INTRODUCTION

Bonamia spp., of the Phylum Haplosporidia, are obligate intrahaemocytic protistan parasites, primarily of ostreid oysters (Carnegie & Cochenneuc-Laureau 2004, Engelsma et al. 2014, this DAO Special). Four species have been described. B. ostreae infects Ostrea edulis (Pichot et al. 1979), and possibly O. angasi (see Bougrier et al. 1986), O. chilensis (see Grizel et al. 1983) and O. puelchana (see Pascual et al. 1991). It may also infect Crassostrea spp. (Carnegie & Cochenneuc-Laureau 2004), and C. gigas may act as a reservoir for B. ostreae (see Lynch et al. 2010). It is reported from O. edulis in Atlantic and Mediterranean Europe, Morocco (A. Villalba pers. obs.; http://web.oie.int/eng/info/hebdo/AIS_43.HTM#Sec2), and western (Elston et al. 1986, Friedman et al. 1989, Marty et al. 2006) and eastern (Friedman & Perkins 1994) North America.
It is an internationally notifiable OIE-listed pathogen. Bonamia (syn. Mikrocytos) roughleyi was described from Saccostrea glomerata (syn. commercialis) from Australia (Farley et al. 1988, Cochennece-Laureau et al. 2003), but has not been subsequently isolated and its validity as a Bonamia species is doubtful (Hill et al. 2010, Carnegie et al. 2014).

B. exitiosa (syn. exitiosus) infects O. (syn. Tiostra) chilensis (Hine et al. 2001, Berthe & Hine 2003) in New Zealand (NZ), O. angasi (see Corbeil et al. 2006) in Australia, O. puelchana in Argentina (Kroeck & Montes 2005, Kroeck et al. 2008, Kroeck 2010), O. edulis off the Atlantic (Abollo et al. 2008) and the Mediterranean (Narcisi et al. 2010) coasts of Europe and O. stentina in Tunisia (Hill et al. 2010), North and South Carolina (USA), NZ and Argentina (Hill et al. 2010). It also occurs in C. ariakensis at a port in North Carolina, into which it could conceivably have been introduced from Australia by shipping (Burreson et al. 2004, Bishop et al. 2006). Like B. ostreae, it is an OIE-listed and internationally notifiable pathogen. B. perspora infects O. (syn. Ostreola) stentina (syn. equestris) in the southeastern USA and differs from all other reported Bonamia spp. in having a spore stage (Carnegie et al. 2006). B. exitiosa-like isolates have been reported from O. chilensis in Chile (Balseiro et al. 2006, Campalans & Lohrmann 2009, Lohrmann et al. 2009).

Bonamia spp. have different patterns of development, and of developmental stages. B. perspora appears to have very few uni-nucleate, bi-nucleate, diplokaryotic and small multi-nucleate plasmodial vegetative stages. Plasmodia develop into sporonts, sporoblasts, sporocysts and spores, as do Haplosporidium spp. and Minchinia spp. (Carnegie et al. 2006). NZ B. exitiosa has many uni-nucleate, fewer bi-nucleate and diplokaryotic stages and no sporulation stages, and many uni-nucleate cells grow into large forms (Hine 1991a, Hine et al. 2001). Chilean Bonamia sp. is similar to B. exitiosa in developing large uni-nucleate stages during winter, but bi-nucleate stages are rare and multi-nucleate plasmodia unreported (Lohrmann et al. 2009). B. ostreae has dense and light forms of the uni-nucleate stage, which may become bi-nucleate or rarely diplokaryotic (Pichot et al. 1979), but plasmodia are small and very rarely encountered. Large plasmodia reported from O. edulis (Brehelin et al. 1982, Vivares et al. 1982, Bonami et al. 1985) at one site in Brittany were probably vegetative stages of H. armoricanum. Therefore, initial uni-nucleate stages may be directly compared, but the development of large uni-nucleate forms in B. exitiosa and the Chilean Bonamia may not be directly comparable with the uni-nucleate forms of B. perspora and B. ostreae. There are also 2 forms of bi-nucleate cell: those with separated nuclei after karyokinesis and before cytokinesis, common in B. ostreae (see Balouet et al. 1983); and those with 2 apposed nuclei in a diplokaryon, which are common in B. perspora (Carnegie et al. 2006) and B. exitiosa (Hine 1991a, Hine et al. 2001), but rare in B. ostreae (Pichot et al. 1979).

