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1.  INTRODUCTION

Quick, cost-efficient and effective methods for
detecting pathogens are needed across human, plant
and wildlife disease systems. Techniques for detect-
ing organisms, including pathogens, often involve
quantitative polymerase chain reaction (qPCR), a
highly sensitive technique, on extracted sample
DNA. In recent years, qPCR has been the method of
choice and has been shown to be a highly sensitive
technique for detection of important amphibian
pathogens (Boyle et al. 2004, Blooi et al. 2013). These

pathogens, namely Batrachochytrium dendrobatidis
and B. salamandrivorans (Bd and Bsal), are a cause of
global losses in amphibian diversity and shifting eco-
systems, making early detection as well as continu-
ous monitoring important endeavors (Weldon et al.
2013, Gray et al. 2015, Waddle et al. 2020). Further-
more, teasing apart transmission dynamics and
building robust models from pathogen load data can
shape our understanding of infection and disease
dynamics (Wilber et al. 2017).

For amphibians, water bath samples have been
used for various purposes, including estimation of
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ABSTRACT: Detecting and quantifying pathogens with quick, cost-efficient and sensitive methods
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methods rely on extracting DNA from collected samples. Here we develop and test an extraction-
free method from water bath samples that is both sensitive and efficient for 2 major amphibian
pathogens — Batrachochytrium dendrobatidis and B. salamandrivorans. We tested mock samples
with known pathogen quantities as well as comparatively assessed detection from skin swabs and
water baths from field sampled amphibians. Quantitative PCR (qPCR) directly on lyophilized water
baths was able to reliably detect low loads of 10 and 1 zoospores for both pathogens, and detection
rates were greater than those of swabs from field samples. Further concentration of samples did not
improve detection, and collection container type did not influence pathogen load estimates. This
method of lyophilization (i.e. freeze-drying) followed by direct qPCR offers an effective and effi-
cient tool from detecting amphibian pathogens, which is crucial for surveillance efforts and estimat-
ing shedding rates for robust epidemiological understanding of transmission dynamics. Further-
more, water bath samples have multiple functions and can be used to evaluate mucosal function
against pathogens and characterize mucosal components. The multifunctionality of water bath
samples and reduced monetary costs and time expenditures make this method an optimal tool for
amphibian disease research and may also prove to be useful in other wildlife disease systems.
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pathogen shedding rates (Hyatt et al. 2007) as well as
evaluating mucosal function as an assay for protec-
tiveness of skin secretions and proxy for host suscep-
tibility (Woodhams et al. 2014, Smith et al. 2018). For
shedding rates, qPCR is typically performed on DNA
extracted from filters of water that previously housed
an amphibian host (Reeder et al. 2012, DiRenzo et al.
2014). DNA extraction has been seen as an essential
step for performing qPCR as it lyses cells to expose
the genomic DNA and purifies the DNA by removing
cell debris and other components that can inhibit the
qPCR reactions. Extraction methods with the highest
efficiency and purity can be expensive and time-con-
suming while quick methods can often fail to detect
low pathogen loads (i.e. have low sensitivity) (Bletz
et al. 2015, Brannelly et al. 2020) or inhibit PCR
(PrepMan; Boyle et al. 2004).

Mucosal function assays have employed lyophili -
zation of samples to concentrate skin secretions and
evaluate their potential to inhibit or kill pathogen
cells. Lyophilization is a process that sublimates
water from frozen samples, i.e. freeze drying, and
requires a standard piece of equipment found in
most chemistry or biology departments. This process
has the potential to lyse cells or minimize the
integrity of cell membrane/walls, and therefore, may
make sample DNA available for PCR amplification
without formal DNA extraction protocols. Likewise,
PCR thermo-cycling can also lyse cells making DNA
accessible (Flores et al. 2012, Videvall et al. 2017);
therefore, lyophilization coupled with PCR thermo-
cycling has the potential to amplify target DNA and
allow for detection and quantification of pathogen
loads.

