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INTRODUCTION

Rare and endangered species are often highly sen-
sitive to changes in their environment and suscepti-
ble to further population declines. Freshwater cray-
fish are considered to be one such vulnerable group,
owing to their homotopic life history and sensitivity
to environmental conditions and chemical pollutants
(Geddes 1990, reviewed by Gilligan et al. 2007). Cru-
cial to the classification and management of species
considered vulnerable to extinction is our ability to
obtain reliable and accurate population estimates,
especially when changes in abundance affect detect-

ability (McConville et al. 2009, Rayment et al. 2011).
Likewise, we require reliable population estimates to
discern the effectiveness of recovery or abatement
actions (Clarke et al. 2003, Baker 2004, Shields 2004).

Several methods have been used to sample fresh-
water crayfish, such as baited traps and hoop nets,
electrofishing, direct visual surveys, dip netting and
seining. All of these survey methods involve some
error that produces a biased sample of the population
(Rabeni et al. 1997, Gladman et al. 2010). Bias occurs
as a result of either the selectivity of the sampling
gear for certain species, sexes and sizes, or variation
in crayfish behaviour across seasons, habitat selec-
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ABSTRACT: Accurate distribution and abundance estimates for rare and endangered species are
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capture-based methods are imperfect for surveying elusive species such as freshwater crayfish in
upland streams. We compared estimates of Murray River crayfish Euastacus armatus abundance
made via direct visual assessments by snorkel, against baited remote underwater video surveys
(BRUVS) and traditional hoop netting conducted in 2 montane river systems. Similar total abun-
dances were recorded via visual survey and BRUVS across 4 sites within 1 river system where E.
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tion, previous sampling interactions, predator avoid-
ance and habitat type (Brown & Brewis 1978, Somers
& Stechey 1986, Rabeni et al. 1997, Dorn et al. 2005,
Ryan et al. 2008, Gladman et al. 2010). Relatively few
crayfish studies have examined sampling efficien-
cies, and these have shown that some methods are
prone to underestimating true population sizes
(Brown & Brewis 1978, Rabeni et al. 1997, Dorn et al.
2005, Gladman et al. 2010). In particular, baited trap
methods have often been criticised for their ineffec-
tiveness to quantitatively sample crayfish popula-
tions (Bean & Huner 1978, Brown & Brewis 1978,
Somers & Stechey 1986, Rabeni et al. 1997, Alonso
2001, Gladman et al. 2010), especially cryptic and
highly elusive species such as those in the genus
Euastacus. Euastacus encompasses 49 described spe-
cies, of which 80% are threatened at some level rela-
tive to IUCN classification standards (Furse &
Coughran 2011a). Clearly, we must evaluate the effi-
ciency of survey methods used to assess and monitor
threatened crayfish species in order to obtain reliable
population estimates.

We assess the effectiveness of 3 different methods
for enumerating populations of the world’s second
largest freshwater crayfish, the Murray River crayfish
Euastacus armatus. Over the past 6 decades, it has
become apparent that E. armatus has dramatically
declined in abundance, to the extent that the species
has become locally extinct or extremely rare in some
river reaches across the Murray-Darling River Basin
due to a combination of habitat loss, pollution and
overfishing (Gilligan et al. 2007, Furse & Coughran
2011b). In recognition of the decline of E. armatus,
this species has been classified as Data Deficient
internationally (IUCN 2011), and either threatened or
vulnerable in 3 of the 4 Australian states/territories
where it has historically been recorded (Australian
Capital Territory Nature Conservation Act of 1980,
Victoria Flora & Fauna Guarantee Act of 1988, South
Australia Fisheries Management Act of 2007). As
such, there is an urgent need to collect distribution
and abundance information for this species in a man-
ner that is as accurate and efficient as possible, and
one that has the capacity to detect such elusive spe-
cies when they are low in abundance.

