepato-
somatic index, viscerosomatic index and condition
factor during an 8 wk growth study (Zheng et al.
2009). These fish were then infected with Aeromonas
hydrophila and mortality was recorded for 6 d. Mor-
tality was reduced by 21% in catfish fed the treated
diet (Zheng et al. 2009). In another study, tank-raised
channel catfish were fed these aromatic compounds
for 6 wk and then challenged with pathogenic E.
ictaluri (Peterson et al. 2015). There was no differ-
ence in growth or FCR, but survival was 43% higher
in catfish fed essentials oils compared to fish fed the
control diet (Peterson et al. 2015).

The mechanisms through which compounds like
essential oils may improve growth or disease resist-
ance are poorly understood. One potential mecha-
nism may be through lectin-mediated attachments.
Lectins are a group of sugar-binding proteins that
recognize specific carbohydrate moieties expressed
by cells. Because of the ability of lectins to recognize,
agglutinate, and opsonize microbial pathogens,
together with their capacity to activate complement,
it is plausible they may be involved in the apparent
improvement in disease resistance.

Mannose-binding lectins (MBLs) have been re -
ported in many species of fish (Vitved et al. 2000,
Mitra & Das 2001, Jackson et al. 2007, Ourth et al.
2008), including channel (Zhang et al. 2012) and blue
catfish Ictalurus furcatus (Ourth et al. 2007). MBL
protein levels are higher in blue catfish, a more
resistant catfish to E. ictaluri infection compared to
other catfish (Ourth et al. 2007). MBL mRNA levels
were upregulated 15-fold when channel catfish fed
essential oils were challenged with pathogenic E.
ictaluri (Peterson et al. 2015). In contrast, MBL levels
were not predictive indicators of susceptibility to
Flavo bacterium columnare or E. ictaluri in channel
catfish families with high and low susceptibility to F.
colum nare and E. ictaluri infection, respectively
(LaFrentz et al. 2012).

Rhamnose-binding lectins (RBLs) have been re -
ported in more than 25 species of fish (Watanabe et
al. 2009), including channel catfish (Beck et al. 2012,
Thongda et al. 2014). RBLs demonstrate properties
and activities such as sugar-binding specificity and
hemagglutinating activities (Ogawa et al. 2011).
Multiple RBLs have been isolated from steelhead O.
mykiss (Tateno et al. 2001), white-spotted charr Sal -
velinus leucomaenis (Tateno et al. 2002), and Span-
ish mackerel Scomberomorous niphonius (Terada et
al. 2007) eggs. RBLs primarily recognize L-rhamnose
and α-galactoside rather than β-galactoside, and do
not require Ca+2 ions for their activity (Hosono et al.
1992, 1993). These properties distinguish RBLs from
other animal lectin families such as C-type and
galectin (Hosono et al. 2013). Plasma RBL from sea
bass Dicentrarchus labrax have been shown to
agglutinate and opsonize pathogenic bacteria (Cam-
marata et al. 2014). In a catfish study, a RBL gene
(RBL 1a) was upregulated 105-fold in the gill of fish
infected with F. columnare when compared to naïve
fish (Beck et al. 2012). Beck et al. (2012) further char-
acterized the response of RBL by showing there was
robust upregulation of RBL mRNA in a susceptible
family of channel catfish that was exposed to F.
columnare. The authors also exposed catfish to dif-
ferent doses of RBL ligands L-rhamnose and D-galac-
tose and found that these sugars protected catfish
against columnaris disease. RBL 1a mRNA was up -
regulated 123-fold in fish fasted for 7 d and re turned
to fed control levels within 4 h of re-feeding (Beck et
al. 2012). These studies demonstrate a role for RBL in
innate immunity to columnaris disease and catfish
nutrition.

It was surmised that essential oils may improve
survival in catfish exposed to pathogens by regulat-
ing lectins such as MBL and RBL. Towards the goal
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of understanding how essential oils may improve
resistance to disease, we examined RBL gene
expression following infection in tissues known to
facilitate pathogen entry. Studies have shown that
E. ictaluri enters through the intestines as well as
through the gills and skin (Li et al. 2012, Shoemaker
et al. 2012). The above-mentioned studies provide
evidence that lectins are important molecules
involved in the innate immune system of teleost
fish. As new feed additives such as essential oils are
fed to aquatic species, it will become useful to iden-
tify the mechanisms of action through which they
function. The objectives of the current study were to
examine disease susceptibility and the roles of 6
RBL genes in mucosal tissues of channel catfish fed
essential oils and then challenged with pathogenic
E. ictaluri.

