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ABSTRACT: Capture-mark-recapture (CMR) data from Ningaloo Marine Park (NMP) in Western
Australia have recently been used to study the population dynamics of the local whale shark aggre-
gation. Because nascent research efforts at other aggregation points look to NMP as a model, further
analysis of existing modeling approaches is important. We have expanded upon previous studies of
NMP whale sharks by estimating CMR survival and recruitment rates as functions of average total
length (TL). Our analysis suggests a decline in reported values of TL coincident with marginally
increasing abundance among sharks sighted in more than one year (‘returning’) from 1995 to 2008.
We found a positive, average returning recruitment rate (A) of 1.07 yr! (0.99 to 1.15, 95 % CI); smaller
individuals contributed in larger numbers to recruitment, allowing for population growth accompa-
nied by a decline in median size. We subsequently explored intraseasonal population dynamics with
the Open Robust Design (ORD) model structure. Our best-fit model estimated modestly increasing
annual abundances between 107 (95% CI =90 to 124) and 159 (95 % CI = 127 to 190) for 2004 to 2007,
suggesting a short-term increase in total annual abundance. The ORD also estimated an average res-
idency time of 33 d (95% CI = 31 to 39) and biweekly entry profiles into the study area. Overall, our
techniques demonstrate how large aggregations of the species can be modeled to better understand
short- and long-term population trends. These results also show the direct scientific benefit from the
development of an online, collaborative data management system to increase collection of sighting
data for a rare species in conjunction with ecotourism activity.
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INTRODUCTION

Whale sharks Rhincodon typus are the world's
largest living fish and have a broad distribution in trop-
ical waters. Despite growing numbers of encounters
with the species through ecotourism, little or no infor-
mation is available on key aspects of whale shark biol-
ogy, such as age-specific growth rates, reproductive
rates, pup survival rates, and breeding habitats. The
whale shark is assessed as Vulnerable in the IUCN Red
List of Threatened Animals (IUCN 2008), but available
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reports of local population trajectories (CITES 2002,
Theberge & Dearden 2006, Bradshaw et al. 2007,
Holmberg et al. 2008) are not set within a well-under-
stood life history framework. Broader interpretation of
the status of the species, especially in the Indian
Ocean, is confounded by minimal knowledge of the
role that many unlinked sighting locations play along
poorly understood migration routes.

Whale sharks are an ideal species for new, com-
puter-assisted mark-recapture efforts supported by
pattern recognition software. The distinctive patterns
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of lines and spots on their flanks provide individual-
ized markers that can be distinguished by eye or using
available computer algorithms (Arzoumanian et al.
2005, Van Tienhoven et al. 2007). Whale shark eco-
tourism industries have been established at several ag-
gregation points, such as Ningaloo Marine Park (NMP)
in Western Australia, Mozambique, the Galapagos
Islands, the Philippines, the Maldives, the Seychelles,
Honduras, Belize, and Mexico. The integration of large
scale photo-identification with ecotourism has resulted
in increased data collection (Holmberg et al. 2008).
However, modern mark-recapture efforts have only
begun to estimate localized population trends for
whale sharks in the past several years, and resulting
population trajectory estimates are only available for a
single study site: NMP.

Two publications (Bradshaw et al. 2007, Holmberg et
al. 2008) have produced population trajectory estimates
for whale sharks at NMP using different modeling
approaches. In a mark-recapture study of 111 ind. over
the years 1992 to 2004, Bradshaw et al. (2007) presented
several modeling outcomes based on a Leslie Matrix
model. Population growth rate (A) estimates varied from
0.87 to 1.26 yr!, depending on the biological assump-
tions used in the model structure. Ten of 16 models re-
ported a decline in A for all sharks visiting NMP, with val-
ues ranging from 0.85 to 0.97. In contrast, Holmberg et
al. (2008) estimated A at 1.12 yr~! (SE = 0.06) in a capture-
mark-recapture (CMR) analysis using the Cormack-
Jolly-Seber (CJS) (Lebreton et al. 1992) and Link-Barker
Jolly-Seber (LBJS) (Link & Barker 2005) models for the
subset of sharks returning to the reef in more than one
year of the study. While not immediately contradictory,
the contrasting broader implications of the population
decline vs. population growth conclusions drawn by
these studies — which inform management practices at
NMP and potentially elsewhere —suggest the need for
more detailed analysis.

The determination of age and growth rates is impor-
tant to the study of population dynamics in elasmo-
branchs (Cailliet et al. 2006), with survival probability
likely to increase as individuals grow and predation
risk decreases. Therefore, improved population mod-
els for whale sharks might be generated by incorporat-
ing total length (TL) as a covariate (Bradshaw et al.
2007). Herein, we explore average TL as a refining
covariate to our previous study (Holmberg et al. 2008).
Analyzing CMR survival and recruitment as a function
of TL can provide insight into the size categories of
sharks contributing to population trends, ensuring that
averaged estimates are not masking underlying trends
in the dataset. The present study also examines the
applicability of the Open Robust Design (ORD) model
structure (Schwarz & Stobo 1997, Kendall & Bjorkland
2001) to whale shark population dynamics on a finer

time scale. Specifically, the ORD allows for the analysis
of intraseasonal behavior, such as residency time and
probabilities of entering and leaving the study area
within a season. The ORD can also generate annual
estimates of total abundance, providing a new look at
population size in the presence of transience.

Although whale sharks are a migratory species,
localized mark-recapture and modeling efforts con-
tinue to be a necessity. Of 1275 whale sharks collabo-
ratively tagged off Australia, Christmas Island, the
Maldives, Mozambique, the Philippines, the Sey-
chelles, Thailand, and elsewhere within the region,
only 3 have been sighted at more than one of these
study locations (ECOCEAN Whale Shark Photo-identi-
fication Library, www.whaleshark.org). None of 491
whale sharks tagged from NMP have been recorded
elsewhere, and available satellite tracks (CSIRO
Marine and Atmospheric Research, www.cmar.csiro.
au/tagging/whale/ningaloo.html) show the potential
for multiple migration routes away from the park. Until
potential relationships between aggregation points
can be established, localized population trajectories
must continue to serve as a guide to the pressures on
the species. Our new analyses provide deeper insight
into the local whale shark population trajectory at
NMP and suggest replicable model starting points for
the examination of other aggregations of the species.
In a broader context, our approach to collaborative
data collection and management for a rare marine spe-
cies using ecotourism as a means to increase available
CMR data, as well as the resulting models, may pro-
vide a template for research into other threatened spe-
cies with similar occurrence patterns.