Monitoring programmes for large crayfish species
like Euastacus armatus have typically used baited
hoop nets as the primary survey technique (Gilligan
et al. 2007, Furse & Coughran 2011b), despite the
well-known inefficiencies and sampling biases
inherent to baited trap or net methods (Bean & Huner
1978, Somers & Stechey 1986, Rabeni et al. 1997,
Gladman et al. 2010). A single brief study examined

the effectiveness of baited methods for detecting
E. armatus (McCarthy 2005), finding an approxi-
mately 2-fold difference in the rate of captures using
hoop nets compared to Munyana traps (0.725 cray-
fish per hoop-net hour versus 0.408 crayfish per
Munyana hour). However, McCarthy (2005) was
unable to detect whether such trapping estimates
were a true reflection of total crayfish population size
in the sampling area. With such discrepancies, there
is concern that traditional methods may overlook the
presence of this elusive species where it is in low
density, leading in turn to serious misrepresentations
of its abundance, geographical range and conser -
vation status.

We aimed to evaluate the efficiency of 2 novel
visual survey methods, viz. baited remote under -
water video surveys (BRUVS) and active searching
by snorkel, in estimating the abundance of Euastacus
armatus compared to traditional hoop netting tech-
niques in upland river systems. Increasing evidence
is pointing towards remote underwater video as
being an effective means of detecting and recording
the diversity, abundance and behaviour of aquatic
organisms, particularly elusive or cryptic species
(Bellwood et al. 2006, Fox & Bellwood 2008, Ebner et
al. 2009, Gucu 2009, Brooks et al. 2011, Harvey et al.
2012). We chose small montane rivers as the focal
habitat, as these clear, high-flow systems have
proved particularly challenging for traditional survey
techniques. Moreover, montane river systems are
home to the majority of freshwater crayfish species,
both in the study region (41 species in New South
Wales, McCormick 2008) and worldwide (540 spe-
cies, Holdich 2002), with 50 to 60% of these species
recently assessed as being of conservation concern
(Taylor et al. 1996, Holdich 2002, Furse & Coughran
2011a).

MATERIALS AND METHODS

Crayfish surveys were conducted across 4 sites
within each of the Goobarragandra and Cotter rivers
in southeast Australia (Fig. 1). The Goobarragandra
River is a clear, narrow, freshwater montane river
with a stony bottom consisting of a mixture of bed -
rock (mean of 6% cover), boulders (39%), cobbles
(12%), pebbles (6%), gravel (17%), fines (13%), leaf
litter (5%) and woody debris (2%), based on 8 repli-
cate 1 m2 surveys of benthic cover within each sur-
veyed site. The Cotter River is a similar montane
river, with the substratum at our sites consisting of
bedrock (mean of 8% cover), boulders (32%), cob-
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bles (24%), pebbles (8%), gravel (12%), fines (9%),
leaf litter (4%) and woody debris (3%). Within both
study areas, a narrow corridor of native vegetation
borders both sides of the river, with adjacent hill
slopes privately owned and subject to grazing by
domesticated ungulates (sheep and cattle). However,
the primary difference between the 2 rivers is that
the Cotter River discharge is regulated to supply
water to the city of Canberra, Australian Capital
 Territory, while the Goobarragandra is unregulated
and displays natural fluctuations in discharge. Dur-
ing the sampling period (February to March 2009),
we re corded a mean (± SE) discharge rate of 59.8 ±
2.0 Ml d−1, flow velocities of 0 to 36 cm s−1 and water
temperatures of 20 to 22°C in the Goobarragandra
River, compared to 2 ± 0 Ml d−1, 0 to 49 cm s−1 and 20
to 22°C in the Cotter River.

Surveys of pool habitats (ranging from 8 to 24 m
long, 2 to 5 m wide) for Euastacus armatus were made
by observers actively searching on snorkel, deploy-
ment of baited remote underwater video cameras
(Sony HDR-SRS high definition HDD in a perspex
Ikelite 6038.91 underwater housing) and standard
baited hoop nets (500 mm diameter top ring, 300 mm
bottom ring, 400 mm depth between rings, 10 mm
mesh size). All surveys were made during daylight
hours (10:00 to 16:00 h), as E. armatus is a diurnally
active species (Ryan et al. 2008). A single sampling
occasion was conducted per method at each site, with
a minimum of 2 d break between alternate sampling
attempts at each site to minimise the influence of
 repeated sampling on subsequent detections.