For brevity, the ultrastructures of published Bonamia spp. will not be illustrated here as they are already well illustrated (Pichot et al. 1979, Hine et al. 2001, Carnegie et al. 2006, Lohrmann et al. 2009). Also, previous studies nicely illustrate important features in this study, such as nuclear membrane-bound Golgi (NM-BG), indentations in the nuclear surface (INS), perinuclear granular material, a reticulated structure which is the trans-Golgi network (TGN) and haplosporosome-like bodies (H-LBs) (Hine 1991a, 1992, Hine & Wesney 1994a, Hine et al. 2001). Here we compared B. exitiosa from C. ariakensis on the US east coast, O. puelchana in Argentina and O. edulis in Spain, and considered what features permit their discrimination from other Bonamia species. Initially in this study, all cellular features were recorded, but subsequent analysis of nuclear shape, size and endoplasmic reticulum failed to show any patterns and are therefore not included herein.

MATERIALS AND METHODS

The fixation and processing of tissues infected with Bonamia spp. for transmission electron microscopy (TEM) has been reported for B. exitiosa (Hine et al. 2001), B. perspora (Carnegie et al. 2006) and Chilean Bonamia sp. (Lohrmann et al. 2009). It should be noted that there was variation in methods of fixation and processing, particularly the use of reduced osmium tetroxide (OsO₄) instead of normal OsO₄ in the Chilean study, which enhanced membranes, possibly making NM-BG more apparent. The oysters infected with B. ostreae in our study were sampled from Lake Grevelingen, The Netherlands, and fixed for 1 h in 2.5% glutaraldehyde in 0.22 µm filtered seawater (FSW), washed 2× in FSW, post-fixed for 1 h in 1% OsO₄, stained en bloc with 5% uranyl acetate in 0.1 M sodium acetate for 45 min, dehydrated through 50 to 100% ethanol, cut and stained with 5% uranyl acetate for 10 min and 5% lead citrate for 5 to 6 min.

Ostrea puelchana infected with B. exitiosa were sampled from San Matias Gulf, northern Patagonia, Argentina. Hearts were fixed for 1 h in 2.5% glutaraldehyde in 0.45 µm FSW and washed 3× in FSW,
post-fixed in 1% OsO₄ buffered with 0.1 M sodium cacodylate at pH 7.2, dehydrated through a graded ethanol series including en bloc staining with 1% uranyl acetate at the 70% ethanol stage, and embedded in Spurr’s resin. Ultrathin (~90 nm) sections were mounted on carbon-stabilised formvar-coated 1-hole grids, stained with Reynold’s lead citrate, and examined on a Zeiss CEM 902 TEM. Crassostrea ariakensis infected with B. exitiosa from North Carolina (USA) were processed following methods earlier for observation of B. perspora (Carnegie et al. 2006) and examined on a Zeiss CEM 902 TEM.

The measurements given are from sections through the centre of the cell in which the bilaminar nuclear and plasma membranes are clearly defined. Cell size, nuclear size and the size of haplosporosomes given in the following tables were calculated as the means of the longest dimension multiplied by the dimension at right angles to it. The nucleus:cytoplasmic (N:C) ratio was the mean of nuclear dimensions expressed as a percentage of the mean size of the cell. The term ‘multi-nucleate’ is used for cells with more than 2 nuclei, rather than ‘plasmodium’, which is reserved for a pre-sporulation stage.

RESULTS

All Bonamia spp. occurred as uni-nucleate and bi-nucleate forms, and a multi-nucleate stage may occur in all species but was not encountered because of rarity. NZ B. exitiosa and B. perspora also have a diplokaryotic stage. TEM observations on moribund B. roughleyi showed a multi-nucleate stage (Cochenec-Lauera et al. 2003) that appeared to undergo schizogony to form the uni-nucleate stage, unlike Bonamia spp. and other known haplosporidians (P. M. Hine pers. obs.), suggesting that it may not be a Bonamia species.

Uni-nucleate B. exitiosa from Ostrea angasi in Australia, Crassostrea ariakensis from the eastern USA (Fig. 1B), O. puelchana from Argentina, and Spanish O. edulis (Fig. 1A) (Table 1) resemble NZ ‘type’ B. exitiosa (Table 2), being larger than B. ostreae (Fig. 2), with smaller haplosporosomes, and slightly larger than Chilean Bonamia, with larger haplosporosomes. Haplosporogenesis was less often observed in B. exitiosa from C. ariakensis than in other species (Table 1), except B. ostreae (Table 2). The uni-nucleate stage of B. perspora was larger but with smaller chromosomes (Table 2) (Fig. 3A) than the other Bonamia spp., with subsequent multi-nucleate plasmodia (Fig. 3B) developing into spores (Fig. 4). Few data were available on

