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ABSTRACT: Tracking and understanding variation in pathogens such as Batrachochytrium den-
drobatidis (Bd), the agent of amphibian chytridiomycosis which has caused population declines
globally, is a priority for many land managers. However, relatively little sampling of amphibian
communities has occurred at high latitudes. We used skin swabs collected during 2005-2017 from
boreal toads Anaxyrus boreas (n = 248), in southeast Alaska (USA; primarily in and near Klondike
Gold Rush National Historical Park [KLGO]) and northwest British Columbia (Canada) to deter-
mine how Bd prevalence varied across life stages, habitat characteristics, local species richness,
and time. Across all years, Bd prevalence peaked in June and was >3 times greater for adult toads
(37.5%) vs. juveniles and metamorphs (11.2%). Bd prevalence for toads in the KLGO area, where
other amphibian species are rare or absent, was highest from river habitats (55.0 %), followed by
human-modified upland wetlands (32.3 %) and natural upland wetlands (12.7 %) —the same rank-
order these habitats are used for toad breeding. None of the 12 Columbia spotted frogs Rana
luteiventris or 2 wood frogs R. sylvatica from the study area tested Bd-positive, although all were
from an area of low host density where Bd has not been detected. Prevalence of Bd on toads in the
KLGO area decreased during 2005-2015. This trend from a largely single-species system may be
encouraging or concerning, depending on how Bd is affecting vital rates, and emphasizes the
need to understand effects of pathogens before translating disease prevalence into management
actions.
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1. INTRODUCTION

The aquatic fungus Batrachochytrium dendroba-
tidis (Bd) causes amphibian chytridiomycosis, which
can reduce survival of hosts (Berger et al. 1998,
Briggs et al. 2010, Russell et al. 2019). Given its

*Corresponding author: blake_hossack@usgs.gov

global role in amphibian population declines, man-
agement agencies often emphasize monitoring Bd,
especially when there is concern that host species are
rare or vulnerable (Grant et al. 2018). However, rela-
tively few data are available on Bd prevalence from
areas that host few amphibian species, such as many
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high-elevation and, especially, high-latitude areas
(Seimon et al. 2007, Reeves 2008, Slough 2009). Dis-
ease prevalence and dynamics can be affected by
local climate and habitat, depending in part on phys-
iological tolerances of pathogens and their hosts, as
well as how changes to community structure and
abundance of hosts alter transmission (Stewart 1995,
Adams et al. 2010, Voyles et al. 2017). Management
options for many diseases are also easier to identify
and implement if there is only a single host vs. multi-
ple hosts (May & Anderson 1983, Grant et al. 2018).

To measure and track prevalence of Bd on amphib-
ians in southeast Alaska (USA) and northwest British
Columbia (Canada), 248 boreal toads Anaxyrus bo-
reas, 12 Columbia spotted frogs Rana luteiventris, and
2 wood frogs R. [Lithobates] sylvatica were sampled

during 2005-2017. During 2005-2006, sampling was
focused in 5 general areas: (1) the Skagway and
Taiya River valleys (Alaska) and Lindeman (British
Columbia), including areas managed by the Klondike
Gold Rush National Historical Park and Chilkoot
Trail National Historic Site (hereafter, collectively
called KLGO); and the (2) Haines, (3) Juneau, and (4)
Prince of Wales Island areas in Alaska (Adams et al.
2007) (Fig. 1). Staff at KLGO continued sampling
toads for Bd during most years through 2017,
because of concerns about population declines, and
because toads have local cultural significance
(Thornton 2004). We analyzed the collected data to
provide greater understanding of ecological varia-
tion, potential management links, and temporal trends
in Bd prevalence in this under-sampled region.
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Fig. 1. (a) General areas where amphibians were sampled for chytrid fungus Batrachochytrium dendrobatidis (Bd) in southeast

Alaska (USA) and northwest British Columbia (Canada) during 2005-2017; and (b) site-level Bd results from 248 boreal toads

Anaxyrus boreas (circles), 12 Columbia spotted frogs Rana Iuteiventris (triangles), and 2 wood frogs R. sylvatica (squares) sam-

pled in Klondike Gold Rush National Historical Park and neighboring areas (red box in panel a). For both panels, solid symbols
indicate that Bd was detected
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2. MATERIALS AND METHODS