MATERIALS AND METHODS

Study area. Our research was conducted at NMP in
Western Australia (Fig. 1). The boats and spotter
planes used daily during the annual whale shark
aggregation (March to July) at NMP provide direct
access for monitoring the study population. We limited
our study area to the northern ecotourism zone (North
Ningaloo) based out of Exmouth, after our previous
study (Holmberg et al. 2008) demonstrated that mod-
eled capture probability estimates may be confounded
when occurrence data from the northern and southern
(Coral Bay) areas are combined. This may suggest
some site-specific behavior within NMP, or it may be
an artifact of the dataset that will be resolved with sub-
sequent years of collection.

We note that the observed whale shark population
consists predominately of immature males (Meekan et
al. 2006, Holmberg et al. 2008), and throughout the
present study there was no evidence of mating activity,
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Fig. 1. Ningaloo Marine Park, Western Australia. Whale shark mark-recapture data in the present study were collected solely
out of the northern study area, North Ningaloo. Map supplied courtesy of the Western Australian Department of Environment
and Conservation

births, or deaths. Observed behavior suggests that
NMP serves primarily as a feeding station (Taylor
1996) on one or more migration routes. However, while
evidence exists for genetic linkage between popula-
tions (Castro et al. 2007), whale sharks from NMP have
not been identified at any other known aggregation
point in the Indian Ocean.

Data collection. We collected photographs and
occurrence data from over 450 individual contributors,
including the authors, the tourism community, and
local resource managers. Occurrence data included
encounter dates, estimates of total length, photographs
of relevant spot patterning and scarring, and sex. Pho-
tographs and videos used for identification of individu-
als for mark-recapture were taken in the water. The
spots along the flanks of whale sharks do not change
significantly over time for the size range of whale
sharks found at NMP (Arzoumanian et al. 2005) and
have been used to distinguish individuals in a number

of studies (Taylor 1994, Norman 1999, Arzoumanian et
al. 2005, Meekan et al. 2006, Bradshaw et al. 2007,
Holmberg et al. 2008). Two algorithms were employed
for computer-assisted photo-identification based on
spot patterning (Arzoumanian et al. 2005, Van Tien-
hoven et al. 2007), permitting rapid identification for
mark-recapture analysis.

All collected data were entered by contributors into
the online, public interface of the ECOCEAN Whale
Shark Photo-identification Library (www.whaleshark.
org). The ECOCEAN Library shares whale shark
research data and a standardized software tool suite
among participating individuals from the academic
and conservation communities. The ECOCEAN
Library also centrally houses the pattern matching
algorithms used for computer-assisted identification
and exports capture history files for the statistical mod-
els and modeling software used in the present study
(see ‘Modeling’).
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Pattern recognition algorithms. The 2 spot pattern
recognition algorithms used in the present study
(Arzoumanian et al. 2005, Van Tienhoven et al. 2007)
to identify captured individuals were independently
developed and take different approaches to pattern
comparison. The I*S algorithm presented by Van Tien-
hoven et al. (2007) measures distances between poten-
tial point matches mapped into a common space, rank-
ing matches according to a distance metric. The
smaller the metric is, the more likely that the poten-
tially matched spots correspond between images and
the greater the probability of the match. Arzoumanian
et al. (2005) present a separate methodology based on
the creation and comparison of triangles of spots to
measure the relationships between groups of poten-
tially matched spots. The comparison metric generated
increases in value as the number of triangles shared
between 2 images increases. Both algorithms were
employed for initial identifications and, following the
methodology of Arzoumanian et al. (2005), we ex-
tracted at least one properly oriented, left-side pattern
of spots, represented as x,y coordinates within the
image, for entry of a shark into the monitored popula-
tion of the present study. Recaptures were made with
the assistance of both algorithms or by visual compari-
son where improper orientation of the photographer to
the shark prevented accurate automated pattern
analysis. The simultaneous use of the algorithms mini-
mized the likelihood of misidentification by providing
2 independent reports of potential matches. Addition-
ally, a software-based photo keyword system allowed
for rapid review of collected photographs for sec-
ondary identification characteristics, such as scarring,
unusual patterning characteristics, or gill damage
(www.whaleshark.org/wiki/doku.php?id=photo_
keywords). All identifications were reviewed and
approved by 2 or more of the authors.

Our dataset may include multiple spot patterns for in-
dividuals sighted more than once. These multiple pat-
terns, extracted from images taken hours or years apart,
are obtained under real-world conditions where the de-
gree of skew affecting the relationships between spots in
a 2-dimensional photo varies from image to image and
affects the algorithms' potential to find matches. A shark
sighted more frequently is therefore more likely to be ac-
curately identified by a new scan across the database
than a shark sighted only once before, a caveat noted by
the developers of both algorithms (Arzoumanian et al.
2005, Van Tienhoven et al. 2007). We therefore note the
importance of statistical tests for heterogeneity in cap-
ture probability (see ‘Modeling’) to ensure that the algo-
rithms do not introduce bias into collected data.

Given no evident systematic overlap between the
approaches of the algorithms, we can multiply the
average misidentification probability reported by

Arzoumanian et al. (2005) of 0.14 and the average for
the ‘Exhaustive Search' categories presented by Van
Tienhoven et al. (2007) of 0.13 to generate a misidenti-
fication probability of 0.02 in our dual implementation.
This value fits anecdotally with our experience correct-
ing allocations when subsequent identifications clarify
a match. We note that these previously published
misidentification estimates for our implemented algo-
rithms are based on real-world data. However, to fur-
ther reduce misidentification, we also implemented
peer review of all identifications, using 2 reviewers
(J. H. and B. N.) with 6 and 14 yr of whale shark mark-
recapture experience, respectively.

Modeling. In the present study, we expanded upon
our previous modeling approach (Holmberg et al.
2008), which estimated an average annual NMP popu-
lation trajectory for sharks sighted in more than one
year using the CJS (Lebreton et al. 1992) and LBJS
(Link & Barker 2005) models (Fig. 2). In our models’
notation here, we label the whale sharks sighted in
multiple years as ‘returning’; we refer to the large
number of sharks sighted in only one year in our study
area as 'transient’; and we refer to sharks at first cap-
ture as ‘new’. Given 2 additional years of data, we ana-
lyzed the impact of average TL on estimated apparent
survival, recruitment, and capture probabilities when
included as a covariate in our tested model structures.