<table>
<thead>
<tr>
<th>Species</th>
<th>Origin</th>
<th>n</th>
<th>Host</th>
<th>Reference</th>
<th>Size</th>
<th>N:C</th>
<th>NM-BG</th>
<th>TGN</th>
<th>INS</th>
<th>Haplosporosomes</th>
<th>H-LBs</th>
<th>Plasma membranes</th>
<th>Mitochondrial Lipid droplets</th>
<th>Lipid droplets profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. exitiosa</td>
<td>Australia</td>
<td>53</td>
<td>Ostrea angasi</td>
<td>Hine et al. (2001)</td>
<td>3.2 ± 0.5</td>
<td>52 ± 6</td>
<td>52</td>
<td>11</td>
<td>32</td>
<td>29 ± 17</td>
<td>148 ± 11</td>
<td>21</td>
<td>0.47 ± 0.96</td>
<td>0−3</td>
</tr>
<tr>
<td>B. exitiosa</td>
<td>Spain</td>
<td>4</td>
<td>Ostrea angasi</td>
<td>Hine et al. (2001)</td>
<td>3.2 ± 0.5</td>
<td>52 ± 6</td>
<td>52</td>
<td>11</td>
<td>32</td>
<td>29 ± 17</td>
<td>148 ± 11</td>
<td>21</td>
<td>0.47 ± 0.96</td>
<td>0−3</td>
</tr>
<tr>
<td>B. exitiosa</td>
<td>Chile</td>
<td>59</td>
<td>Ostrea chilensis</td>
<td>Hine et al. (2001)</td>
<td>3.2 ± 0.5</td>
<td>52 ± 6</td>
<td>52</td>
<td>11</td>
<td>32</td>
<td>29 ± 17</td>
<td>148 ± 11</td>
<td>21</td>
<td>0.47 ± 0.96</td>
<td>0−3</td>
</tr>
<tr>
<td>B. exitiosa</td>
<td>East USA</td>
<td>45</td>
<td>Ostrea chilensis</td>
<td>Hine et al. (2001)</td>
<td>3.2 ± 0.5</td>
<td>52 ± 6</td>
<td>52</td>
<td>11</td>
<td>32</td>
<td>29 ± 17</td>
<td>148 ± 11</td>
<td>21</td>
<td>0.47 ± 0.96</td>
<td>0−3</td>
</tr>
</tbody>
</table>

Table 1. Comparison of the uni-nucleate stage of Bonamia spp. Haplosporogenesis in this and the following tables is calculated on the number of individuals having nuclei:cytoplasmic (N:C) ratio; Prev.: prevalence; NR: not recorded; C. ariakensis; Crassostrea ariakensis. Data are means ± SD

<table>
<thead>
<tr>
<th>Species</th>
<th>Origin</th>
<th>n</th>
<th>Host</th>
<th>Reference</th>
<th>Size</th>
<th>N:C</th>
<th>NM-BG</th>
<th>TGN</th>
<th>INS</th>
<th>Haplosporosomes</th>
<th>H-LBs</th>
<th>Plasma membranes</th>
<th>Mitochondrial Lipid droplets</th>
<th>Lipid droplets profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. exitiosa</td>
<td>Australia</td>
<td>53</td>
<td>Ostrea angasi</td>
<td>Pichot et al. (1979)</td>
<td>2.1 ± 0.4</td>
<td>55 ± 7</td>
<td>14</td>
<td>27</td>
<td>0</td>
<td>9.4</td>
<td>0.4</td>
<td>0−1</td>
<td>0−4</td>
<td>0.4 ± 0.6</td>
</tr>
<tr>
<td>B. exitiosa</td>
<td>New Zealand</td>
<td>60</td>
<td>Ostrea chilensis</td>
<td>Hine et al. (2001)</td>
<td>3.2 ± 0.5</td>
<td>52 ± 6</td>
<td>52</td>
<td>32</td>
<td>5</td>
<td>29 ± 17</td>
<td>148 ± 11</td>
<td>21</td>
<td>0.47 ± 0.96</td>
<td>0−3</td>
</tr>
<tr>
<td>B. exitiosa</td>
<td>East USA</td>
<td>45</td>
<td>Ostrea chilensis</td>
<td>Hine et al. (2001)</td>
<td>3.2 ± 0.5</td>
<td>52 ± 6</td>
<td>52</td>
<td>32</td>
<td>5</td>
<td>29 ± 17</td>
<td>148 ± 11</td>
<td>21</td>
<td>0.47 ± 0.96</td>
<td>0−3</td>
</tr>
<tr>
<td>B. exitiosa</td>
<td>South Africa</td>
<td>59</td>
<td>Ostrea chilensis</td>
<td>Hine et al. (2001)</td>
<td>3.2 ± 0.5</td>
<td>52 ± 6</td>
<td>52</td>
<td>32</td>
<td>5</td>
<td>29 ± 17</td>
<td>148 ± 11</td>
<td>21</td>
<td>0.47 ± 0.96</td>
<td>0−3</td>
</tr>
</tbody>
</table>