MATERIALS AND METHODS

Fish husbandry

Fish used in the study were juvenile Delta Select
catfish obtained from natural pond spawns at the
USDA-ARS Warmwater Aquaculture Research Unit,
Stoneville, MS, USA. Three spawns were placed in
hatching baskets with well water and allowed to
hatch in a clean environment with no exposure to
any known pathogens. Fish were then pooled to -
gether from the 3 spawns. A total of 250 channel cat-
fish with a mean initial weight of 13.4 ± 0.1 g were
randomly assigned to ten 76 l tanks (25 fish tank−1,
5 replicates treatment−1), and allowed to acclimate
for 2 wk under 14 h light:10 h dark photoperiod in
26.1°C flow-through well water. Water quality (pH
~8.4 and dissolved oxygen levels >5.0 mg l−1) and
flow rates were similar among tanks.

The acclimation period included feeding fish to
apparent satiation with a commercial 32% crude pro-
tein (CP) diet (Fishbelt Feeds). After the acclimation
period, fish were anesthetized with 0.1 g l−1 tri-
cainemethane sulfonate (MS-222; Western Chemi-
cal) and group-weighed to the nearest 0.1 g. The fish
were fed the following 2 diets for 6 wk in 5 replicate
treatments: (1) control (32% CP floating diet) and
essential oil (EO) (32% CP floating diet supple-
mented with essential oils: Digestarom® P.E.P. MGE
at 200 g ton−1; Fishbelt Feeds). This supplement con-
tained the essential oils carvacrol, thymol, anethol,
and limonene (Biomin). At the end of the study the
fish were anesthetized, group-weighed, and placed
back into their respective tanks.

Edwardsiella ictaluri challenge

All fish from the feeding study were challenged
with Edwardsiella ictaluri 2 d after they were
weighed. An E. ictaluri isolate (Strain 93-146) from a
natural outbreak (confirmed by the Mississippi State
University Aquatic Research and Diagnostic Labora-
tory) was used for the challenge. Fish were chal-
lenged with pathogenic E. ictaluri (1.9 × 107 cfu ml−1;
final concentration) by an in situ bath immersion for
30 min (Booth & Bilodeau-Bourgeois 2009). The fish
were fed their respective diets during the challenge
and mortality was recorded daily for 21 d. A total of 5
fish from each treatment were taken to the diagnostic
laboratory to confirm the fish died of ESC.

Three additional tanks of fish (25 fish tank−1) of
similar weight (~55 g fish−1) served as non-chal-
lenged controls. The fish originated from the same
group of fish used in the feeding study, were mock-
challenged (same volume of sterile brain heart infu-
sion [BHI] broth; Sigma-Aldrich) at the same time,
and were fed the control diet. No mortalities from the
non-challenged controls were recorded during the
21 d challenge.

Studies were conducted in accordance with the
principles and procedures approved by the Institu-
tional Animal Care and Use Committee, US Depart-
ment of Agriculture/Agriculture Research Service
Warmwater Aquaculture Research Unit.

Sampling and RNA isolation

Tissue distribution of RBL1a, -1b, -1c, -3a, -3b, and
-5a mRNA has been previously published (Small et
al. 2008) and was not repeated in the current study.
Two fish from each tank were randomly chosen to
extract samples on Days 1 and 2 post-challenge. Two
fish were also taken at each time point for the non-
challenged controls. Fish were euthanized with an
overdose (0.3 g l−1) of MS-222 and small samples
(approximately 100 mg) of skin, proximal small intes-
tine, and gill were harvested from each fish. These
tissues were chosen as possible sites for pa thogen
adhesion as reported previously (Thongda et al.
2014). Tissue samples were placed in 1 ml TRI-
Reagent (Molecular Research Center), snap-frozen in
liquid nitrogen, and stored at −80°C until RNA isola-
tion.

For RNA isolation, samples were allowed to thaw
and then homogenized in TRI-Reagent® using a
Tissue Lyser (Qiagen). After homogenization, the
Direct-zol™ RNA MiniPrep kit (Zymo Research) was



Dis Aquat Org 129: 99–106, 2018

used according to manufacturer’s recommendations.
To prevent degradation, 20 samples were run at a
time and kept on ice until transfer to a Zymo-Spin IIC
column and collection tube (Zymo Research). After
isolation, RNA was treated with a commercially
available DNase I (Zymo Research) according to the
manufacturer’s instructions. Total RNA was quanti-
fied by measuring the absorbance at 260 nm using a
NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies). The integrity of the RNA was verified
by visualization of the 18S and 28S ribosomal bands
stained with ethidium bromide after electrophoresis
on 2.0% agarose gels.