We note an important limitation in the use of TL for
whale sharks. Its incorporation in a multi-year study re-
quires either accurate measurements for each marked
animal for each capture period or mathematical expres-
sions based on empirical, representative data to esti-
mate growth for years in which no data is available. Al-
ternatively, missing length values can be imputed from
those available via the continuous covariate analysis of
Bonner & Schwarz (2006). Unfortunately, length esti-
mates for whale sharks when collected from mixed con-
tributors are prone to error. Graham & Roberts (2007)
and Norman & Stevens (2007) listed standard errors
(SEs) of 50 cm using trained research divers to estimate
length. Growth rates between 3 and 70 cm yr ' were
derived from these estimates for 3 male whale sharks
observed at Gladden Spit, Belize, ranging in size from
4.5 to 8.5 m at first capture (Graham & Roberts 2007).
Uchida et al. (2000) reported mean growth rates of 21.6
t0 29.5 cm yr~! for 3 whale sharks in an aquarium for pe-
riods ranging from 458 to 2056 d. These annual growth
estimates are within the SE for estimates made visually
by observers, confounding attempts to generate accu-
rate annual growth estimates.

In the absence of a system of comprehensive annual
measurements, we assumed the average of all
reported lengths for an individual to be a representa-
tive average TL over the course of the present study.
Given the slow projected growth rate of whale sharks
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Fig. 2. Rhincodon typus. Example capture history for a marked whale shark (A-001) and the parameters estimated under the fully
parameterized versions of 3 model structures used in the present study

(Colman 1997) and the low numbers of individuals
identified in multiple seasons (Meekan et al. 2006,
Holmberg et al. 2008), this assumption may have good
statistical validity, though it does not account for the
biological reality of growth of immature individuals
over time. Unfortunately, data were too sparse to
implement the continuous covariate analysis of Bonner
& Schwarz (2006).

Modeling intraseasonal population dynamics can pro-
vide deeper insight into the behavior of a study group
(Crosbie & Manly 1985). We therefore examined the
ORD (Schwarz & Stobo 1997, Kendall & Bjorkland 2001)
model structure for application to whale sharks, the first
such attempt. The ORD models the apparent survival

probability (S) between annual primary periods (f;), as
well as intraseasonal statistics of capture probability (p),
probability of entry (pent), and probability of remaining
in the study area (Phi) for eight 2 wk secondary sampling
periods (&) (Fig. 2). The ORD can also be used in a multi-
state context, providing probability estimates for the shift
of individuals between states (‘¥'), such as locations or be-
havioral characteristics, and allowing model variables to
be estimated independently for each stratum (Nichols &
Kendall 1995, Kendall & Bjorkland 2001).

Under the ORD, the study population is open to
gains and losses between primary periods. For sec-
ondary periods, the population is also open, but gains
and losses are assumed to be the result of staggered
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entries and exits rather than mortality or permanent
emigration. We defined 8 secondary periods represent-
ing 15 d sampling sessions from 1 April to 31 July for
the years 2003 to 2008 to achieve a good balance be-
tween occurrence data and the number of terms esti-
mated in the model structure. This range spans all but
the earliest arrivals on the reef in late March for which
few data were available.

As an additional output, the ORD model generates
estimates for intraseasonal residency time, providing
a measure of the average amount of time that individ-
ual whale sharks spend at North Ningaloo each sea-
son. The ORD can also provide a measure of aggre-
gate abundance (N) for each primary period through
its underlying use of the Jolly-Seber model (Jolly
1965, Seber 1965). Annual estimates of abundance
from our use of the ORD represent the total number of
animals that visited the reef during the season from
April to July. Previous estimates have placed the
number of whale sharks annually visiting NMP from a
maximum of 1300 (CSIRO media release, wwwa3.
aims.gov.au/news/pages/media-release-20050308.html)
to between 319 and 436 (Meekan et al. 2006) using
the Jolly-Seber model to a minimum estimate by Tay-
lor (1994) of 200 ind. Annual estimates of abundance
produced via the ORD may refine this range.

Use of the Jolly-Seber modeling structure within the
ORD requires the following assumptions:

e Homogeneity in capture probability among mar-
ked individuals. Our previous study (Holmberg et al.
2008) demonstrated the validity of this assumption. For
thoroughness, we retest this assumption in the present
study by implementing Test 2 (Burnham et al. 1987),
which checks for significant heterogeneity in capture
probability among marked individuals by analyzing
whether a shark's capture probability is dependent
upon when it was initially captured.

e Homogeneity in apparent survival (including
death and permanent emigration) among marked indi-
viduals. Using Test 3 (Burnham et al. 1987), our pre-
vious study demonstrated a violation of this assump-
tion due to the large number of whale sharks
appearing in only one season at Ningaloo. To compen-
sate, we presented a modeling alternative that used a
survival dichotomy to account for this violation, esti-
mating survival after the first sighting year (¢,ew) sepa-
rately from survival between subsequent resighting
years (Orerurn)- Onew effectively separates out the effect of
transience (sharks sighted in only one year) from the
apparent 0o Here, we test this modeling alternative
in the context of the ORD.

e No tag loss or misidentification (sampling errors).
Our use of the whale shark's natural spot patterning,
which does not change significantly over time for the
size range of whale sharks found at NMP (Arzouman-

ian et al. 2005), ensures that tag loss is not a factor. We
contend that misidentification, as previously discussed,
is minimal in the context of the present study.

¢ Instantaneous sampling time relative to the time
between samples, ensuring that birth, death, immigra-
tion, and emigration do not occur during the sampling
process. In the context of secondary (intraseasonal)
time periods under the ORD in the present study, the
assumption of instantaneous sampling must be care-
fully examined given the 8 adjoined 2-wk secondary
sampling periods used for each annual season. While
we note that whale shark births and deaths are not
observed at NMP, the emigration of sharks from the
study area within secondary sampling periods, if
indicative of non-random behavior among marked
individuals, can create a bias in estimates of Phi (Smith
& Anderson 1987, Williams et al. 2002) and demon-
strate a violation of this assumption. We therefore
checked for a systematic effect due to time since mark-
ing (TSM) in a shark's probability of remaining in the
study area.

e Unmarked animals within the study population
have the same probability of capture as marked indi-
viduals. This assumption is supported by the lack of
trap response evident in whale sharks visiting North
Ningaloo (Holmberg et al. 2008).