Active visual surveys involved 2
observers searching for crayfish by
walking upstream on either side of
the river channel. In deeper sections
(>50 cm) of the river, observers swam
in a zig-zag path while using masks
and snorkels to spot crayfish individ-
uals underwater, as described by Ful-
ton et al. (2001). Time spent at each
site was dependent on the size and
complexity of the habitat, with a
mean (± SE) of 46.4 ± 13.7 min spent
by 2 observers actively searching at
each site. All individuals were col-
lected with hand nets and placed in
different buckets during the survey to
ensure individuals were not re-
counted. All individuals were re -
leased at their exact site of capture
(uniquely marked with flagging tape)
once the search was completed.

BRUVS involved deploying 3 underwater video
camera units approximately 15 m apart along a tran-
sect along the deeper sections of each site, for 2 stints
of 1 hr each, equating to the soaking period com-
monly used for hoop nets (Gilligan et al. 2007). After
the first hour, the sampling gear was redeployed 5 m
upstream of its original position. BRUVS were baited
with a 1:1 mix of beef and chicken liver (mean ± SE
bait mass 74 ± 3.9 g), enclosed within a nylon stock-
ing that was tied to 2 upright arms (100 mm length)
on the metal bait plate, which was attached to an arm
extending 500 mm out from directly below the video
camera lens. Visible notches at 10 mm increments on
the front edge of the bait plate and upright arms
were used to calibrate measurements of the occipital
carapace length (OCL) and cheliped length of cray-
fish (Fig. 2). Individuals observed near the BRUVS at
the conclusion of the 2 h sampling session were hand
netted and measured to validate size estimates from
digital video analysis.

Baited hoop nets were deployed at the above sites
as per the protocol for the BRUVS, except that the
bait stocking was tied to the centre of the bottom
hoop. During the hoop netting, all individuals caught
in the first soak period (1 h) were removed and not
returned to their capture location until the second
soak period (1 h) was completed to ensure that only
unique individuals were captured in each soak.

Captured Euastacus armatus were examined for
gender and OCL, and cheliped length was measured
to the nearest 0.1 mm using dial callipers. A small
portion of the tail fan and the tip of the fifth pereopod
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Fig. 1. Crayfish survey sites (*) on the (a) Cotter River, Australian Capital Terri-
tory (ACT), and (b) Goobarragandra River, New South Wales (NSW) in south-

east Australia. Arrows indicate river flow direction
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were clipped with scissors for individual identifica-
tion. To compare the capture efficiency of the 3 sam-
pling methods, capture rates were cal culated as the
total number of individuals caught or observed per
hour for a standardised catch per unit effort (CPUE)
estimate across all 3 methods. After a log10(x + 1)
transformation of the CPUE data to minimise depar-
tures from normality and sphericity of variances
(Mauchly’s W = 0.389, p > 0.05), a repeated measures
analysis of variance (rANOVA) was used to detect
within-subject differences in estimates of E. armatus
population size via different survey technique (3
 levels) employed within each of the 4 sites in the
Goobarragandra River.

RESULTS

Both visual methods (active search and BRUVS)
yielded similar numbers of Euastacus armatus indi-
viduals within the Goobarragandra River, and these
visual estimates were 5 times greater than those
recorded via hoop nets (Fig. 3a). Within the Cotter
River, the only detection of E. armatus was via
BRUVS (Fig. 3a). Average CPUE via visual methods
was significantly higher than via hoop netting in the
Goobarragandra River (F2,6 = 5.997, p < 0.05, Fig. 3b).
While the small sample sizes of this rare species pre-
cluded any analysis of possible sex-related sampling
biases, we did note a general lack of detection of
small individuals across methods. While hoop nets
and active visual surveys failed to detect any small E.
armatus individuals (none <40 mm OCL), BRUVS did
record 1 very small individual (~25 mm OCL) living
sympatrically with an adult (63 mm OCL) in the Goo-
barragandra River. Notably, BRUVS-derived OCL
measurements were within 3% of direct measure-
ments of the known individuals. Most (>70%) E.
armatus observations via BRUVS were made within
30 min after deployment (Fig. 4). Overall, individuals
were within the field of view for an average (± SE) of
139 ± 70 s (n = 24 observation periods), with the 7
individuals that made actual contact with the bait
staying for longer time periods (mean 387 ± 209 s,
maximum 1596 s).