Real-time polymerase chain reaction

Expression of RBL1a, -1b, -1c, -3a, -3b, and -5a
mRNA was measured by real-time PCR using SYBR
Green technology. Two housekeeping genes (β-2-
microglobulin and α-tubulin) were chosen as internal
controls based on the results of a previous study
(Small et al. 2008). β-2-microglobulin and α-tubulin
were shown to be stable during the disease chal-
lenge study in all tissues that were sampled. Fig. 1
shows the cycle threshold (CT) values of the house-
keeping genes as well as the genes of interest on
Days 1 and 2 post-challenge. These 2 reference
genes have also been shown to be suitable reference
genes in previous catfish challenge studies (Peterson
et al. 2015). The primers for these genes were
designed based on the sequences deposited in Gen-
Bank (Table 1). For each gene that was measured,

one primer was designed to overlap an exon/intron
junction. The reaction mixture consisted of 10 µM of
forward and reverse primers for β-2-microglobulin,
α-tubulin, 20 µM of forward and reverse primers for
all 6 RBL genes, 5 µl SSofast™ EvaGreen® supermix
(Bio-Rad) and 2.9 µl diethyl pyrocarbonate (DEPC)-
treated water (Thermo Fisher Scientific). In addition ,
200 ng of cDNA (iScript™ cDNA synthesis kit; Bio-
Rad) was added to each well. In non-template control
wells (reactions without cDNA template), DEPC-
treated water (2 µl) was added to the reaction in
place of cDNA. The final volume of reaction mixture
was 10.0 µl well−1. Triplet technical reactions were
carried out in Bio-Rad CFX96™ real-time detection
system (Bio-Rad). The thermal cycling profile con-
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Primer                                        GenBank accession no.        Product length (bp)      Sequence (5’–3’)

RBL1a forward                                     KF725628                                167                    GTC ATG TCC AAA GAC TCA CTT G
RBL1a reverse                                      KF725628                                                          GGT CAG GGT TGC CAA GTA ATT C
RBL1b forward                                     KF725629                                210                    GTC ATG TCC AAA GAC TCA CTT G
RBL1b reverse                                      KF725629                                                          GGT CAG GGT TGC CAA GTA ATT C
RBL1c forward                                      KF725630                                210                    TAT TGC AGC TCA GGG CTT GT
RBL1c reverse                                      KF725630                                                          TGA CAA CCT CAG ATG GCG AC
RBL3a forward                                     KF725631                                150                    AGA CGG ATT TAC TTG GCA ACC C
RBL3a reverse                                      KF725631                                                          CAG CAC GTC CGT AGT TCG CA
RBL3b forward                                     KF725632                                171                    TGC TAC GAT GCC GAA ACA AC
RBL3b reverse                                      KF725632                                                          CTT GGT CAA ACC ACT GGG GA
RBL5a forward                                     KF725633                                140                    AAT TTG CCC TGC TCT GGT GA
RBL5a reverse                                      KF725633                                                          GCA CAC GTT CGC GAA TCA AT
α-tubulin forward                                CB938582                                                          Small et al. (2008)
α-tubulin reverse                                 CB938582                                                          Small et al. (2008)
β-2-microglobulin forward                  AF016042                                                          Small et al. (2008)
β-2-microglobulin reverse                   AF016042                                                          Small et al. (2008)

Table 1. Sequence of oligoprimers used in real-time PCR assay for catfish rhamnose-binding lectin (RBL) 1a, -1b, -1c, -3a, -3b, 
-5a, α-tubulin, and β-2-microglobulin

Fig. 1. Cycle threshold (CT) values of housekeeping genes α-
tubulin and β-2-microglobulin; and genes of interest rham-
nose-binding lectin (RBL) 1a, -3a, and -3b in the gill; RBL1c
and -5a in the skin; and RBL5a in the proximal small intes-
tine (PSI), in channel catfish on Days 1 and 2 post-challenge. 