Here we develop and test an extraction-free patho-
gen detection method from water baths by (1) evalu-
ating efficiency and sensitivity of pathogen detection
from mock water baths to which we added known
concentrations of Bd and Bsal zoospores, (2) compar-
ing pathogen quantity estimates from water bath col-
lections in plastic and glass given the surface adher-
ence noted in Hyatt et al. (2007), and (3) assessing Bd
detection across skin swab and water bath samples
from field sampled amphibians given the standard
use of swabs in amphibian disease research. It is
essential to have a method with high efficiency and
sensitivity in order to accurately determine the pres-
ence and intensity of the chytrid fungus. Low effi-
ciency and sensitivity could result in false negatives,
which can have important consequences for amphib-
ian conservation and disease mitigation decisions
and inaccurate modelling of infection and transmis-
sion dynamics in natural systems. 

2.  MATERIALS AND METHODS

2.1.  Sample preparation and collection

Mock water bath samples of ~12 ml of artificial
pond water (e.g. Provasoli following Wyngaard &
Chinnappa 1982; recipe details in Robinson et al.
2020) were prepared and spiked with a dilution series
of 1 × 106 to 1 × 100 Bd and Bsal zoospores to mimic
mucosome baths used for mucosal function assays
and 1 h shedding rate bath collections. Five replicates
of each spike-in dose were prepared (n = 35), in addi-
tion to 5 negative controls containing only artificial
pond water. Bd (JEL 423) and Bsal (AMFP 13/1) were
maintained in 1% tryptone broth. Bd zoospores were
harvested from tryptone agar plates that were seeded
with 1 ml of 3−5 d old liquid cultures, and Bsal zoo-
spores were harvested from synchronized liquid cul-
tures (Robinson et al. 2020). Artificial pond water was
used for harvesting both pathogens. Harvested zoo-
spores were subsequently counted on a hemocytome-
ter with 4 replicate counts by 3 individuals. Dilutions
of 106−100 zoospores were prepared in artificial pond
water so 1 ml of prepared zoospore solutions could be
added to the mock water baths to obtain the target
spike in amounts. Samples were then frozen in 15 ml
conical tubes at −80°C, lyophilized, and rehydrated in
1 ml sterile Milli-Q water. For lyophilization, 15 ml
tubes (HDPE, CellTreat # 229411) were uncapped,
covered with para film, and made porous by pricking
3−5 holes in the parafilm to allow sublimation while
also protecting the sample contents. The lyophilizing
procedure was carried out on a LabConco FreezeZone
2.5 l Benchtop System; the temperature was −85°C
and the pressure was 0.006 mBar.

Additionally, 6 field water bath samples (collection
methods followed field procedure outlined below)
from swab-positive leopard frogs were processed to
demonstrate if detection occurs from ‘complex’ sam-
ples containing amphibian secretions. Initial rehy-
dration was performed in a ‘concentrated’ form
where a smaller volume of 100 µl was used to see if
detection increased or was hindered by concentra-
tion. (See ’Supplementary methods’ and ’Supple-
mentary results’ in the Supplement for more details;
www. int-res. com/ articles/ suppl/ d146 p081 _ supp. pdf).
Samples were subsequently diluted 1:10 in MilliQ
water to equate to adding 1 ml to the lyophilized
sample, which is standard for mucosome function
testing from water bath samples.

An additional trial was performed to determine if
completion of 1 h water baths in plastic (e.g. Whirl-
Paks) versus glass jars affected qPCR detection esti-
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mates. To test this, Bsal zoospores were quantified
using 4 replicate counts on a hemocytometer, and
1000 Bsal zoospores were spiked into 12 ml of artifi-
cial pond water in both Whirl-Pak bags and Pyrex
glass containers. Seven replicates of Bsal spike-in
samples and 3 controls containing only 12 ml of arti-
ficial pond water were prepared in each container
type (total N = 20) and incubated for 1 h. After 1 h,
mock baths were transferred to 15 ml plastic conical
tubes, frozen, lyophilized, and rehydrated in 1 ml of
sterile Milli-Q water.