Table 2. Comparison of the uni-nucleate stage of the 3 described Bonamia spp. NM-BG: nuclear membrane-bound Golgi; TGN: trans-Golgi network; INS: indentations in the nuclear surface; H-LBs: haplosporosome-like bodies; size: length x width; N:C: nucleus:cytoplasm ratio; Prev.: prevalence; NR: not recorded; C. ariakensis; Crassostrea ariakensis. Data are means ± SD

Hine et al.: Bonamia spp. ultrastructure

57
Table 3. Comparison of bi-nucleate and diplokaryotic stages of *Bonamia* spp. NM-BG: nuclear membrane-bound Golgi; TGN: trans-Golgi network; INS: indentations in the nuclear surface; H-LBs: haplosporosome-like bodies; N:C: nucleus:cytoplasm ratio; Prev.: prevalence

<table>
<thead>
<tr>
<th>Species</th>
<th>Origin</th>
<th>n</th>
<th>Stage</th>
<th>Size (µm²)</th>
<th>N-C (%)</th>
<th>Haplosporogenesis (%)</th>
<th>TGN (%)</th>
<th>INS (%)</th>
<th>No. of haplosporosomes</th>
<th>Mitochondrial profiles (%)</th>
<th>Lipid droplets (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. exitiosa</td>
<td>New Zealand</td>
<td>5</td>
<td>Bi-nucleate</td>
<td>3.5–3.9</td>
<td>86–81</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>B. exitiosa</td>
<td>Argentina</td>
<td>5</td>
<td>Bi-nucleate</td>
<td>3.5–3.9</td>
<td>73–76</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>B. exitiosa</td>
<td>East USA</td>
<td>3</td>
<td>Bi-nucleate</td>
<td>2.6–3.4</td>
<td>60–79</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Bonamia sp.</td>
<td>Chile</td>
<td>6</td>
<td>Bi-nucleate</td>
<td>2.4–3.7</td>
<td>75–92</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>B. ostreae</td>
<td>New Zealand</td>
<td>5</td>
<td>Bi-nucleate</td>
<td>2.0–2.6</td>
<td>84–94</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 4. Comparison of ultrastructural features of *Bonamia* spp. in relation to size groups. Data are means ± SD. Prev.: prevalence

<table>
<thead>
<tr>
<th>Size group (µm)</th>
<th>No. of haplosporosomes</th>
<th>Mitochondrial profiles</th>
<th>Lipid droplets</th>
<th>Prev. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. exitiosa from New Zealand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6–3.0</td>
<td>40</td>
<td>30 ± 21</td>
<td>4.4 ± 0.9</td>
<td>0.4 ± 0.9</td>
</tr>
<tr>
<td>3.1–4.0</td>
<td>56</td>
<td>27 ± 14</td>
<td>4.0 ± 1.3</td>
<td>0.7 ± 0.9</td>
</tr>
<tr>
<td>4.1–5.0</td>
<td>82</td>
<td>63 ± 23</td>
<td>8.2 ± 4.6</td>
<td>1.3 ± 1.4</td>
</tr>
<tr>
<td>B. exitiosa from Argentina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6–3.0</td>
<td>71</td>
<td>14 ± 4</td>
<td>4 ± 1</td>
<td>0.3 ± 0.7</td>
</tr>
<tr>
<td>3.1–4.0</td>
<td>50</td>
<td>19 ± 10</td>
<td>4 ± 1</td>
<td>0.5 ± 1.2</td>
</tr>
<tr>
<td>B. exitiosa from Crassostrea ariakensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1–2.5</td>
<td>17</td>
<td>18 ± 10</td>
<td>3.1 ± 1.2</td>
<td>0.9 ± 1.0</td>
</tr>
<tr>
<td>2.6–3.0</td>
<td>9</td>
<td>11 ± 6</td>
<td>5.2 ± 1.1</td>
<td>1.4 ± 1.3</td>
</tr>
<tr>
<td>B. ostreae from Chile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6–2.0</td>
<td>55</td>
<td>11 ± 7</td>
<td>1.8 ± 1.3</td>
<td>0.2 ± 0.4</td>
</tr>
<tr>
<td>2.1–2.5</td>
<td>38</td>
<td>12 ± 5</td>
<td>1.9 ± 1.0</td>
<td>0.3 ± 0.5</td>
</tr>
<tr>
<td>2.6–3.0</td>
<td>100</td>
<td>20 ± 4</td>
<td>2.5 ± 1.7</td>
<td>½ ± 0.5</td>
</tr>
<tr>
<td>B. ostreae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6–2.0</td>
<td>27</td>
<td>7.7 ± 3.0</td>
<td>1.3 ± 1.2</td>
<td>0.3 ± 0.5</td>
</tr>
<tr>
<td>2.1–2.5</td>
<td>33</td>
<td>9.8 ± 4.8</td>
<td>1.5 ± 1.0</td>
<td>0.2 ± 0.4</td>
</tr>
<tr>
<td>2.6–3.0</td>
<td>50</td>
<td>12.8 ± 4.8</td>
<td>1.5 ± 1.0</td>
<td>0.8 ± 1.0</td>
</tr>
</tbody>
</table>