We used the software package CloseTest (version 3,
Stanley & Burnham 1999) to implement the closure
tests of Otis et al. (1978) and Stanley & Burnham
(1999), checking our assumption of an open popula-
tion. We used Program RELEASE GOF as imple-
mented in MARK 5.1 (White & Burnham 1999) to test
for violations of model assumptions due to heterogene-
ity in capture probability (Test 2) and survival (Test 3).

For CJS, LBJS, and ORD model construction, we
used MARK 5.1 to evaluate candidate models. All cap-
ture history files used for modeling were exported
directly from the ECOCEAN Library. Best-fit model
determination in MARK followed the normalized
weights of the corrected Akaike's Information Crite-
rion (AIC,) (Akaike 1973, Burnham & Anderson 1992,
Burnham & Anderson 1998). CJS model rankings were
adjusted using the median variance inflation factor (¢)
calculated through MARK (Lebreton et al. 1992).
Median ¢ values closer to unity indicate minimal over-
dispersion relative to the underlying multinomial mod-
els and provide evidence of an overall goodness of fit.

RESULTS
Data collection

As part of the present study, 6064 digital images of
whale sharks at NMP were collected, representing a
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total of 2063 live captures recorded in the North
Ningaloo study area from March to July 1995-2008.
A total of 1668 captures (81%) contained sufficient
data for the identification of 386 sharks. Of these
sharks, 219 (57%) were males, 46 (12%) were
females, and 121 (31%) were of indeterminate sex.
Of the 1668 usable reports, 386 represented un-
matched, first encounters of an individual, 985 were
repeat identifications of previously identified individ-
uals matched via pattern recognition software, and
277 represented previously identified individuals
matched visually. In the present study, 250 of the
sharks were captured in only one year, while 136
were sighted in at least 2 yr. It is important to note
that this dataset represents both a 2 yr extension of
the one used in our previous study (Holmberg et al.
2008) as well as a 41% increase in the number of
identified sharks at North Ningaloo through identifi-
cations made by data-mining previously unincorpo-
rated video catalogs from past years.

Of all identified individuals, 287 (74 %) had at least
one reported TL. The true SE for data from our mixture
of experienced and inexperienced contributors is
unknown. We assume an average SE of 1 m, which is
double the reported value for a trained researcher
(Graham & Roberts 2007, Norman & Stevens 2007).

Testing open population model assumptions

We started our analysis by checking our open pop-
ulation model assumptions, using statistical tests for
closure for primary (annual) periods. These tests pro-
duced low p-values (=0), indicating violation of the
assumptions of closure. Taking an open population
approach, we ran tests for homogeneity of capture
and survival probabilities (Test 2 and Test 3) among
individuals for primary periods. Our dataset did not
fail these tests, yielding p-values > 0.19. These
results support the underlying assumptions of the
CJS and ORD models in the context of the whale
shark aggregation at North Ningaloo. They also pro-
vide verification that our use of available pattern
recognition algorithms (Van Tienhoven et al. 2007,
Holmberg et al. 2008) does not introduce resighting
bias into model results. Intraseasonal data were
insufficient to test assumptions of homogeneity in
capture probability among marked individuals within
the secondary periods of 2003 to 2008. However, we
know of no systematic behavior, such as significantly
different residency times among marked individuals,
that would cause intraseasonal heterogeneity in cap-
ture probability while allowing capture probability
for primary periods to remain homogeneous under
the available tests.

Evaluating the potential impact of total length as a
model covariate

To determine the potential impact of TL on the mod-
eled results of our previous study (Holmberg et al.
2008) with our expanded dataset, we first constructed a
set of CJS-based models for the primary periods of
1995 to 2008 in MARK without TL as a covariate. The
best-fit model ¢pew(.)dreturn(-)P(t), Wwhere (.) indicates a
constant value and tis the time interval, was identical
to that derived previously and exhibited minimal
overdispersion and an excellent fit to the dataset over-
all (median ¢ = 1.13 + 0.01 SE). The average apparent
survival probability for new sharks was estimated at
0.52 yr'! (95% CI = 0.45 to 0.60) and 0.87 yr~! (95% CI
= 0.83 to 0.90) for sharks returning to North Ningaloo
in more than one season.

Following our previous methodology (Holmberg et
al. 2008), we then applied a reduction to the dataset
(Pradel et al. 1997), removing the first capture occasion
for all sharks, to model only the dynamics of the return-
ing subset of 136 sharks using the LBJS model (Link &
Barker 2005), which models apparent recruitment per
existing member of the population (f) in addition to
apparent survival probability (¢) and capture probabil-
ity (p). The resulting best-fit model (AIC. weight =
0.85) of Oreturn(-)Preturn(f) fretun(-) €stimated an average
annual ¢ of 0.82 yr'! (95% CI = 0.77 to 0.87) and an
average annual recruitment rate of 0.25 yr'! (95% CI =
0.19 to 0.32), whose sum yields an average estimated A
for the returning population of 1.07 yr! (95% CI = 0.99
to 1.15) between 1996 and 2008. Thus, the newly
expanded and extended dataset produced results con-
sistent with those reported in our previous study
(Holmberg et al. 2008).

To examine the effect of length on our estimated
average survival probability, we next incorporated TL
as a covariate of survival in our CJS and LBJS models
for 1995 to 2008. At least one estimate of total length
was provided for 287 of the 386 whale sharks identified
in the present study at North Ningaloo, including 121
among the returning subset. Where multiple length
measurements for a given shark were available, they
were averaged for modeling purposes; the resulting
distribution of individual average lengths is shown in
Fig. 3, which distinguishes transients from returning
sharks. A small but significant disparity, independent
of any modeling, between the 2 groups is evident, with
transient sharks typically smaller than returning
sharks by 1 to 2 m.