Lastly, we compiled data from 313 field-collected
1 h skin washes and skin swabs to assess whether
skin wash and swab values mirror each other. Post-
metamorphic leopard frogs (Lithobates [Rana] pipi-
ens, n = 105; L. sphenocephalus, n = 167; L. blairi, n =
41) were sampled in rural ponds and surrounding
habitats at 5 locations including Vermont, Pennsylva-
nia, Tennessee, Louisiana, and New Mexico, USA,
between February and November of 2017. Sampled
leopard frogs ranged from 0.8−83.0 g in mass (mea-
sured using a Pesola scale). Individuals were first
swabbed following Hyatt et al. (2007) with rayon-
tipped swabs (Medical Wire, MW113). Fresh, clean
pairs of gloves were used for each individual to avoid
cross contamination. Swabs were stored in 1.5 ml
tubes. Subsequently, 1 h water baths were collected
by bathing the frog in 15 ml of artificial pond water in
sterile Whirl-Pak bags. Three water bath controls
were taken during field sampling where the sam-
pling procedure was completed without an amphib-
ian being placed in the bag. After the bath, washes
were transferred to 15 or 50 ml conical tubes for stor-
age. Both swabs and washes were stored on ice until
access to a –20 or –80°C freezer was possible.

2.2.  Molecular methods

For all water bath samples, Bd/Bsal qPCR duplex
reactions that amplify the internal transcribed spacer
(ITS) region were run directly on the rehydrated
samples following Blooi et al. (2013). For swab sam-
ples, DNA was first extracted using a Qiagen Blood
and Tissue Kit following the manufacturer’s protocol
for animal tissue with one modification of a double
elution step to increase total DNA yield (final vol. =
200 µl). For all qPCR reactions (bath and swab
extracts) 5 µl of DNA was added to the reactions. For
mock water bath samples, AzuraQuant Probe Fast
qPCR Mix (2X), and all qPCR reactions were per-
formed in duplicate (or triplicate in some cases) on a
BioRAD CFX machine. gBLOCK standards were

used to estimate ITS copies of both Bd and Bsal in
samples (Standish et al. 2018). Samples were consid-
ered positive when at least 2 qPCR replicates had a
positive amplification signal with typical amplifica-
tion curves. Estimated copies from the qPCR were
adjusted to represent total sample volume; that is, we
divided by 5 to get a per µl estimate and then multi-
plied the estimate by 200 to account for total extrac-
tion volume from swab samples or by 1000 to account
for total rehydration volume of 1 ml for water bath
samples.

For the field samples, the same duplex reaction
protocol was followed (Blooi et al. 2013), except
bovine serum albumin (final concentration 400 ng
µl−1, 1 µl in 25 µl reaction; Garland et al. 2010) was
added to each sample to minimize potential inhibi-
tion. SensiFAST Probe Lo-ROX qPCR Mix (2X) was
used for these samples. An internal positive control
(IPC) (Hyatt et al. 2007) was also included in each
sample to allow for evaluation of inhibition within
qPCR reactions. Ten water bath samples were re-run
at a 1:10 dilution due to IPC-detected inhibition.
Standards consisted of a 7-fold dilution series of plas-
mid-based Bd and Bsal sequences (4.2 × 106 − 4.2
plasmid copies µl−1; Pisces Molecular). These 313
field samples are part of another ongoing study, and
each swab extract and field water bath was tested in
singlicate to maximize cost efficiency (Kriger et al.
2006). Estimated loads from the qPCR were adjusted
to represent total extraction and rehydration volume
for swabs and baths, respectively, as described
above. All swab extraction controls, field water bath
controls, and qPCR negative controls were negative
for Bd and Bsal.

2.3.  Data analysis

All statistical analyses and plot generation were
completed in R v4.0.2 (R Core Team 2020). The pro-
portion of samples with positive detections was cal-
culated across the spiked water bath samples for Bd
and Bsal as well as the field samples in the standard
and concentrated preparations. Fisher’s exact tests
and generalized linear models (GLM) with a bino-
mial distribution were used to analyze detection (i.e.
presence/absence). Estimated ITS copies were com-
pared using linear models (LM) and Kruskal-Wallis
(KW) tests depending on data distributions. Addition-
ally, Kendall-tau correlations were calculated across
the dilution series of both pathogens as well as for the
standard and concentrated spike-in samples. Corre-
lations were also calculated between swab and water
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bath estimates from field-collected samples. Detec-
tion rates of swabs and water baths were calculated
from the field-collected samples, and Bayes theorem
was used to calculate conditional probabilities.