diplokaryotic and bi-nucleate forms because of the difficulty in getting central sections through both nuclei (Table 3). The diplokaryon of NZ *B. exitiosa* was similar in size to the bi-nucleate forms in Argentinian oysters, but had a higher N:C ratio, haplosporogenesis and lipid droplets. Haplosporosome numbers were higher in NZ and Argentinian *B. exitiosa* and Chilean *Bonamia* sp. than in *B. ostreae*, but haplosporogenesis was more prevalent in NZ *B. exitiosa* than in the other species, which showed similar levels of haplosporogenesis (Table 3).

With increase in size, each *Bonamia* showed a general increase in haplosporogenesis, number of mitochondrial profiles and lipid, except in Argentinian *B. exitiosa* and *B. exitiosa* from *C. ariakensis* (Table 4). The size groups of *B. exitiosa* in *C. ariakensis*, and more so Chilean *Bonamia* sp. and *B. ostreae*, were smaller than those of Argentinian and NZ *B. exitiosa*. In relation to seasonal differences, *Bonamia* from *O. chilensis* in NZ and Chile sampled at different times of the year showed that while NZ *B. exitiosa* showed a great increase in all parameters, Chilean *Bonamia* showed the same trend, but less so (Table 5).

Table 5. Comparison of *Bonamia* infecting *Ostrea chilensis* in New Zealand and Chile in relation to season. Data are means ± SD. Prev.: prevalence

<table>
<thead>
<tr>
<th>Date</th>
<th>n</th>
<th>Size (µm²)</th>
<th>Haplosporogenesis at Golgi (%)</th>
<th>No. of haplosporosomes</th>
<th>Mitochondrial profiles</th>
<th>Lipid droplets</th>
<th>Prev. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 1987</td>
<td>106</td>
<td>3.1 ± 0.4</td>
<td>39</td>
<td>15 ± 7</td>
<td>3 ± 2</td>
<td>0.7 ± 0.9</td>
<td>44</td>
</tr>
<tr>
<td>Apr 1990</td>
<td>61</td>
<td>3.0 ± 0.4</td>
<td>44</td>
<td>21 ± 9</td>
<td>4 ± 2</td>
<td>1.1 ± 1.5</td>
<td>56</td>
</tr>
<tr>
<td>Jun–Jul 1990</td>
<td>109</td>
<td>3.5 ± 0.7</td>
<td>85</td>
<td>37 ± 18</td>
<td>7 ± 3</td>
<td>1.1 ± 0.5</td>
<td>48</td>
</tr>
<tr>
<td>Aug 1990</td>
<td>147</td>
<td>4.3 ± 0.6</td>
<td>82</td>
<td>58 ± 24</td>
<td>9 ± 4</td>
<td>2.1 ± 2.0</td>
<td>73</td>
</tr>
<tr>
<td>Chile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 2005</td>
<td>11</td>
<td>2.0 ± 0.3</td>
<td>36</td>
<td>12 ± 7</td>
<td>2 ± 1</td>
<td>0.3 ± 0.5</td>
<td>22</td>
</tr>
<tr>
<td>Apr 2005</td>
<td>24</td>
<td>2.2 ± 0.5</td>
<td>36</td>
<td>13 ± 5</td>
<td>1 ± 1</td>
<td>0.3 ± 0.6</td>
<td>28</td>
</tr>
<tr>
<td>May 2005</td>
<td>20</td>
<td>2.2 ± 0.4</td>
<td>59</td>
<td>11 ± 6</td>
<td>2 ± 1</td>
<td>0.2 ± 0.4</td>
<td>15</td>
</tr>
<tr>
<td>Jul 2005</td>
<td>49</td>
<td>2.2 ± 0.7</td>
<td>43</td>
<td>16 ± 7</td>
<td>3 ± 2</td>
<td>0.4 ± 0.9</td>
<td>30</td>
</tr>
<tr>
<td>Aug 2005</td>
<td>10</td>
<td>2.4 ± 0.6</td>
<td>Poor fixation</td>
<td>Poor fixation</td>
<td>Poor fixation</td>
<td>Poor fixation</td>
<td>Poor fixation</td>
</tr>
</tbody>
</table>
DISCUSSION