This disparity between the lengths of sharks sighted
in only one year and those sighted in multiple years
persists at the level of discrete measurements made
within the primary seasons of the 14 yr data span, as
shown in Fig. 4. For each group, median TL is dis-
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played for each year in which length measurements
were available for at least 4 sharks. In every year in
which a comparison is possible (10 of 14), the median
TL value of the transient sharks is less than that for the
returning group. Moreover, the median lengths appear
to be decreasing with time, especially for the transient
sharks in the later years. Although the possibility of
sampling biases contributing to this temporal trend
cannot be discounted (e.g. with fewer boats and spot-
ter airplanes in the early years of NMP's ecotourism
industry, smaller sharks may have been missed), such
biases should apply equally to both the returning and
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Fig. 3. Rhincodon typus. Distributions of average total length
(TL) of all identified sharks, North Ningaloo 1995 to 2008. For
every individual, length estimates were averaged within each
season and then across all seasons where multiple reports were
available. Average TL was then rounded to the nearest m.
Transient: individuals sighted in only 1 yr in the study area;

returning: individuals sighted in multiple years

transient populations: estimated lengths are reported
at the time encounter data are submitted to the ECO-
CEAN Library, and the returning versus transient sta-
tus of a given shark cannot readily be known to the
submitter.

We subsequently ran our CJS and LBJS model struc-
tures using only those sharks with at least 1 reported
length. We found a best-fit model of Opew(TL)dreturn
(TL)p(t;) with an AIC. weight of 0.94 compared to other
model variants incorporating TL and those without it as
a covariate (Table 1). Apparent survival probability as
a function of TL (Fig. 5) generated an average estimate
of Orerurn(TL) of 0.84 yr™! (95% CI = 0.78 to 0.88) for a
shark at our mean TL of 5.78 m. We also found a best-
fit Link-Barker Jolly-Seber model for returning sharks
of q)return(TL)pretum(tl)fretum(TL)v as presented in Table 2.
Modeled recruitment rates as a function of TL (Fig. 5)
generated an average annual recruitment rate
froturn(TL) of 0.23 yr™! (95% CI = 0.17 to 0.32) for a shark
at mean TL = 6.5 m, with higher recruitment rates esti-
mated for smaller size categories. Fig. 5c also presents
the average population trajectory estimated by sum-
ming the survival probability and recruitment rate for
each size category under this model.

ORD model selection

Application of the ORD to our data further expanded
upon our CJS-based modeling structure by integrating
intraseasonal data for 287 sharks captured in eight 15d
sampling periods within the years 2003 to 2008. We
estimated ORD parameters for a single stratum encom-
passing all marked individuals; ORD models require
larger amounts of mark-recapture data to achieve esti-
mates for additional intraseasonal parameters. The
required volume of data was only available for 2003 to
2008, which represent years of increased data collec-

Table 1. Top 5 model rankings comparing Cormack-Jolly-Se-
ber (CJS) model variants accounting for a survival dichotomy
(including survival after the first sighted year, ¢y, and sur-
vival between subsequent resighted years, O,etun) against ba-
sic CJS models for 287 whale sharks at North Ningaloo,
1995 to 2008. Average total length (TL) is included in some
models as a parameter covariate. AIC.: corrected Akaike's
Information Criterion; ¢: annual (primary) sampling periods;
(.): constant value
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Fig. 4. Rhincodon typus. Reported lengths of individual

marked whale sharks at North Ningaloo, 1995 to 2008. Small

points represent measurements (single or averaged over

multiple reports in each primary season); large open symbols

connected by line segments show the median length for years
in which 4 or more measurements were available

Model Parameters AIC, weight
¢new(TL]¢retum(TL)p( tl) 16 0.94
¢new(TL]¢retum(TL)p( t1 * TL) 16 005
¢new(-)¢'return(.)p(t1) 15 =

o(t, TL)p(t = TL) 24 =
o()p(t) 14 =
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Fig. 5. Rhincodon typus. (a) Survival probability (+95 % CI) as
a function of average total length (TL) for returning and
newly marked whale sharks at North Ningaloo, Ningaloo
Marine Park (NMP), 1995 to 2008. CJS: Cormack-Jolly-Seber
model; LBJS: Link-Barker Jolly-Seber model. For reference,
the length—survival relationship for the entire population pre-
sented by Bradshaw et al. (2007) is also included. The close
match between our CJS length-survival relationship for
newly marked sharks and the relationship presented in Brad-
shaw et al. (2007) for all NMP sharks demonstrates the con-
founding effect of transience: higher survival trends in the re-
turning population can be hidden by the lower apparent
survival probability of the more numerous transient indivi-
duals when the 2 groups are considered together. (b) Average
annual recruitment rate (+95% CI, LBJS) as a function of
average TL for returning whale sharks at North Ningaloo,
1996 to 2008. (c) Average annual population growth rate
(£95% CI, LBJS) as a function of average TL for returning
whale sharks at North Ningaloo, 1996 to 2008

tion facilitated by more active collaboration with eco-
tourism activity.

Our best-fit model (Table 3) demonstrated the same
survival dichotomy found in our CJS-based modeling
approach: Syey(.)Sreturn(.)P(t2) pent® () Phi*(t;), where (7)
is an intraseasonal parameter constrained to a single
value across all years of the model. In this structure,
capture probability (p) varied within annual sets of sec-
ondary sampling periods, but other intraseasonal
model parameters (pent® and Phi®) were constrained to

a single value across all years of the model instead of
across all periods of a season. We note this model's pre-
dominance over models with Phi® conditioned on TSM.
This result suggests no systematic relationship
between time of entry and time of exit within our
dataset and lends support to our assumption of effec-
tively instantaneous sampling. The resulting estimate
for the average annual apparent survival probability
for new sharks (S,ew: equivalent to the CJS ¢,ew) Was
0.48 yr! (95% CI = 0.40 to 0.56), and the average
annual survival probability for returning sharks (S;etum,
equivalent to the CJS O;eum) Was 0.89 yr! (95% CI =
0.80 to 0.94). Calculated estimates of pent® and Phi?®
from the ORD describing the time-based probability of
whale sharks arriving and remaining in NMP are
shown in Fig. 6. Average residency time for whale
sharks at NMP was estimated at 2.34 secondary peri-
ods (95% CI = 2.08 to 2.61) or 35 d yr !. Resulting esti-
mates of annual abundance from the best-fit ORD
model are listed in Table 4.

We also examined average TL as a covariate to S,
Phi, and pent for 224 whale sharks for which at least
1 TL was reported from 2003 to 2008. We allowed the
relationship between TL and each parameter to vary
with time and explored a constant relationship alterna-
tive. Our top-ranked model, Spow(TL)Sietum(TL)p(t2)
pent®(t,)Phi%(t,), is presented in Table 5. Estimates of
abundance under this model (Table 4) were somewhat
smaller than those suggested by the top-ranked ORD
model without TL as a covariate. Average residency
time was estimated at 2.47 secondary periods (95 % CI
=1.91 to 3.02) or 37 d.