Results are mean ± SD of all samples collected
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sisted of an initial denaturation at 95°C (for 30 s),
 followed by 40 cycles of denaturation at 94°C (5 s),
and an appropriate annealing/extension tempera-
ture (58°C, 5 s). An additional temperature ramping
step was utilized to produce melting curves of the
reaction from 65 to 95°C.

Statistical analysis

The CT values were compared and converted to
fold differences by the relative quantification method
using Relative Expression Software Tool 384 v.1
(REST; Pfaffl et al. 2002). Comparisons were made in
different tissues using analysis of variance (ANOVA)
procedure in SAS v.9.2 software. Performance data
were also subjected to ANOVA. Relative expression
was calculated using pooled group data from each
tank. Tank served as the experimental unit for each
variable measured. When appropriate, data were
also subjected to Duncan’s multiple range test for
means separation. Differences were considered sig-
nificant at p < 0.05.

RESULTS

Growth performance and survival

There was no difference in weight gain, specific
growth rate (SGR), or FCR between the control and
EO fish (Table 2). However, survival during the 21 d
challenge was higher (64.4 ± 3.3 vs. 48.0 ± 1.5%) for
the EO fish compared to controls (p < 0.05). No fish
died in the non-challenged control group.

RBL mRNA

All 6 RBL genes were examined in gill, proximal
small intestine, and skin of channel catfish. After
challenge with pathogenic Edwardsiella ictaluri, lev-
els of RBL mRNA were examined on Days 1 and 2
post-challenge; non-challenged controls (those that
received only BHI) were also sampled on Days 1 and
2 post-challenge. The limit of detection for the assays
was calculated to be 6 target molecules using the
methods described by Forootan et al. (2017). De -
pending on the tissue, many of the RBL genes were
not detected in the non-challenged fish so a relative
comparison could not be made.

We found that, relative to non-challenged controls,
gill RBL1a mRNA was higher in fish fed the EO diet

on Day 1 (p < 0.05) (Fig. 2a). Gill RBL3a mRNA was
similar in EO and control fish on both days post-chal-
lenge (Fig. 2b). In contrast, gill RBL3b mRNA was
higher on Days 1 and 2, respectively, in fish fed only
EO diet (p < 0.01) (Fig. 2c). Skin RBL1c and -5a
mRNA did not change significantly relative to non-
challenged fish on Days 1 and 2 of the disease chal-
lenge (Fig. 2d,e). RBL5a mRNA was present in the
proximal small intestine but was not significantly dif-
ferent between EO and control treatments relative to
non-challenged fish on either day (Fig. 2f).

DISCUSSION

Phytogenic feed additives like essential oils have
been tested in cattle, poultry, and swine (Botsoglou
et al. 2002, Christaki et al. 2004, Mao et al. 2005,
Peeters et al. 2006, Vieira et al. 2008, Bartos et al.
2016) and many of the results showed improvements
in growth performance and innate immunity to dis-
ease. The impetus for this research is that essential
oils will likely provide alternatives to synthetic
growth promoters and antibiotics. Likewise, develop-
ing feed supplements to improve the growth and
health status of aquaculture species has become a
major trend in the last decade (Huynh et al. 2017).
Phytogenic feed additives have been examined in
channel catfish (Zheng et al. 2009, Peterson et al.
2014, 2015) and rainbow trout (Ahmadifar et al. 2011,
Giannenas et al. 2012) and a few of these studies
have also found improvements in growth perform-
ance and innate immunity to disease. However, little
information can be gleaned from these studies with
respect to mechanisms of action.

This study examined the effects of a phytogenic
feed additive, Digestarom® P.E.P. MGE, on growth
performance, disease susceptibility, and roles that
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Treatment Weight gain SGR FCR Survival
(g fish−1) (%)

Control 43.4 ± 3.8 2.3 ± 0.1 1.30 ± 0.1 48.0 ± 19.6a

EO 38.8 ± 3.4 2.1 ± 0.1 1.39 ± 0.1 64.4 ± 12.5b

Table 2. Weight gain (mean initial weight was 13.4 ± 0.1 g),
specific growth rate (SGR), feed conversion ratio (FCR), and
survival of channel catfish (after challenge with Edwardsiella
ictaluri) fed control or Digestarom® (EO) diets. SGR = 100 ×
[ln (BW2) − ln (BW1)] / t, where BW1 and BW2 are initial and
final weights, respectively, and t is feeding period (days).
FCR = ingested food (g) / weight gain (g). All indices are
mean ± SD. Values with different superscript letters in a 

column show significant differences (p < 0.05)
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RBL may play on innate immunity of channel catfish
challenged with Edwardsiella ictaluri. The current
study, as well as other catfish studies from our lab,
showed no improvement in weight gain or FCR when
fed essential oils (Peterson et al. 2014, 2015). It is
clear from these 3 studies that the essentials oils car-
vacrol, thymol, anethol, and limonene (Digestarom®

P.E.P. MGE) are not effective at improving growth
performance in catfish grown in a tank environment.