3.  RESULTS

3.1.  Direct qPCR from water baths exhibits high
sensitivity

Detection from direct lyophilized mock water baths
occurred in 5/5 samples for both Bd and Bsal for the
106−102 spike-in doses. Detection was 4/5 and 3/5 at
the 10 zoospore spike in and 4/5 and 1/5 at the 1 zoo-
spore spike in for Bd and Bsal, respectively (Fig. 1).
All negative control bath samples were negative for
Bd/Bsal in qPCR. Detection did not differ from 100%
across doses for Bd and only dropped significantly for
Bsal at the 100 spike-in dose (Fisher’s exact: p =
0.048). Detection did not significantly differ between
Bd and Bsal at spike-in doses of 106−101 (Fishers
exact: p > 0.05), but detection was significantly lower
at the 1 zoospore spike-in quantity for Bsal compared
to Bd (Fisher’s exact: p = 0.033). Furthermore, there
was a strong correlation between the number of zoo-
spores spiked into the samples and the number of
ITS copies detected via qPCR for both Bd and Bsal
(Bd — LM: log10 zoospores added, F(33,1) = 343.0, R2 =

0.91, p < 0.001; Bsal — LM: log10 zoospores added,
F(31,1) = 160.2, R2 = 0.83, p < 0.001; Fig. 1). Concen-
trated water bath samples (i.e. those rehydrated in
100 µl) minimized pathogen detection compared to
samples with the 1 ml rehydration volume and
resulted in spurious, atypical amplification curves
(see the Supplement).

3.2.  Collection container does not affect pathogen
detection

Bsal was detected in all spike-in samples from both
container types (n = 7 each), and control samples were
all negative for Bsal (n = 3 each). Estimated Bsal ITS
copies from mock water bath samples did not differ
between Whirl-Pak and glass collection jars (Whirl-
pak = 1.55 × 104 ± 2.15 × 103 [mean ± SE], glass = 1.89
× 104 ± 1.76 × 103; GLM: F1,28 = 1.28, p = 0.270).

3.3.  Water bath samples exhibit higher detection
rate than swabs

Quantitative PCR was performed on extracted
swab DNA and lyophilized water baths collected
from 313 field samples from Lithobates pipiens, L.
sphenocephalus and L. blairi. All field collected con-
trol samples (n = 3), swab extraction controls (1/ex -
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traction set) and qPCR negative controls (1/plate)
tested negative for Bd/Bsal by qPCR. Bd-ITS copy
estimates from swab extracts and water baths were
significantly correlated (Kendall: R = 0.36, p < 0.001;
KW: χ 2 = 222.4, p < 0.001, Fig. 2). Swab extracts and
water baths had matched results in 69% of the sam-
ples. A total of 134 samples were negative for Bd in
both swabs and water baths, 81 samples were posi-
tive for both swabs and water baths (i.e. matched
detection), 63 were positive only for water baths, and
35 were positive only for swab extracts. If any detec-
tion is considered true (therefore combining positive
matches, water bath only, and swab only, n = 179),
the detection rate from water baths was 80% (20%
failure rate) and 65% for swabs (35% failure rate).
Furthermore, for all species, water baths showed
higher detection rates than swabs (Table S1 in the
Supplement). Using Bayes theorem to calculated
conditional probabilities, we found that there was a
60% chance of detecting Bd from a swab if Bd was
detected in the water bath, and there was a 71%
chance of detecting Bd from the water bath if Bd was
detected on the swab. Of the samples where both
were positive (n = 81), 53 had higher ITS copy esti-
mates from water baths and 29 had higher estimates

from skin swabs. Furthermore, the average number
of estimated ITS copies from skin washes was signif-
icantly lower for samples where only the skin wash
sample detected Bd compared to samples where
both skin wash and swab detected Bd (wash only:
1.04 × 106 ± 1.02 × 106 (SE); matched: 6.24 × 105 ± 3.23
× 105 (SE); KW: χ2 = 10.032, p = 0.002).