DISCUSSION

Our previous study (Holmberg et al. 2008) presented
a CMR approach to modeling the population at NMP;
we have built upon that approach here. The use of
time-series data under CJS and LBJS models can gen-
erate estimates of apparent survival probability and
recruitment rates without a reliance on poorly under-
stood life history parameters. Additionally, this
approach has the advantage of accounting for the
effect of transience on apparent survival probability.
Integration of individual covariates into these models,
such as TL, allows for the further exploration of aver-
aged estimates and exposes underlying trends, such as
the size categories contributing to recruitment.

In the present study, we found no evidence of a
decline in whale shark abundance at North Ningaloo
in apparent contrast to previous reports (Bradshaw et
al. 2007, 2008). Differences in model estimates and
timeframes, however, leave some room for reconcilia-
tion. Bradshaw et al. (2007) suggest a declining annual
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Table 2. Top 5 model rankings comparing Link-Barker Jolly-Seber model
variants for 121 returning whale sharks at North Ningaloo, 1996 to 2008. Aver-
age total length (TL) is included in some models as a parameter covariate of sur-
vival (0), capture probability (p), and recruitment (f). AIC.: corrected Akaike's
Information Criterion; ¢: annual (primary) sampling periods

Model Parameters ~ AIC. weight  f(95% CI)
at average
6.5m TL
¢return(TL)preturn(tl)freturn(TL)a 17 0.34 0.23
(0.17-0.32)
(pretum(-)pretum(tl)fretum(T]-‘)a 16 0.33 0.23
(0.16-0.31)
¢return(TL)preturn(tl * TL)freturn(TL) 16 020 024
(0.17-0.33)
¢return(-)pretum(t1 * TL)fretum(TL) 16 0.13 0.23
(0.17-0.32)
¢return(-)pretum(tl)freturn(-) 15 =( 0.24
(0.17-0.31)
“Our 2 top-ranked models held equivalent weights and generated nearly
identical estimates of recruitment

Table 3. Top 5 model rankings in MARK comparing Open Robust Design (ORD)
variants for 287 whale sharks at North Ningaloo, 2003 to 2008. For Phi under the
ORD, where t, represents 2 wk intraseasonal (secondary) sampling periods, we
examined scenarios of time dependence, Phi(t,); time dependence for each sec-
ondary period averaged across years, Phi’(t,); time invariance within secondary
periods, Phi(.); and time since marking, Phi(TSM). With a TSM analysis, esti-
mates of Phi are conditioned on when an individual was first marked, probing
whether the time of departure for a whale shark at NMP is linked to its arrival
time on the reef. Only models for which all parameters were estimable were
considered. AIC.: corrected Akaike's Information Criterion; S: average annual
apparent survival probability for new sharks, Sy, and returning sharks, S;eturn;
pent: probability of entry into the study area. * intraseasonal parameter
constrained to a single value across all years of the model

Model Parameters AIC, weight
Snew(~)sreturn(-)p(tz)penta(tZ)Phja(tZ) 60 0.82
Snew(~)sreturn(TSM)p(tZ)penta(tZ)Phja(tZ) 61 0.14
Spew() Sreturn(TSM)a(t,) pent?(t;) Phi®(TSM * t,) 61 0.02
Snew() Sreturn(-) P(t2) pent®(t) Phi®(TSM * t;) 62 0.02
S(.)p(tz) pent?(t,) Phi*(ty) 59 =0

in the context of a larger decline. Such
reconciliation, if it assumes all reports
are accurate, would require the pre-
ceding overall decline to occur within
the transient subset of sharks sighted
in only one season. Further seasons of
modeling data using the ORD can test
such a reconciliation of estimates.

For reasons elaborated below, we
believe that previous reports of a
decline should be treated with cau-
tion. Of critical importance to the age-
based Leslie Matrix model approach
used by Bradshaw et al. (2007) is
knowledge of some poorly understood
life history parameters, including litter
size of precocial pups, female repro-
duction frequency, age-specific sur-
vival probability, age in years, age at
first reproduction, and maximum age
in years. For litter size, only one data
point exists in the published literature:
300 for an 11 m female (Joung et al.
1996). No understanding is currently
available for how this number may
vary with size. Given a projected max-
imum size for whale sharks of approx-
imately 14 m (Compagno 2001) and
the likelihood that increases in length
yield increased fecundity, a survival
strategy demonstrated in shark spe-
cies producing large litters (Cortés
2000, E. Cortés pers. comm.), the value
of Joung et al. (1996) may not approx-
imate an average for whale sharks.

Estimation of age for whale sharks,
such as age at primiparity, current
age, or maximum age, is a challenge
and is heavily dependent upon uncer-
tain rates of growth, since only TL is
available as a measurement in the

abundance of all NMP whale sharks during the period
1992 to 2004. Our LBJS approach compensates for the
transience that we have uncovered by estimating only
the fractional annual change in abundance of a return-
ing subset of sharks that can be captured in more than
one season, reporting marginal growth in the popula-
tion size of this subset from 1996 to 2008. In contrast,
our ORD abundance estimates for 2004 to 2007 apply
to the full set of transient and returning sharks, provid-
ing some limited, recent evidence for overall popula-
tion growth. These ORD results lie outside of the time
frame of Bradshaw et al. (2007) and may indicate a
later population recovery after a decline in total (but
not returning) abundance or just a short-term increase

wild and from published literature (Colman 1997,
Meekan et al. 2006, Norman & Stevens 2007). Age-
specific survival probabilities are also unknown for
whale sharks. Breeding habits for whale sharks have
not been documented, and small whale sharks (<3 m)
are infrequently sighted (Rowat et al. 2008). In the
absence of empirical evidence, Bradshaw et al. (2007)
cross-applied a first-year survival probability for juve-
nile whale sharks of 0.5 yr~! from estimates of juvenile
lemon sharks Negaprion brevirostris and black-tip
sharks Carcharhinus limbatus. We raise 2 challenges
to this assumption.