To test for Bd, the pelvic area and undersides of
legs and feet of toads and frogs were sampled with a
sterile swab, using standardized, clean procedures
(Adams et al. 2007). Animals were located during
visual encounter surveys and captured by hand or
net. Selection of animals to sample was haphazard
and effort varied among years, although effort during
2005-2006 primarily targeted known toad breeding
sites (Fig. la). Swabs were air-dried for 30 min and
stored in microtubes (2005-2006) or in ethanol-filled
microtubes (2007, 2010, 2012, 2014-2017). Samples
collected during 2005-2006 were analyzed for Bd
DNA via real-time Taqman qPCR assay (Boyle et al.
2004) at the USGS National Wildlife Heath Center
(Wisconsin, USA). Samples collected during 2007-
2017 were analyzed by Pisces Molecular (Colorado,
USA) using methods described by Annis et al. (2004)
(years 2007-2012) or real-time Tagman qPCR (Boyle
et al. 2004) (2015-2017). For all swabs, detection

of any Bd DNA above the assay threshold was con-
sidered a positive.

To estimate how Bd prevalence for toads varied
based on life stage, habitat characteristics, and over
time in the KLGO area (Fig. 1b), we used generalized
linear mixed-effects models (binomial distribution,
logit link) and likelihood-ratio tests to test the effects
of month (May-August) and year (2005-2017) of
sampling, life stage of host (adult vs. juvenile), habi-
tat features, and an area term (Taiya River Valley vs.
other sites) that served as a proxy for single- vs.
multi-host systems (Table 1). We did not include toad
sex or size as predictors because that information
was not recorded for >45% of observations. Most of
the 2007-2017 samples were from toads because
they are the only amphibian species documented at
low elevations (<1000 m; Fig. 1b) in the KLGO area,
where surveys were concentrated (Surdyk & Waldo
2018). Columbia spotted frogs are present at high
elevations, and wood frogs occur throughout the
sampled area except for most of the Skagway and

Table 1. Summary of the number of positive Batrachochytrium dendrobatidis (Bd+) samples and number of animals sampled
by species, life stage (toads only), and habitat type in southeast Alaska (USA) and northwest British Columbia (Canada),
2005-2017. Because of missing information on life stages for some samples, the numbers in this table do not sum to those in

the text; na: not available

Site WGS84 Habitat type No. Bd+ / no. sampled
Lat. (°N) Long. (°W) Boreal toads Columbia Wood
Adult Juvenile spotted frogs frogs

Bare Loon Lake 59.7958 135.0370 Upland, natural 0/0 0/0 0/2 0/1
CTO01 59.5933 135.3265 Upland, natural 0/0 0/1 0/0 0/0
CT11 59.5255 135.3435 Upland, natural 0/2 0/0 0/0 0/0
CTCAN1 59.7664 135.1197 Upland, natural 0/0 0/0 0/5 0/0
CTCAN2 59.7776 135.0871 Upland, natural 0/2 0/0 0/1 0/1
DY02 59.5106 135.3442 River, natural 3/6 8/10 0/0 0/0
DY03 59.5101 135.3486 Upland, human 5/8 3/8 0/0 0/0
DY13 59.4999 135.3616 River, natural 2/2 0/0 0/0 0/0
DY14 59.4986 135.3617 River, natural 6/8 1/3 0/0 0/0
DY19 59.5109 135.3621 Upland, natural 0/0 2/11 0/0 0/0
HAINO1 59.2274 135.4581 Upland, human 7/15 0/10 0/0 0/0
HAINO2 59.2459 135.5253 Upland, human 4/17 0/0 0/0 0/0
HAINO3 59.4154 135.9503 Upland, natural 4/17 0/0 0/0 0/0
JNUO01 58.2998 134.6727 Upland, natural 0/17 0/0 0/0 0/0
LAUGHTON 59.5504 135.1106 Upland, natural 0/1 0/0 0/0 0/0
POW3 55.5750 132.6423 Upland, natural 3/5 7/10 0/0 0/0
PRINO1 55.9269 132.7679 Upland, natural 5/19 0/1 0/0 0/0
PRINO2 55.6883 132.6350 River, natural 6/22 0/0 0/0 0/0
SKAGO1 57.5753 134.3961 Upland, natural 0/0 0/10 0/0 0/0
TRO1 59.5058 135.3507 River, natural 7/16 0/3 0/0 0/0
WC02 59.5286 135.3691 Upland, natural 0/2 0/2 0/0 0/0
WCO03 59.5371 135.4317 Upland, natural 0/0 0/2 0/0 0/0
WC04 59.6113 135.1463 Upland, human 2/7 0/0 0/0 0/0
WPO1 59.6237 135.1381 Upland, natural 0/0 0/0 0/2 0/0
WPO02 59.6130 135.1444 Upland, natural 0/1 0/0 0/1 0/0
WPO03 na na Upland, natural 0/0 0/0 0/1 0/0
WPCO01 59.5619 135.1898 Upland, natural 0/0 0/0 0/0 0/0
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Taiya River valleys (Carstensen et al. 2003;
http://vertnet.org). Because of small sample sizes
and potential for species-specific effects that we
could not estimate, we excluded the 12 Columbia
spotted frogs and 2 wood frogs from models but
included those data in summaries (Table 1).