4.  DISCUSSION

Water bath samples from amphibians are used for a
variety of purposes including mucosal function
assays (Woodhams et al. 2014, Smith et al. 2018),
pathogen detection (Shin et al. 2014), and pathogen
shedding rate (Reeder et al. 2012, DiRenzo et al.
2014). The purpose of this study was to develop and
evaluate a protocol for pathogen detection and quan-
tification from water bath samples without inclusion
of a DNA extraction step. We found that qPCR on the
directly lyophilized water bath samples rehydrated
in 1 ml of ultrapure water can not only detect 2 major
amphibian pathogens, Bd and Bsal, but can do so
with high sensitivity (i.e. detect low pathogen loads).
Furthermore, we found that the type of water bath
collection container (plastic vs glass) had no effect on
estimated pathogen loads and that ‘concentrating’
samples through rehydration in less than 1 ml
resulted in qPCR inhibition, which, at times, led to a
failure to detect the pathogens altogether. Finally, we
found that overall water bath and swab extracts cor-
related in their estimated Bd quantity, and Bayes
 theorem suggests our protocol from water bath sam-
ples may be moderately better at detecting Bd com-
pared to swabs. Collectively these results show that
our protocol for water bath samples is effective and
highly sensitive and may outperform standard swab-
bing for pathogen detection. Furthermore, this means
pathogen detection, estimate of shedding rates, and
mucosal function can be determined from a single
sample, reducing cost and combined time during
field and wet lab procedures (Table 1).

Quantitative PCR on extracted DNA is a standard
and widely used method for detection of specific
pathogens in and on host organisms. In amphibian
systems DNA extraction from skin swabs and filters
from water baths followed by qPCR have been used
for pathogen detection and shedding rate calcula-
tions from host amphibians (Reeder et al. 2012,
DiRenzo et al. 2014). Herein, we show pathogens can
be efficiently detected by our simple method of
lyophilizing (freeze-drying) collected water baths
and performing qPCR directly on the rehydrated
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products, bypassing the DNA extraction step (Fig. 3).
Both Batrachochytrium pathogens were detectable
with high sensitivity. The detection limit mirrored
that of optimal DNA extraction methods (see swab
extraction comparisons in Bletz et al. 2015 and Bran-
nelly et al. 2020) with detection only being signifi-
cantly reduced for the 1 zoospore level. This re -
duction in detection was observed for Bsal only and
not Bd. This difference may be associated with ITS
copy number differences between the pathogens,
which has been reported for different strains of Bd
(Longo et al. 2013, Rebollar et al. 2017). If Bsal has
lower copies per genome, capturing and successfully
amplifying DNA with low zoospores amounts could
be below the threshold of detection. Alternatively,
the existence of encysted spores with more robust

cell walls for Bsal (but not Bd) may also contribute to
this, given it likely makes it more difficult to access
the DNA in these more robust spores (Stegen et al.
2017).

Bypassing the extraction step can reduce both sup-
ply costs and hands-on lab time (Table 1). While
lyophilizers might not be present in every molecular
lab, it is a typical piece of equipment within biology or
chemistry departments at universities with multifunc-
tionality across fields (e.g. Rockinger et al. 2021). Mul-
tiple studies have proposed cost-saving measures at
the extraction and qPCR step through extraction pool-
ing (Hyatt et al. 2007, Sabino-Pinto et al. 2019a,b),
and singlicate qPCR (Kriger et al. 2006). For efficient
DNA extraction kits that produce high-quality, pure
DNA, costs are approximately $2.30− $3.04 USD per
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Field sampling              Water bath                                                                   Swab

Sample time                  60−75 min (60 min bath of individuals                      30−40 min for 30 individuals
                                       + transfer time) for 30 individuals

Supplies                         Collection bags, 15 ml tubes, artificial                       Collection bags, swabs, 1.5 ml tubes, ice cooler
                                       pond water, ice cooler                                               (optional)

Sample processing        15 min of hands-on time                                             2−2.5 h hands-on time
time                             (total time to obtain final DNA ‘extract’ = 48 h)        (total time to obtain final DNA ‘extract’ = 3 h)