First, lemon sharks and black-tip sharks give birth to
far fewer young than the whale shark, with numbers of
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Fig. 6. Rhincodon typus. (a) Average biweekly entry profiles
(pent) for whale sharks at North Ningaloo, 2003 to 2008,
showing the probability that a whale shark arrives in the
study area during the specified time period. The probability
for the first secondary period cannot be estimated under this
model. pent values estimated here are averages across all
years of the study for each secondary period. (b) Average bi-
weekly retention profiles (Phi; £95 % CT) for whale sharks at
North Ningaloo, 2003 to 2008. Each value represents the
probability that a whale shark remains in the North Ningaloo
study area between the specified secondary sampling peri-
ods. We note that the 7th value is confounded under this
model structure. Phi values estimated here are averaged
across all years of the study. Error bars are 95 % CI

Table 4. Annual abundance of whale sharks visiting the North
Ningaloo study area each year, as estimated in the best-fit
Open Robust Design (ORD) model variants, Spew(.) Sreturn(-)P
() pent? () Phi®(ty) and Spew(TL)Srerun(TL)p(ty) pent®(ty) Phi®
(t,) (see Table 5), for 2003 to 2008. 95% CI are provided in
parentheses. Estimates of total annual abundance generated
via the ORD using the Jolly-Seber modeling approach are of-
ten negatively biased due to heterogeneity in capture (Pol-
lock et al. 1990). Based on Test 2 results, we expect the bias to
be slight and well within the range of the listed confidence
intervals. Abundance values for the first and last years are
confounded under this model (Schwarz & Stobo 1997).
N/A: not available

Year Abundance (N) Abundance (N)
without length as with length as
a covariate a covariate
2003 N/A N/A
2004 107 (90-124) 86 (72-100)
2005 119 (103-133) 96 (82-111)
2006 153 (120-186) 128 (100-156)
2007 177 (127-190) 143 (112-173)
2008 N/A N/A

Table 5. Top 5 model rankings comparing Open Robust De-
sign variants for 224 whale sharks at North Ningaloo, 2003 to
2008. In these models, average total length (TL) was exam-
ined as a covariate of Phi (probability of remaining in the
study area), pent (average probability of entry within a sec-
ondary period), and S (average annual apparent survival
probability). Only models for which all parameters were es-
timable were considered. AIC.: corrected Akaike's Informa-
tion Criterion; t,: 2 wk intraseasonal (secondary) sampling pe-
riods; % intraseasonal parameter constrained to a single value
across all years of the model; ,: the relationship between TL
and the model parameter was allowed to vary with time;
TSM: time since marking

Model Para- AIC,
meters weight
Snew(TL) return(TL) tZ)penta(tZ)Phj (tZ) 63 0.78
Snew( ) return( )P(tz)penta(tz Ph] (tZ) 60 0.12
Snew( ) return( )P(tz)penta( L * tZ)PIH ( L * tZ) 72 0.09
Snew( ) return( )P(tz)pent (TL * tZ)P}H ( ) 65 0.01
Snew( ) return( )p(tZ)penta(tZ Ph] (TSM) 60 =0

pups generally <20 (Feldheim et al. 2002, Keeney et al.
2003). If producing large numbers of pups is a survival
strategy of whale sharks to compensate for low pup
survival rates as demonstrated in other shark species
with large litter sizes (Cortés 2000), such as the pelagic
blue shark Prionace glauca, then a first-year survival
probability cross-applied from pups of much smaller
shark species with different life histories and signifi-
cantly lower fecundity is questionable.

Second, Bradshaw et al. (2007) assumed that annual
survival probabilities modestly increase from 0.5 yr!
for a whale shark pup in the first year (=1.4 m) to
0.59 yr'!t at 5m and then jump to 0.81 yr ! at 9 m. How-
ever, they also presented an equation relating total
length to apparent survival (depicted here in Fig. 5)
that suggests different, lower values for first-year sur-
vival when extrapolated to neonatal length. Using the
provided estimates of 0.8 m first-year growth in TL and
a fetal length of 42 to 63 cm (Joung et al. 1996, Chang
et al. 1997), we obtain a projected first-year survival
probability between 0.296 (63 cm; pup) and 0.344
(1.4 m; 1 yr old juvenile) using their equation. As Brad-
shaw et al. (2007) noted, this equation was not gener-
ated from data specific to neonatal whale sharks; we
contend, based on the trends evident in Fig. 5, that the
decrease in survival probability with decreasing TL
may be even more precipitous, given the previously
discussed life history traits of the species. We also note
the remarkably close correspondence between the
TL-survival relationship presented by Bradshaw et al.
(2007) and our TL-survival relationship for newly
marked individuals (Fig. 5a), which accounts for both
transience and apparent first-year survival. Noting the
large number of sharks sighted in only one season (an
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approximately 2:1 ratio of transient to returning
sharks, as reported in Holmberg et al. 2008), this com-
parison demonstrates the confounding effect of tran-
sience (a negative bias) on the survival probabilities
estimated in previous reports of declines. Further
exploration of both of these factors is needed.

We present here a first integration of intraseasonal
data for whale sharks into population modeling via the
ORD. This approach accounts for previously detected
transience (Holmberg et al. 2008) and allows for the
examination of behavioral dynamics (Schwarz & Stobo
1997), such as average residency time and probabili-
ties of entry and exit. Its ability to estimate total annual
abundance can also be used in the future to reconcile
trends in abundance within the returning subset of
sharks with overall population projections. We there-
fore believe this approach to hold great promise, and
future studies should attempt to incorporate other
potentially relevant environmental covariates, such as
water temperature or coral spawning dates, to better
understand their effects on modeled parameters. How-
ever, we note that even with close collaboration with
ecotourism, we could not estimate time variance of
some basic model parameters. Usage of the ORD
model structure for whale sharks requires relatively
large amounts of centralized and standardized mark-
recapture data to estimate key parameters, and subse-
quent studies should work to maintain or increase cur-
rent levels of data collection at NMP. This is a
significant challenge for a rare species with a small
local aggregation size. Research at other similarly
large whale shark aggregation points, such as Mexico,
the Philippines, and Mozambique, may also benefit
from the ORD as presented here. Locations with appar-
ently smaller aggregations, such as Belize, Honduras,
the Maldives, Thailand, and the Galapagos Islands,
may need to reduce sampling occasions to achieve a
good balance between available data and the number
of estimated parameters.