DISCUSSION

Disparate population estimates from varying sur-
vey methods can have serious implications for the
monitoring and status assessment of species of con-
servation concern (Grand et al. 2007, McConville et
al. 2009, Brooks et al. 2011). Here, we found distinct
differences in relative abundance estimates achieved
by 3 survey methods, with major differences be -
tween direct visual and hoop net methods. Indeed,
when Euastacus armatus were rare, BRUVS was the
only method to detect their presence. Our behav-
ioural observations of crayfish from the underwater
video footage also revealed that some individuals
were cautious (‘trap shy’) of the baited methods,
with most individuals staying on or near the hoop
nets or camera bait plate for very short periods;
such individuals are unlikely to be detected with
baited hoop nets lifted at discrete, hourly intervals.
Our observations are similar to previous studies of
other crayfish species, which have found innate or
learned aversions to sampling gear from compar-
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Fig. 2. Euastacus armatus. Individual (a) entering, (b) at-
tempting to eat the bait and (c) leaving the frame of a baited
remote underwater video survey (BRUVS). Estimated at
68 mm occipital carapace length (actual length: 66 mm), this 

individual remained within frame for 205 s
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isons of passive trapping methods versus direct
visual surveys and electrofishing (Bean & Huner
1978, Somers & Stechey 1986, Rabeni et al. 1997,
Gucu 2009, Gladman et al. 2010). Importantly, such
differences in sampling efficiency can lead to
markedly different abundance estimates for a spe-
cies, with the consequence that monitoring and con-
servation decisions are based on erroneous popula-
tion estimates. Our results suggest that traditional
hoop net methods can substantially underestimate
E. armatus abundance; visual methods could pro-
vide a more effective and efficient means of meas-
uring the presence and distribution of this elusive
species in clearwater lentic and lotic ecosystems.

Comparatively, both visual survey methods have
advantages and disadvantages for surveying crayfish
in upland freshwater environments. Covering a large
area in a short period of time, the active visual survey
provided rapid detection of an equivalent number of
individuals to the passively stationed underwater
cameras. By contrast, the passively stationed baited
cameras required longer periods to attract and sur-
vey all of the individuals in a given river section, plus
additional laboratory time to analyse footage. While
size estimates could be obtained from both BRUVS
and direct surveys, information such as gender and
reproductive status could only be recorded from
direct visual surveys. Spatial separation for density
estimates (ind. m−2) and microhabitat selection could
also be recorded from direct visual surveys, while
such measurements via baiting methods such as
BRUVS is problematic unless the area of attraction
is known (Acosta & Perry 2000, Brooks et al. 2011).
BRUVS can yield important behavioural in formation,
such as intra- and interspecific competitive inter -
actions between crayfish and other aquatic species
(Bubb et al. 2006, Ebner et al. 2009). Finally, only
moderate training of personnel is required in the
visual surveys (specifically with size estimation). A
limitation of the active visual surveys is that they
require very good water clarity for adequate detec-
tion of all individuals. As such, this visual survey
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Fig. 3. Euastacus armatus. Comparative efficiency of direct
visual survey (Direct), baited remote underwater video sur-
veys (BRUVS) and hoop netting (Hoop net) methods for de-
tecting freshwater crayfish across 4 sites on the Goobarra-
gandra (white bars) and Cotter (grey bars) rivers, southeast
Australia: (a) total number of unique individuals detected,
and (b) mean crayfish caught per unit of effort (CPUE) for
each survey method. ND: no crayfish detected with that 