Sample number             60 samples at a time (assuming 4 nozzle                   24 samples at a time (assuming 24 rotor
                                       benchtop lyophilizer)                                                centrifuge and single tube extractions)

Freezer space                Space for 15 ml tubes                                                  Space for 1.5 ml tubes

Cost                                $0 (USD) per sample                                                   $2.30−3.04 (USD) per sample

Equipment                     Lyophilizer, Vortex                                                      Centrifuge, Heat block, Vortex
                                       Cost: $ 18 000 + $ 350 = $ 18 350 (USD)                   Cost: $ 1800 + $ 800 + $ 350 = $ 2950 (USD)

Detection rate                80%                                                                              65%

Table 1. Comparison of water bath and swab sampling broken down by field sampling, sampling processing, and detection
rate. Cost estimates, hands-on time, and number of samples are provided. Elements of sampling and processing that are equal 

between methods are excluded (e.g. capture time, quantitative PCR, freezers)

Collection & Processing Protocol
detection of pathogens from water baths

(1) Bath amphibian in 12-15 ml of sterile artificial pond 
water within a Whirl-pak bag for 1 hr.

(2) Transfer bath solution to a 15 or 50 ml conical tube 
and freeze at –80° C.

(3) Once frozen, prepare samples by partially un-
screwing the caps to allow sublimation.  

(4) Place on lyophillizer and lyophilize until dry. 
(5) Resuspend dried sample in 1 ml of ultrapure (e.g. MilliQ) 

water, vortex ~10 sec, and centrifuge for 10 sec.  
*DO NOT use a rehydration solution with 
added salts
Optional. Transfer the 1ml to a 1.5 ml tube for 
ease of storage.

(6) Run a standard qPCR reaction with 5 µl of sample. 
of the resuspension liquid.

qPCR machine

–80°C

Sample

Freeze

Lyophilize

Rehydrate

qPCR

Lyophilizer

Fig. 3. Step by step protocol for pathogen detection from water bath method
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sample (catalog prices for IBI and Qiagen), and
hands-on lab time to complete a standard spin column
extraction is approximately 3 h (Sabino-Pinto et al.
2019a). The method tested here, therefore, is one of
the most economical and person-time efficient ap-
proaches available (Table 1). With that said, it is im-
portant to consider that for certain field sites which in-
volve traversing rough terrain on foot, carrying water
and ice packs may be challenging. Furthermore, if
pathogen surveillance is the only purpose of sampling,
it would be likely more time efficient in the field to
swab amphibians; however, it will be important to
factor in lab time and detection probability when
making method decisions.

Plastic vials and bags are commonly used for
amphibian samples; previous studies have suggested
that zoospores and cellular material can stick or
adhere to collection container surfaces (Hyatt et al.
2007). However, we found that HDPE plastic and
glass vials yielded matching results. The short dura-
tion of bath time (1 h) may reduce potential adher-
ence. This result is useful in the context of field
research where bringing large numbers of glass jars
could be cumbersome.

It is important to note that qPCR amplification and
detection was not improved by rehydrating samples
in smaller volumes (i.e. concentrating the sample by
10×). While concentrating DNA in highly pure sam-
ples can be seen as a way to increase the likelihood
of detection, in this case the opposite occurred; the
reaction was hindered. In fact, concentrating the
samples reduced detection and estimated quantities,
and caused atypical exponential curves. While no
IPC controls were run to confirm inhibition, this fail-
ure of the qPCR reactions is likely due to increased
salt concentrations (as demonstrated by nanodrop
260:230 reading less than 1.8; range of tested sam-
ples: 0.06−0.3), which interfere with the Taq poly-
merase or other components of the qPCR reaction
(Schrader et al. 2012). Water baths of amphibians are
necessarily completed in a water solution with added
ions (e.g. Provasoli, reconstituted reverse osmosis
water) to minimize interfering with the osmotic bal-
ance across sensitive amphibian skin. During lyo -
philizing, this salt and other sample contents are
dried and therefore concentrated when rehydrated.
Minimizing the rehydration volume to less than 1 ml
or rehydrating in a solution containing ions, there-
fore, can push salt concentrations to levels not suit-
able for qPCR. For baths of smaller individuals or lar-
val stages, a reduced bath volume could also help
reduce the amount of salt being rehydrated; here we
used up to 15 ml of bath water with no apparent

qPCR inhibition when rehydrated in 1 ml Milli-Q
water. Importantly, amphibians have different shapes,
sizes, and secretions; therefore, soaking and rehydra-
tion volumes may need to be validated and ad justed
depending on the study system. Further testing to
evaluate the effects of environmental conditions (e.g.
temperatures and other field conditions) that may af -
fect DNA degradation and PCR inhibition may also
be important.