The problem with comparative ultrastructural studies on congeneric undescribed species, as in molecular studies showing DNA sequence divergence among such species, is deciding how much difference constitutes a separate species. While molecular studies reveal genotypes and are quantifiable in base transitions, ultrastructural studies reveal phenotypes which may be subject to many variables. These include host factors such as the species concerned, its age, physiological state, reproductive state and the presence of other infections (Hine 2002), environmental factors such as water temperature and salinity (Audemard et al. 2008, Carnegie et al. 2008), and methods of sam-

Fig. 1. Uni-nucleate stages of Bonamia exitiosa in (A) Ostrea edulis from Spain and (B) Crassostrea ariakensis from the USA. Host haemocyte cytoplasm indicated in both cases (H) to mark the exterior of the B. exitiosa cells. Note the widely varying abundance of haplosporosomes (arrows), and the parallel arrays of smooth endoplasmic reticulum (arrow-head) in (A). Both scale bars = 1 µm

Fig. 2. Bonamia ostreae uni-nucleate stages in Ostrea edulis. (A) Low-power image of 2 cells infecting a single haemocyte. Note the displacement of B. ostreae nucleus to cell periphery, a common observation and distinct trait of this Bonamia species. Note also an extracellular haplosporosome (arrow), present along with numerous cytoplasmic haplosporosomes. Scale bar = 1 µm. (B) High-power image of a single B. ostreae cell. Note again the abundant haplosporosomes, with smooth endoplasmic reticulum also displayed along with an intranuclear microtubule (arrow). Scale bar = 0.5 µm
pling, fixation and post-fixation. Parasite factors, such as the stages present at the time of sampling, which may be seasonal (Hine 1991a,b), the physiological state of the parasite and possible plasticity of life cycles, have also to be considered. In the latter case, although a spore stage is not known for *Bonamia exitiosa*, it does not necessarily mean that spores may not be formed under certain environmental conditions.

Interpretation of the ultrastructural features of *Bonamia* spp. must take these variables into account. These features fall into 3 groups: parasite metabolism, haplosporogenesis, and sporogony, the latter only being known in *B. perspora*. The metabolic state of the parasite is indicated by the mitochondria, lipid droplets and endoplasmic reticulum, which are most obvious in the development from a small intracellular uni-nucleate early stage to the large extracellular amoeboid feeding stage with large amounts of lipid, mitochondria and parallel arrays of endoplasmic reticulum in NZ *B. exitiosa* (see Hine & Wesney 1994a). High lipid content was linked to season and development in the lipid-rich ovary in autumn to early winter (April to June; Hine 1991b). Seasonal annual development may also be linked to temperature in *C. ariakensis* infections (Carnegie et al. 2008). The production of lipid vesicles from, and acid hydrolases in, lipid droplets are associated with formation of a parasitophorous vacuole (PV; Hine & Wesney 1994b), and 36% of *Bonamia* sp. in *Crassostrea ariakensis* were in PVs. Therefore, features reflecting metabolism are of little taxonomic value unless multiple variables are taken into account.