method at any of the Cotter River sites

Fig. 4. Euastacus armatus. Frequency distribution of the
time crayfish individuals (n = 24 observations) entered the
field of view in a standard 1 h session of baited remote un-
derwater video surveys (BRUVS) footage. Proportions are
calculated from pooling observations across all BRUVS
footage taken across the 4 sites (3 cameras, 2 h each per site)
on both Goobarragandra and Cotter rivers. Multiple obser-
vations of the same individuals (n = 2 individuals surveyed 

at least twice) are included
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method may not be applicable across the full distri-
bution of Euastacus armatus, which also occurs in
high-turbidity environments present in the major
rivers of south-east Australia. Indeed, this is a pri-
mary reason for the widespread use of hoop nets in
previous surveys of the species (Gilligan et al. 2007).

Both the visual and baited camera survey methods
examined here are likely to be valuable for the wide
majority of the 49 Euastacus species that are largely
or wholly restricted to clearwater conditions in cool
mountain streams (Merrick 1995, Furse & Coughran
2011a), and the large proportion of the 540 crayfish
species found in freshwater systems globally (Holdich
2002). Moreover, the underwater video cameras are
also likely to present a valuable role in studying
behaviours of shy or cryptic crayfish that can be diffi-
cult to investigate by other means (e.g. Martin &
Moore 2007, Ebner et al. 2009). In contrast to the
direct visual survey, it was possible to adapt the
baited camera method for low-visibility conditions in
some parts of the Cotter River (e.g. 15 to 30 cm Secchi
depth). By adjusting the distance between the bait
plate and the camera lens to be within visible range,
it was possible to detect crayfish individuals that
approached the bait in a similar fashion to the way
they would on a baited hoop net. We suggest further
research to determine the limitations of these under-
water visual surveys to detect crayfish under varying
levels of water clarity.

The rarity of small (juvenile and sub-adult) individ-
uals observed in the current study and previous sur-
veys of Euastacus armatus has led to suggestions that
small individuals do not occur within the same pools
as larger individuals (Morgan 1986, Gilligan et al.
2007). Electrofishing of small E. armatus individuals
in smaller-order streams supports this claim (Raadik
et al. 2001, Gilligan et al. 2007). By contrast, we visu-
ally detected a small individual occurring in the same
area as a large individual (detected during the same
1 h sampling period of video footage). While this is
only a single observation, it suggests that the habitat
requirements of juveniles may not differ from those
of large individuals. Electrofishing was not examined
in this study because of the risk of cheliped loss
(Westman et al. 1979) and its consequent effects on
growth, defense and the reproductive potential of
individuals (Alonso 2001), which was considered
inappropriate given the conservation status of the
study species. The habitat requirements and occur-
rence of early life history stages should be a priority
for future research.

We conclude that both direct and remote visual
census methods show great promise as effective

means of surveying freshwater crayfish such as Euas-
tacus armatus in montane rivers or streams, yielding
abundances and CPUEs up to 5 times higher than
traditional hoop netting. These observations draw
attention to the need to conduct detailed investiga-
tions of the accuracy and statistical power of the
visual methods for monitoring populations in clear-
water montane rivers and streams to ensure that reli-
able population estimates are obtained. We suggest
that the effectiveness of hoop net sampling methods
be reviewed if they are to be used in monitoring pro-
grammes that inform conservation efforts for threat-
ened freshwater crayfish species. We also recom-
mend a strategy based on the use of multiple
sampling techniques and incorporating multiple
sources of information on crayfish populations (cf.
Zukowski et al. 2011). This should yield accurate
information for the conservation of crayfish popula-
tions (Gladman et al. 2010, Brooks et al. 2011). Given
the Threatened, Endangered or Critically Endan-
gered status of many of the world’s diverse fresh -
water crayfish (Taylor et al. 1996, Holdich 2002), the
use of BRUVS and/or direct visual surveys should be
considered imperative for obtaining estimates of
abundance in low-turbidity habitats, following the
successful adoption of similar non-invasive tech-
niques in detecting a range of endangered and cryp-
tic aquatic taxa around the world (Bellwood et al.
2006, Rajamani & Marsh 2010, Rayment et al. 2011).
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