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dalaksha Bay the sporocyst was found in subtidal
mytilid bivalves M. edulis and Musculus laevigatus
(Zelikman 1966), and near BS, bucephalid sporocysts
often occurred in Musculus discors, also in the sub-
tidal zone (V. A. Krapivin pers. obs.).

Some non-symbiotic animals were found inside
M. edulis mantle cavities. This is not uncommon for
bivalves. For example, some free-living nematode
species have been reported in oysters and soft-shell
clams Mya arenaria (Schuurmans Stekhoven 1942,
Anderson & Bourne 1960). Nematodes in mantle
 cavities of the White Sea mussels were previously
mentioned by Konstantinova & Maximovich (1985).
Two species of marine mites usually inhabiting mus-
sel beds were reported from Mytilus galloprovin-
cialis (Cáceres-Martínez et al. 2000). Since all of
these groups were described as free-living benthic
(nematodes, most harpacticoids, halacarid mites) or
planktonic (harpacticoid M. norvegica) organisms,
we suppose these animals were accidentally trapped
inside the mussels’ mantle cavities and managed to
survive in these new conditions.

Spatial distribution of mussel-associated organisms

Connection between tidal level and infection pat-
tern has previously been reported for a number of

parasites of molluscs. Most of the
papers conside red intertidal molluscs
and digeneans. For instance, it was
shown that at higher shore levels, the
prevalence of sporocysts and meta -
cercariae of digeneans in snails that
use birds as final hosts is higher than
at the lower levels (e.g. Granovitch &
Johannesson 2000). Data on differ-
ences between subtidal and in tertidal
infection patterns is scarce. Chubrick
(1966) reported considerable differ-
ences in the composition of digenean
communities be tween subtidal and in -
tertidal bivalves in the White Sea and
Barents Sea: 15 of 16 species of dige-
neans that use birds as final hosts
infected only intertidal molluscs, and
of 21 species of ‘fish’ digeneans, only
5 were found at the intertidal zone
(Chubrick 1966). Buck et al. (2005)
com pared parasitic loads in mussels
from inshore intertidal and subtidal
sites: intertidal mussels were more
infected with larvae of digeneans that

use birds as final hosts (predominantly Renicola ros -
covita and 2 Himasthla species) than subtidal ones,
for 1-host symbionts (boring polychaetes and cope-
pods), no differences in infection patterns have been
shown (Buck et al. 2005). The description of differ-
ences in infection  patterns of 1-host symbionts be -
tween intertidal and subtidal mussels was made by
Kruczynski (1974): symbiotic pea-crabs were abun-
dant in mussels from subtidal sites and almost absent
in intertidal mussels (Kruczynski 1974).

In our case, the taxa forming the symbiotic commu-
nities were almost the same at all tidal levels, while
quan titative composition of the communities differed
significantly. At different sites, the patterns were not
exactly the same (presumably due to the influence of
large-scale factors), but some tendencies remained
quite stable. Urastoma cyprinae were more abundant
at the lower levels (Fig. 3), while R. roscovita and
Himasthla sp. larvae were found at higher levels
(Figs. 5 & 6). The spatial distribution of Gymnophal-
lus bursicola larvae was different from the distribu-
tion of the other 2 metacercariae. There were no sig-
nificant differences between tidal levels, and in the
subtidal zone its abundance was even higher than in
the intertidal (Fig. 4). Several mechanisms could be
suggested to explain these patterns.

U. cyprinae, being a mantle cavity dweller, is sur-
rounded by the seawater that passes through the cav-
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Fig. 6. Abundances of Himasthla sp. associated with Mytilus edulis at different
tidal levels. Raw data and predicted values from negative binomial general-

ized linear model (GLM) with 95% confidence intervals are presented
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ity, and can be affected by its characteristics (e.g. tem-
perature, salinity and chemical composition). The
rhabdocoellan also has free-living breeding and in-
fective stages, which are also susceptible to direct en-
vironmental effects (Crespo González et al. 2005).
These features it shares with the symbiotic crab men-
tioned by Kruczynski (1974), and like the crab, the
rhabdocoelan is more abundant at lower levels. The
highest abundance of U. cyprinae in the intertidal
zone was at BS. At BG and LE, intertidal mussels were
almost free of the symbiont. The surface water at
these 2 sites is much less saline than at BS because of
the near proximity of the Keret River estuary (Babkov
1998). We assume that U. cyprinae is affected by
water salinity. It is possible that its free-living or even
symbiotic stages are less tolerant of low salinity than
the host mussels, which might explain why U. cypri-
nae was less abundant at the intertidal level, where
salinity can drop significantly during low tides, and
why at the site with highest surface water salinity
these symbionts occurred at higher levels.

Digenean metacercariae, unlike U. cyprinae, in -
habit mussel tissues and do not come into direct con-
tact with the seawater. However, the digeneans have
free-swimming stages, which can be affected by
harsh intertidal conditions (Pietrock & Marcogliese
2003, Studer et al. 2012). Nevertheless, abundance of
these metacercariae was much higher at intertidal
and zero-depth levels than at the subtidal, except for
sites with a very low percentage of infected mussels
(LE for R. roscovita and BS for Himasthla sp.). This
pattern may be caused by (1) among-level differ-
ences in mussel density, (2) migration of emerging
cercariae towards the intertidal zone, (3) redistribu-
tion of infected mussels, (4) among-level differences
in density of the upstream hosts (Littorina snails) or
(5) among-level differences in infection rate of the
upstream hosts.

We can reject the first hypothesis because the den-
sity of mussels among sites and levels varied insignif-
icantly.