The first model we fit included the terms month,
year (standardized), life stage, habitat type, and area
and was based on all samples. The second model had
the same predictor variables but was used to deter-
mine if there was a linear or quadratic inter-annual
trend in Bd prevalence in the KLGO area, the only
area sampled for the duration of the study. We
excluded data from 2016-2017 from the trend models
because only 1 toad was sampled each year. For all
models, we included site as a random effect to account
for correlation in Bd status among individuals from
the same location. Temperature summaries were
generated from the Moore Creek Bridge weather sta-
tion near Skagway, Alaska (https://wcc.sc.egov.usda.
gov/nwcc/site?sitenum=1176&state=ak).

For the habitat type variable, we grouped sites into
3 broad habitat categories based on origin and domi-
nant hydrological features: upland/natural (13 sites,
105 swabs), upland/human (4 sites, 66 swabs), and
riverine/natural (5 sites, 77 swabs) (Christensen et al.
2004). Riverine sites are influenced primarily by
changes in river hydrology, whereas upland sites are
mostly isolated from variation in river flows. Natural
sites were formed by and are still largely controlled
by natural forces. Human sites were created by or
mostly transformed by human actions, including for-
mer gravel quarries and a mitigation pond. No sites
were coded as riverine/human, although some river
sites have been affected by human alteration.

3. RESULTS AND DISCUSSION

Of the 248 boreal toads sampled for Bd from
2005-2017, 79 (31.9%) tested positive. Detection of
Bd on toads varied seasonally (x? = 10.92, 3 df, p =
0.012), with highest estimated prevalence in June
(56.5%) and lowest during August (7.1%; Fig. 2a).
Seasonal variation in detection of Bd is common,
partly because growth of most strains of Bd is
reduced above approximately 27°C (Voyles et al.
2017). However, summer air temperatures in south-
east Alaska (July mean maximum air temperature
in Skagway = 19.1°C; https://wrcc.dri.edu) are well
within the optimum growth temperatures for most
strains of Bd. Similar patterns of reduced summer-
time prevalence of Bd on boreal toads and other

amphibians are evident in other areas of western
North America, such as the US Pacific Northwest
(Pearl et al. 2007, Adams et al. 2010), which suggests
that temperature is not the lone driver of the pattern.
The strong seasonal pattern highlights the impor-
tance of understanding temporal variation to maxi-
mize sampling efficiency and accurately describe the
distribution and prevalence of Bd.

Adults toads were >3 times as likely to test Bd-pos-
itive (37.5%) as juvenile and metamorph toads
(11.15%) (Fig. 2b; ¥ = 6.21, 1 df, p = 0.013). This
large difference is surprising, especially because
juvenile toads are often more aquatic than adults
(Bartelt et al. 2004), which could increase exposure or
infection intensity to an aquatic pathogen such as Bd
(Murphy et al. 2009, Hossack et al. 2013). Estimates
of variation in Bd prevalence across life stages of
boreal toads vary considerably among studies. For
example, Bd prevalence was higher for adult boreal
toads than for juveniles in Oregon and northern Cal-
ifornia (USA) (Adams et al. 2010), but in Montana
(USA), female boreal toads had lower Bd prevalence
than males or juveniles (Hossack et al. 2013). The
lack of detailed demographic data and small number
of samples from some life stages precluded us from
generating sex- and life-stage estimates, but these
differences in prevalence make it critical to under-
stand how Bd affects vital rates of different sexes and
life stages.

Toads from river/natural habitats (55.0%) were
more likely to be Bd-positive than toads from upland/
human-transformed (32.3 %) or upland/natural habi-
tats (12.7 %; Fig. 2c; x2 =8.31, 2 df, p = 0.016). River-
ine vs. upland sites are of particular management
interest because river-associated sites provide some
of the most important toad habitat in the region
(Christensen et al. 2004, Surdyk & Waldo 2018),
because there is potential for hydropower develop-
ment that could affect riverine wetlands, and be-
cause there are likely fewer management options for
rivers. Notably, Bd prevalence corresponded with the
frequency that these habitat types are used for toad
breeding. Toads in the Taiya River Valley area are
most abundant in riverine habitats, followed by
upland/human habitats. No documented breeding
has occurred in upland/natural habitat in recent
years (see Surdyk & Waldo 2018 and prior annual
reports referenced therein), where Bd prevalence
was lowest.