Our estimates of total annual abundance (N) ap-
proach the estimate of 200 ind. reported by Taylor
(1994). We note, however, that the present study was
strictly limited to whale sharks captured at North
Ningaloo, while the geographical boundaries within
NMP of earlier studies (Taylor 1994, Meekan et al.
2006) are not well specified and may not represent the
same sampling area. The number of estimable years of
abundance in the present study is limited by confound-
ing of initial and final estimates under the ORD and by
the larger amounts of data required for the model
structure. The increasing trend in abundance under
the ORD in the present study modestly reinforces the
13 yr estimated trend of minimally increasing popula-
tion size for North Ningaloo's returning sharks calcu-
lated under the LBJS model. However, because esti-

mated abundance under the ORD covers all marked
individuals, our results also suggest a modestly
increasing total annual population size in the later
years of the present study. This short-term trend may
also represent a temporary increase within a long-term
decline if it can be reconciled with the declines in over-
all total abundance reported by Bradshaw et al. (2007,
2008).

The ORD has significant potential to support multi-
site CMR (Nichols & Kendall 1995, Kendall & Bjork-
land 2001) for whale sharks when sufficient movement
data is available in the future. For example, multiple
strata in the ORD permit the integration of CMR data
from distant sites outside of NMP, allowing strata tran-
sitions to represent the probabilities of migration to
one of many potential aggregation points. Such usage
of the ORD, similar to the multi-state analysis pre-
sented by Brownie et al. (1993) for Canada geese
Branta canadensis, would permit integrated modeling
of local apparent survival rates, annual regional abun-
dance, and migration probabilities between sites.
Thus, use of the ORD model here and in future NMP
whale shark studies provides a path to regional analy-
ses if and when multi-site data become available.

The median reported length for whale sharks at
North Ningaloo declined slowly over the course of the
present study. The trend is weak, but these results
appear to corroborate the decline in TL reported by
Bradshaw et al. (2008). However, our confirmation is
made using an independent dataset which suggests a
substantially different explanation from that previ-
ously provided for this decline (i.e. 'reductions in the
number of large individuals in the population') by
Bradshaw et al. (2008). Given the small apparent
increases in returning shark abundance (1996-2008)
and total abundance (2004-2007), we present an alter-
native hypothesis: a decline in average TL for new and
returning sharks, coupled with an increase in the num-
ber of sharks returning to North Ningaloo, may indi-
cate increased recruitment of smaller individuals, as
already indicated by our LBJS model's length-based
recruitment estimates (Fig. 5).

Increased recruitment of smaller individuals into
North Ningaloo could result from a population recov-
ery after exploitation elsewhere on a migratory route, a
natural population fluctuation, changes in movement
patterns of younger individuals, or other environmen-
tal factors increasing pup survival. For example,
declines in populations of predators of whale shark
pups, such as the blue shark Prionace glauca or the
blue marlin Makaira nigricans (Colman 1997), may
facilitate increased pup survival probabilities and
therefore increased recruitment of smaller individuals
at NMP. Globally reported declines in the populations
of other shark species (Baum et al. 2003, Myers &
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Worm 2003, Myers et al. 2007) that may be predators
on small whale shark pups may facilitate such a mech-
anism. However, independent verification of factors
affecting pup survival is extremely difficult. Whale
shark mating and birthing have yet to be documented
or even verifiably observed. Similarly, early whale
shark behavior remains a mystery, with few reports of
sightings of whale sharks <3 m (Rowat et al. 2008,
ECOCEAN Library at www.whaleshark.org). An at-
tractive feature of the hypothesis that smaller, younger
sharks are being recruited into the returning NMP
population is that it is testable under our model struc-
ture: continued monitoring over years and decades
should demonstrate recapture of the recruited sharks
and, with sufficiently accurate length measurements,
reveal their growth rate as their lengths approach
those of the older, established NMP population.

We note that there is currently no broad perception
of a decline in whale shark abundance among eco-
tourism operators and marine park managers in North
Ningaloo (R. Mau pers. comm.), though these are not
scientifically rigorous assessments. Rather, it is worth
reiterating that whale sharks are large animals that are
easily observed during the annual season. Barring
unknown systematic effects, declines in abundance
(translated as increased effort to find sharks) should be
apparent to the ecotourism community. While Brad-
shaw et al. (2008) found such an increase in required
effort, by modeling operator logs independently col-
lected by the local Department of Environmental Con-
servation (DEC), the corresponding ecotourism indus-
try does not echo these concerns.t

Our ongoing mark-recapture study demonstrates a
comprehensive data collection, analysis, and modeling
approach for whale shark mark-recapture research that
can be replicated and tested at other aggregation points.
This approach can also be built upon and continuously
tested in future seasons at NMP without continuing re-
liance on poorly understood life history parameters. Fur-
ther management of research efforts at North Ningaloo
should ensure the continuation of high levels of data col-
lection to support more complex models, such as the
ORD, and establish the importance of related environ-
mental covariates. Additionally, new avenues to reliably,
inexpensively, and comprehensively measure annual
lengths for large numbers of marked individuals are
needed to accurately explore length as a covariate in
CMR models. The highly uncertain TL estimates of un-
trained observers can be meaningful en masse, but they

LThe DEC does not recommend the usage of these operator
log data for effort analysis (Mau & Wilson 2005, R. Mau pers.
comm.), and they note the shifting of whale shark peak
occurrence times outside of the April-May analysis period of
Bradshaw et al. (2008).

are unreliable for more sophisticated modeling ap-
proaches requiring accurate, continuous estimates for
each individual (Bonner & Schwarz 2006).

Given the highly migratory nature of whale sharks,
further work at NMP must also begin to more effectively
explore whale shark ecology beyond its boundaries.
While the local population trajectory may be flat or mod-
estly increasing, the explanation of the dynamic is uncer-
tain, and therefore further management steps —beyond
continued regulation of ecotourism —are opaque. Re-
gional coordination of research is imperative to under-
stand larger pressures on this and other highly migratory
species. However, until mark-recapture study sites can
be linked, multi-site analyses, such as those potentially
available under the ORD, are unavailable. Localized
studies, such as this one, must continue to inform man-
agement decisions at NMP and elsewhere. When suffi-
cient data are available for broader analyses, collabora-
tive efforts, such as the ECOCEAN Whale Shark
Photo-identification Library, and multi-state models are
well suited for integrating local population trajectories
into regional and global analyses.
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