The second mechanism seems more plausible. Pos-
itive phototaxis has been described for cercariae of
some bird-parasitizing digeneans (Prokofiev 2001,
Prokofiev & Galaktionov 2009). Such migration of
cercariae to the intertidal level is likely to be adap-
tive since the intertidal mussels are obviously more
available for birds.

Active landward migration of infected mussels
seems unlikely because adult mussels do not usually
move long distances.

The fourth mechanism that can shape the infection
pattern of these metacercariae is the distribution of

the upstream hosts — the snails of genus Littorina.
We do not have data on snail densities on the 3 sites
but we have observed potential upstream hosts at all
3 levels: L. saxatilis and L. obtusata at the intertidal
and zero-depth zones and L. littorea at the zero-
depths and subtidal zones. More data is needed to
make certain conclusions.

Finally, differences in infection levels of snails may
be present due to heterogeneity in definitive hosts’
(birds) availability or active migration of miracidi ae
and/or infected snails. The connection between bird
availability and patterns of digenean infection in snails
is well described on large scales (Robson & Williams
1970, Bustnes & Galaktionov 1999, Hechinger & Laf-
ferty 2005, Fredensborg et al. 2006). This effect could
be less important at smaller scales (Fredensborg et
al. 2006, Byers et al. 2015) except the cases of very
aggregated bird distribution (Smith 2001). Either
way, we cannot exclude the possibility that the inter-
tidal snails had higher rates of infection with dige-
neans than the subtidal snails.

Thus, we conclude that the observed distribution
of digenean larvae in mussels can be the result of
migration of free-swimming stages to the intertidal
zone (increasing the chance of meeting the final host)
or the consequence of heterogeneity in upstream
host distribution and infection rate.

Some details remain unclear, for example, the  origin
of the few mussels heavily infected with  Reni colidae
at the subtidal levels (see Fig. 5). It is possible that
mussels were infected by cercariae that emerged
from subtidal littorinids or migrated from the upper
levels (however this does not explain the highly
aggregated pattern). Another possibility is that these
mussels actually became infected at the intertidal
and than slipped down to the lower levels with dige-
nean larvae preserved in their tissues (metacercar-
iae of R. roscovita [ex. Cercaria] parvicaudata can
survive in a mussel for more than 2 yr; Nikolaev et
al. 2006). Manipulative experiments may be useful
in testing these (at this time purely speculative)
hypotheses.

Gymnophallus sp. was mentioned by Chubrick
(1966) to be the only ‘bird’ digenean in the White Sea
whose metacercariae can often be found in subtidal
molluscs (Chubrick 1966), which is consistent with
our results. For this digenean, no increase in number
at higher tidal levels has been shown. This can be
linked to the feeding behavior of G. bursicola’s final
hosts — eiders — that dive down to 40 m to get mol-
luscs (Madsen 1954, Brun 1971). Moreover, it is pos-
sible that the first intermediate host of G. bursicola
is a subtidal bivalve. For example, in Onega Bay,
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unidentified gymnophallid sporocysts were discov-
ered in Serripes groenlandicus (V. A. Krapivin pers.
obs.). In Kandalaksha and Onega bays, many sub-
tidal bivalves are infected with metacercariae of
gymno phallid digeneans (Chubrick 1966, authors’
pers. obs.). It is possible that the upstream host
inhabits the subtidal zone, and we assume that G.
bursicola cercariae do not need to migrate to the
intertidal for their second host (bivalve molluscs) to
meet the final host (eiders).

Choricystis sp. was absent at BS, at BG it occurred
only at the zero-depth and intertidal levels, and at
the LE it occurred at all the 3 levels. The between-
site distribution of the parasitic green algae Chori-
cystis sp. corresponds well with earlier observations
of this symbiont occurring more often in regions with
lower salinity (Petrova et al. 2006, Kvitko & Migu -
nova 2011). BS is characterized by the highest aver-
age salinity out of the 3 sites (26 to 28‰), at BG salin-
ity is intermediate (23 to 25‰) and the lowest salinity
is observed at LE (18 to 23‰) (Babkov 1998, Basova
et al. 2004). However, within-site distribution of the
parasitic green algae may also be governed by fac-
tors other than salinity (e.g. desiccation time): at LE,
Choricystis sp. was significantly less abundant in the
intertidal than at the lower levels.

Accidentally associated organisms had different
patterns of spatial distribution at different sites.
Assuming that these animals were entrapped in mus-
sels’ mantle cavities by pure chance, it is logical to
suppose that their distribution depends on the ambi-
ent fauna; those animals more plentiful at a given
site, and small enough to pass though the mussel’s
inhalant siphon, have a greater chance of being
‘entrapped’ by mussels.

CONCLUSIONS

The distribution patterns of mussel symbionts are
determined by a combination of large-scale and local
factors. Our research focused on small-scale hetero-
geneity among different tidal levels. We showed that
the quantitative composition of symbiofauna of mus-
sels at lower levels differs from that at the upper lev-
els: the abundance of rhabdocoelans was higher at
the subtidal and zero-depth zones than in the inter-
tidal, while encysted metacercariae — R. roscovita
and Himasthla sp. — were more abundant at the
zero-depth and intertidal zones.

In the real world it is difficult to separate the factors
that govern distribution patterns across the vertical
shore gradient. We proposed several mechanisms to

explain the distribution patterns of some symbiont
species. Further investigations and field experiments
could help to determine which factors are crucial in
creating differences in occurrence of mussel sym-
bionts between tidal levels.
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