The highest prevalence of Bd in riverine habitats,
which are considered the most critical and perhaps
most threatened environments in the KLGO area, is
concerning. The parallels between frequent habitat
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Fig. 2. Estimated mean probability (+95 % CI) that boreal toads Anaxyrus boreas tested positive for amphibian chytrid fungus

Batrachochytrium dendrobatidis (Bd) according to (a) month sampled, (b) life stage, (c) habitat type, and (d) whether the toad

was from the mostly single-host Taiya River Valley area (Alaska, USA) or a multi-host community elsewhere in the study area.
All estimates are marginal means from the habitat model

use and high Bd prevalence suggest that prevalence
might be driven partly by abundance and reliable
presence of hosts, especially in the lower Taiya River,
where toads are the only amphibian species. There
was less variation in Bd prevalence among habitat
types in the Haines, Juneau, and Prince of Wales
Island samples, where naive prevalence ranged from
24-27 % across habitat types; however, most of those
samples were from one-time sampling events and
those areas have other amphibian species that host
Bd (Adams et al. 2007, Reeves 2008).

Estimated mean prevalence of Bd on toads in the
Taiya River Valley (37.6 %; N = 107) was nearly twice
that of toads from areas where other amphibian spe-
cies co-occur (21.0%; N = 141; Fig. 2d). This differ-
ence suggests that local species richness might affect
Bd prevalence of toads, but the large variance
around the estimates precludes that conclusion (32 =
1.71, 1 df, p = 0.191). Because our data come from
only 1 single-host area (although from 10 distinct
sites) and sampling intensity from single- vs. multi-
host areas was uneven across time, our data cannot
distinguish between the species richness hypothesis

and other sources of spatial variation. Notably, much
of the highest-elevation areas of the Sierra Nevada
Mountains in California (USA) only have a single
amphibian species, and it is one of the best-docu-
mented systems in which chytridiomycosis has
caused population declines (Briggs et al. 2010).
None of the 4 boreal toads, 12 Columbia spotted
frogs, or 2 wood frogs from the Lindeman area tested
positive for Bd (Fig. 1). To our knowledge, Bd has yet
to be detected from Columbia spotted frogs at the
northern end of their range, where our sampling
occurred, but they are often infected farther south,
where the pathogen has caused mortality events
(Pearl et al. 2007, Hossack et al. 2013, Patla et al.
2016). Bd is present on wood frogs at high latitudes in
Alaska and northwestern Canada (Reeves 2008,
Slough 2009, Schock et al. 2010), although it seems
less common than in other areas of the frog's range
(e.g. Longcore et al. 2007, Martinez Rodriguez et al.
2009). Extensive surveys in the Lindeman area have
not detected evidence of amphibian breeding (see
Surdyk & Waldo 2018 and prior annual reports refer-
enced therein), which suggests a low host density.
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Our results, along with samples from
boreal toads approximately 30-40 km from
our White Pass study (Slough 2009), sug-
gest that Bd is still patchily distributed in
this isolated, steep landscape compared to
areas that have greater abundance and
richness of amphibians and greater human
influence.

Based on 2005-2015 samples, Bd preva-
lence on toads in the KLGO area decreased
over time (Fig. 3; 2 =6.483, 1 df, p=0.011),
but there was insufficient evidence to
include a quadratic term in the model (32 =
1.865, 1 df, p = 0.172). Based on the linear
trend model, the odds that a sampled toad
was Bd-positive decreased by 0.34 annu-
ally (95% CI = 0.15-0.78). Including aver-
age temperature for the 30 d preceding the
mean sampling date each year did not
affect the trend in Bd prevalence (odds
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Fig. 3. Model-estimated trend (2005 2015; +95% CI) in prevalence of
amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) on bo-

real toads Anaxyrus boreas in the Klondike Gold Rush National Histori-

Bd is highly virulent and transmission is
reduced after a reduction in host density, or
if hosts are evolving resistance to infection
(May & Anderson 1983, Briggs et al. 2010).
For example, at another boreal toad site in Wyoming
(USA), the reduction in survival attributable to Bd
has increased during the last decade, opposite the
pattern expected if hosts are adapting to a pathogen
(Russell et al. 2019). Collectively, these results em-
phasize the need to understand the how Bd is af-
fecting populations before managers can translate
pathogen prevalence into risk and make informed
actions.
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