Furthermore, our tested field samples did not expe-
rience significant qPCR inhibition (successful ampli-
fication of the internal standard) in either water bath
or swab samples. There were 10 water bath samples
that did show inhibition; when rerun at a 1:10 dilu-
tion, inhibition was ameliorated, and samples were
negative for Bd. We cannot exclude the possibility
that this dilution influenced the ability to detect Bd
by pushing it below the detection limit. Inhibition in
water baths could have potentially occurred due to
increased environmental debris or feces, indicating
the importance of reducing these in the bath before
freezing. Importantly, the majority of field samples
(96.8%) amplified with no inhibition, suggesting that
frog secretions are unlikely to affect detection. Con-
tinued inclusion of IPCs should be considered stan-
dard even though these data suggest inhibition is
low.

As compared to skin swabs, water bath sample col-
lection may serve as a more robust technique for
detecting amphibian pathogens, Bd and Bsal. Swab-
bing amphibians is a standard method widely used in
amphibian disease research (Hyatt et al. 2007) for
pathogen detection and quantification. While, over-
all, swabs and water bath results correlate, mirroring
results of some studies (Reeder et al. 2012, compared
to tissue in Hall et al. 2020), detection probabilities
from water baths were greater than swabs. This im -
provement in detection of Bd in water baths should
also be considered conservative, as some zoospores
that may have been added to the water bath samples
were first swabbed from the skin. This finding is sim-
ilar to that of Shin et al. (2014), who found that swabs
can also miss lower-level infections compared to
water baths. Indeed, we found that the average esti-
mated quantity from skin washes was significantly
lower for samples where only the skin wash sample
detected Bd compared to samples where both sam-
ple types showed detection, suggesting the washes
can detect lower infection loads. Our results add to
their study, showing that baths of only 1 h (vs. 12,
24 h in Shin et al. 2014) are effective and more robust
than swabs for detection. Water baths had a 15%
lower failure rate than swabs and showed no evi-
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dence of contamination from field collection or sam-
ple processing. Water baths also remove some com-
mon biases associated with swabbing, such as sur-
face area swabbed, swabbing pressure, number of
swabbing motions, and other factors (Simpkins et al.
2014). Water baths also remove the harmful effects of
swabbing delicate larvae, which can sometimes lead
to death when swabbing oral disks of tadpoles and
the thin skin of larval salamanders (authors’ pers.
obs.). We also note the importance of using artificial
pond water, rather than pure water, for bathing lar-
val amphibians sensitive to osmotic stress. Detection
from water baths may be greater than from swabs
given that shedding seems to be uneven through
time, making the prolonged sampling duration of a
water bath more likely to pick up pathogen cells
(Shin et al. 2014). Contact with water may also pro-
mote zoospore discharge. Further testing with
shorter bath durations may reveal optimal field han-
dling times for pathogen surveillance. Furthermore,
water bath samples also can provide additional data,
e.g. shedding rates and mucosal function, which can
synergize to address questions in the disease ecology
of amphibian systems. Estimating shedding rates can
add valuable information about individual amphib-
ian contributions to transmission and infection dyn -
amics (Wilber et al. 2017), and mucosal function
assays can provide crucial information on host sus-
ceptibility (Woodhams et al. 2014). Perhaps water
baths of other potential pathogen reservoir hosts,
such as crayfish (McMahon et al. 2013), will prove
useful when swabbing is not possible.

The multifunctionality of water bath samples, bet-
ter detection rates, reduced monetary costs, and
hands-on time expenditures make this method a use-
ful tool for amphibian disease research systems, and
it may also prove to be useful in other wildlife disease
systems.
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