The current study showed that survival was about
34% higher when fish were fed essential oils and
challenged with E. ictaluri, while a previous study

showed an increase in survival of 43%
in fish fed essential oils and challenged
with E. ictaluri (Peterson et al. 2015).
Our previous tank study also showed
that MBL might be involved in protect-
ing catfish against pathogenic E. icta -
luri (Peterson et al. 2015). In the current
study, all 6 RBL genes were examined
in skin, gill, and intestine after chal-
lenge to E. ictaluri. However, many of
the genes were detected at very low
levels or not at all in the non-challenged
fish, so relative comparisons could not
be made. It is possible that many of the
RBL genes are either downregulated or
expressed only upon challenge to in -
fection. We found that relative to non-
challenged controls, gill RBL1a mRNA
was higher in fish fed EO diet 1 d post-
challenge. However, gill RBL1a mRNA
re turned to non-challenged levels 2 d
post challenge. Beck et al. (2012) also
showed that RBL1a mRNA in the gill
was higher in channel catfish exposed
to Flavobacterium columnare and in
fish that were fasted. Thongda et al.
(2014) found that gill RBL1a mRNA in
channel catfish was upregulated after
exposure to E. ictaluri. Those authors
suggest that perhaps RBL1a plays a role
in blocking E. ictaluri adhesion to the
gill surface, thus preventing bacteria
from gaining entry into the fish.

We found that gill RBL3a mRNA was
upregulated in EO and control fish 1
and 2 d post-infection, respectively.
Thongda et al. (2014) also found that
gill RBL3a mRNA was upregulated
after exposure to E. ictaluri. We also
observed that gill RBL3b mRNA was
higher on Days 1 and 2 in fish fed the

EO diet. Thongda et al. (2014) showed that gill
RBL1b and -3b were increased 4 h after infection
with pathogenic E. ictaluri. Similar to gill RBL1a, -3a
and -3b may play roles in blocking bacterial adhe-
sion to the gill surface.

We also examined the roles of RBLs in the skin and
proximal intestine of channel catfish exposed to dis-
ease. Skin RBL1c and -5a mRNA did not change sig-
nificantly relative to non-challenged fish on Days 1
and 2 of the disease challenge. Similarly, RBL5a
mRNA was present in the proximal small intestine
but was not significantly different between EO and
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Fig. 2. Real-time PCR analysis for (a) rhamnose-binding lectin (RBL) 1a, (b)
RBL3a, and (c) RBL3b mRNA in the gill; (d) RBL1c and (e) RBL5a mRNA in the
skin; and (f) RBL5a mRNA in the proximal small intestine of channel catfish
following Edwardsiella ictaluri infection. Expression was measured on Days
1 and 2 post-infection in fish fed control and essential oil (EO) diets. Fold-
change was calculated by the change in expression at a given time point rel-
ative to the non-challenged fish and normalized by changes in α-tubulin and
β-2-microglobulin housekeeping genes. Relative expression was calculated
using pooled group data from each tank. Results are mean ± SD of fold-
changes; asterisk indicates significant difference between treatments (p < 0.05)
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control treatments relative to non-challenged fish on
either day. Thongda et al. (2014) found that most of
the genes in the skin and intestine showed reduced
expression following infection, with a significant
down-regulation of RBL1c (400-fold) at Day 3 post-
infection. It is not clear whether suppression of RBL
genes in skin and intestine aid in pathogen adhesion
or not; additional studies will be needed to further
elucidate the role of RBLs with respect to those
mucosal tissues.

Our results do not provide evidence that Diges-
tarom® P.E.P. MGE improves weight gain or FCR in
channel catfish. Results showed that Digestarom®

P.E.P. MGE increased survival of catfish challenged
with E. ictaluri. The mechanisms through which sur-
vival was increased may include enhanced mucosal
gill expression of RBL1a and -3b. Further elucidation
of the mechanisms through which essential oils affect
bacterial pathogenicity will be critical in determining
whether these and other feed additives are useful for
aquaculture.
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