The taxonomic significance of haplosporogenesis, as indicated by NM-BG, TGN, INS, perinuclear granular material, and H-LBs (Hine & Wesney 1992), is difficult to assess, as the function of haplosporosomes is unknown. Whilst it has been suggested that their glycoprotein coat and putative DNA core resembles the structure of viruses, their release associated with lysis of surrounding cells suggests a lytic function (Hine et al. 2002), but subsequent re-entry of cores in

Fig. 3. Vegetative stages of *Bonamia perspora* in *Ostrea stentina* from the USA. (A) Uni-nucleate stage. (B) Small trinucleate plasmodium. Note the abundant mitochondria, particularly closely apposed to the nucleus in (A), the long stretch of endoplasmic reticulum head (arrows) in (B), and the general paucity of haplosporosomes. Dark bodies in (A) are lipid bodies. Both scale bars = 1 µm.

Fig. 4. Prespore of *Bonamia perspora* in *Ostrea stentina* from the USA. Note the developing wall (arrow), with epispore cytoplasm (ES) still present, and the well-defined lid (L), nucleus (N) and spherule (S). Scale bar = 1 µm.
a haplosporidian infecting abalone (Hine et al. 2002) could represent horizontal gene transfer (Keeling & Palmer 2008). The size and shape of haplosporosomes may be taxonomically important, but their plasticity in size and shape in relation to fixation is unknown. However, as haplosporosomes are the only structures quantifiable in size and number, they may be taxonomically important. If so, the uni-nucleate stages of NZ, Australian, C. ariakensis, Argentinian and Spanish B. exitiosa, and Chilean Bonamia are distinct from B. ostreae and B. perspora. These relationships are reflected in molecular phylogenies with NZ, Australian, C. ariakensis, Argentinian and European B. exitiosa closely related to the Chilean Bonamia (Hill et al. 2014, this DAO Special). Therefore, haplosporosome shape and size may be taxonomically important, but not haplosporosome number, as that is related to the size or developmental stage of the parasite. However, studies on Martellia spp. (Paramyxidea) (Villalba et al. 1993, Longshaw et al. 2001) suggest that haplosporosome shape and size may not be reliable as a taxonomic feature. Also, asporous Bonamia spp. are usually uni-nucleate and may be confused with the uni-nucleate stage of other haplosporidians, but most haplosporidian TEM studies have been on sporulation and the uni-nucleate stage is rarely described. The intra-haemocytic location of asporous Bonamia spp. is also unreliable because the vegetative stages of other haplosporidians may be phagocytosed by host haemocytes.

Uni-, bi- and multi-nucleate stages are known from C. ariakensis and probably Argentinian and Spanish B. exitiosa, and visually they were indistinguishable from each other and Australian B. exitiosa. Chilean Bonamia could be distinguished by the more osmiophilic membranes and NM-BG, but this could have been due to fixation and/or processing. NZ B. exitiosa also has a diplokaryotic stage, as does B. perspora, and the diplokaryon is a feature of multi-nucleate plasmodia of spore-forming haplosporidians, such as Urosporidium crescents, Haplosporidium louisiana, H. nelsoni and H. costale (Hine et al. 2009). Large NZ B. exitiosa in autumn and winter also contain cylindrical confronting cisternae (Hine & Wesney 1992), as do Chilean Bonamia (Lohrmann et al. 2009), which have been attributed to an underlying viral infection (Hine & Wesney 1992). As the NZ and Chilean Bonamia infect the same host (O. chilensis), but Chilean Bonamia are smaller with fewer, smaller haplosporosomes (Tables 1 & 2), Chilean Bonamia may have derived from NZ B. exitiosa but have been geographically isolated for sufficient time for the Chilean Bonamia to emerge as a distinct species. The Bonamia from Australia (Corbeil et al. 2006), C. ariakensis (see Carnegie et al. 2006), Chile (Balseiro et al. 2006) and Spain (Abollo et al. 2008) have all been reported as B. exitiosa, but ultrastructurally, the Chilean Bonamia is similar to, but different from, B. exitiosa. Ultrastructure supports the identification of Australian, C. ariakensis, Argentinian and Spanish forms as B. exitiosa, as in molecular phylogenies (Hill et al. 2010, 2014). They appear more similar to each other in the cycling of uni-nucleate and bi-nucleate stages, than to the multiple forms of NZ B. exitiosa, but this may be due to the smaller sample sizes taken on only 1 occasion. There is a possibility, however, that the type species, NZ B. exitiosa, is atypical of the species, or that it has an underlying viral infection indicated by its ultrastructure (Hine & Wesney 1992).

When studying phenotypic traits of an intracellular protozoan parasite, it is necessary to consider that the ultrastructure observed may be mediated by the host, as is histopathology, and possibly life cycles. Organisms are parsimonious and do not evolve to produce forms or stages that are of no benefit or waste energy reserves. Bonamia spp. may simply normally cycle through uni-nucleate and bi-nucleate stages, as seen in B. ostreae and the C. ariakensis, Argentinian and Spanish B. exitiosa. NZ B. exitiosa targets abundant host ovarian lipids during the female O. chilensis spawning cycle, to form a large actively feeding uni-nucleate stage not reported from elsewhere. NZ B. exitiosa also forms diplokarya which are only known from spore-forming species, and therefore NZ B. exitiosa may sporulate as a survival strategy under limiting conditions, suggesting that Bonamia spp. may have plastic life cycles. For example, the spore-forming species H. armoricanum may be able to go through its life cycle without sporulating, as suggested by the large plasmodia but absence of spores in O. edulis from St Philibert, Brittany (Brehelin et al. 1982, Vivarès et al. 1982, Bonami et al. 1983).

In conclusion, the interpretation of ultrastructure has to take into account multiple variables mediated by the parasite, the host and the environment. While this study on ultrastructure supports molecular phylogenies in that B. exitiosa is ultrastructurally distinct from B. ostreae and B. perspora, it shows considerable variability in the ultrastructure of B. exitiosa in different host species. These phenotypic differences reflect not only the Bonamia species concerned, but also the inter-relationships of the parasites with their hosts and the circumstances under which they were fixed, and variables in fixation. In comparison with the precise genotypic characterisation of organisms in molecular phylogenies, TEM studies are impre-
cise, and because of the many variables affecting the parasite, they are not often useful in identifying species. The ultrastructure of the Chilean Bonamia, in particular, does not adequately distinguish it from NZ B. exitiosa. However, while molecular studies can be used to classify the parasite and establish its phylogenetic affinities, they give no information on the structure of the parasite, its developmental stage, physiological state and its interactions with the host. Diagnosis should combine molecular techniques with, in the case of protists, ultrastructural characterisation. The latter must identify ultrastructural features of taxonomic, rather than physiological or developmental, importance. Consequently, for spore-forming haplosporidians, spore structure is most useful, but there is less certainty regarding non-sporous or pre-sporous stages.

Acknowledgements. This study was partially funded by grant PICT-2007-1338 (ANPCyT-Argentina). This is Virginia Institute of Marine Science contribution number 3385.

LITERATURE CITED

Berthe FCJ, Hine PM (2003) Bonamia exitiosa Hine et al., 2001 is proposed instead of B. exitiosus as the valid name of Bonamia sp. infecting flat oysters Ostrea chilensis in New Zealand. Dis Aquat Org 57:181

Carnegie RB, Hill KM, Stokes NA, Burreson EM (2014) The haplosporidian Bonamia exitiosa is present in Australia, but the identity of the parasite described as Bonamia (formerly Mikrocytos) roughleyi is uncertain. J Invertebr Pathol 115:33−40

Elston RA, Wolf PH, Elston RA (1988) A long-term study of 'microcell' disease in oysters with a description of a new genus, Mikrocytos (g.n.) and two new species, Mikrocytos mackini (sp.n.) and Mikrocytos roughleyi (sp.n.). Fish Bull 86:581−593

Hine PM (1991a) Ultrastructural observations on the annual infection pattern of Bonamia sp. in flat oysters Tiostrea chilensis. Dis Aquat Org 11:163−171

Hine PM (1991b) The annual pattern of infection by Bonamia sp. in New Zealand flat oysters, Tiostrea chilensis. Aquaculture 93:241−251

Hine PM (1992) Ultrastructural and enzyme cytochemical observations on Bonamia sp. in oysters Tiostrea chilensis, with a consideration of organelle function. Aquaculture 107:175−183

Lohmann KB, Hine PM, Campalans M (2009) Ultrastructure of Bonamia sp. in Ostrea chilensis in Chile. Dis Aquat Org 85:199−208

Lyons SA, Abollo E, Ramilo A, Cao A, Culloty SC, Villalba A (2010) Observations raise the question if the Pacific oyster, Crassostrea gigas, can act as either a carrier or a reservoir for Bonamia ostreae or Bonamia exitiosa. Parasitology 137:1515−1526

Narcisi V, Arzul I, Carqini D, Mosca F and others (2010) Detection of Bonamia ostreae and B. exitiosa (Haplosporidia) in Ostrea edulis from the Adriatic Sea (Italy). Dis Aquat Org 89:79−85

Submitted: April 4, 2013; Accepted: March 20, 2014

Proofs received from author(s): July 11, 2014

Editorial responsibility: Stephen Feist, Weymouth, UK