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INTRODUCTION

Species loss is accelerating globally, causing con-
cerns that we are entering the 6th mass extinction
(Barnosky et al. 2011). Positive feedbacks may result
in accelerating losses, since biodiversity is tied to bio-
geochemical properties of ecosystems and their resil-
ience (Naeem et al. 2012). Extinction risk in verte-
brates correlates with fundamental biological scales:
body size, home range, and geographical distribu-
tion. Large body size is associated with enhanced
extinction risk (Olden et al. 2007), as large species
have lower fecundity, slower growth (Cardillo et al.

2005) and are more vulnerable to exploitation (Wea -
ver et al. 1996). A larger home range is more easily
fragmented and more difficult to protect (Purvis et al.
2000), and is a predictor of extinction risk (Davidson
et al. 2009). A small geographical distribution en -
hances vulnerability to habitat loss or extreme mor-
tality events (Davidson et al. 2009). These trends are
known to occur for marine fishes (Olden et al. 2007).

In oceans, the size of a species’ home range (ge -
nerally considered to be the range during post-
 recruitment life stages, i.e. following larval dispersal)
is a key predictor of the level of protection offered by
marine protected areas (MPAs) (Heupel et al. 2006, Di
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ABSTRACT: Extinction risk is closely tied to body size, home range, and species distribution.
Quantifying home range is critical for conservation, and can enable the use of concepts such as
‘umbrella species’, whose conservation protects other species due to shared habitat. To determine
the value of the humphead wrasse as an umbrella species for coral reef conservation, we con-
ducted a multi-year study of humphead wrasse home range at Palmyra Atoll, Central Tropical
Pacific, tagging juvenile, female, and male individuals with acoustic transmitters. We quantified
home range using 2 metrics, length and area, and determined if these metrics were related to the
sex and maturity status of the individual. We recorded individual movements during 5030 fish-
days, yielding detailed records for 14 individuals comprising 3 juveniles, 5 females, and 6 males.
The home range of humphead wrasse measured over a 2 yr study was 0.4 to 14 km and changed
with ontogeny. Females had larger home ranges than other reef fishes studied to date (n = 68),
indicating value as an umbrella species for coral reefs. We compared the home range of the spe-
cies to the size distribution of tropical marine protected areas (MPAs), and used a model to esti-
mate the MPA length necessary to retain humphead wrasse. Most MPAs are too small to effec-
tively protect the humphead wrasse.
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Franco et al. 2012). Some species range over scales of
meters (Lindholm et al. 2006), whereas others range
across oceans (Weng et al. 2005). Small-scale MPAs
have limited effects for many fish species (Friedlander
et al. 2007), particularly those that are more mobile
and leave small reserves frequently (Palumbi 2004).
Regions with large human populations have very low
populations of large-bodied fishes, including top-
level predators, whereas areas that are effectively
protected from fishing via MPAs or have a low human
population density can contain a large number of top-
predators (Friedlander & DeMartini 2002, Sandin et
al. 2008, Richards et al. 2012). Based on our findings
and many others, a major ramping up of conservation
efforts is needed (Bellwood et al. 2004).

International trade in wildlife threatens biodiver-
sity and ecosystem function on a global scale and has
caused numerous extinctions (Rosen & Smith 2010).
Illegal, unreported, and unregulated fishing (IUU)
(Borit & Olsen 2012) intersects with the wildlife trade
in coral reef systems, where animals are captured
alive for sale as food or aquarium animals (Poh &
Fanning 2012). Overfishing of many species is occur-
ring, spawning aggregations are targeted (Sadovy de
Mitcheson et al. 2008), and destructive fishing prac-
tices are causing severe collateral damage to reefs
(Johannes & Riepen 1995). Trade bans have failed to
control overfishing on coral reefs (IUCN 2010), which
face additional challenges, such as acidification,
warming, pollution, and habitat degradation (Bell-
wood et al. 2004). The rapid economic growth of
China indicates that demand for luxury seafood
products will increase substantially (Fabinyi 2012).

Facing urgent conservation needs, we cannot wait
for perfect ecosystem information before taking
action (Johannes 1998). Conservation planning has a
longer history in terrestrial settings than for oceans
(King & Beazley 2005), and the marine realm could
benefit from approaches developed on land. Simply
protecting areas with high diversity fails to account
for the persistence of these protected systems (Nichol -
son et al. 2006). ‘Focal species’ provide greater
understanding of complex systems (Lambeck 1997)
and include the indicator, keystone, flagship, um -
brella (Zacharias & Roff 2001), and landscape species
(Coppolillo et al. 2004) concepts. The keystone spe-
cies concept aims to identify a species with the
strongest role in ecosystem function, making it very
difficult to identify qualifying species (Power et al.
1996). The landscape species concept aims to inte-
grate ecological and human factors, requiring an
even greater level of knowledge to apply (Sanderson
et al. 2002, Coppolillo et al. 2004). Umbrella species

are those with large home ranges that encompass
many sympatric species with smaller ranges (Noss et
al. 1996, Berger 1997). Information needs are rela-
tively simple; we need only habitat and home-range
data to identify umbrella species, a benefit in marine
systems where knowledge of ecosystem function is
less developed than on land. Across many taxa, the
presence of umbrella species correlates with higher
diversity and abundance (Branton & Richardson
2011), demonstrating that it is a powerful conser -
vation tool, albeit a blunt one. All focal species
approaches have weaknesses and biases (Coppolillo
et al. 2004, Saetersdal & Gjerde 2011), but conserva-
tion with available knowledge is preferable to inac-
tion (Wiens et al. 2008).

In marine systems, an umbrella species would have
(1) a large home range, (2) the greatest number of
sympatric species (i.e. shared habitat requirements),
and (3) high vulnerability to fishing or other impacts
(Berger 1997, King & Beazley 2005, Butler et al.
2012). While an in-depth analysis of Point 2 is beyond
the scope of this paper, the humphead wrasse Cheil-
inus undulatus shares habitat with a diverse commu-
nity whose benthic habitat is itself alive — the coral
reef. The species has a broad Indo-Pacific distribu-
tion (Sadovy et al. 2003a), thus occupying the region
with the greatest coral reef biodiversity on the planet
(Roberts et al. 2002). The humphead wrasse also ful-
fills Point 3, being one of the largest and most con-
spicuous coral reef fishes, and one severely over-
fished through most of its range. Targeting by the
live reef fish trade has led to a severe decline in pop-
ulation despite its broad geographic distribution (Poh
& Fanning 2012). It is on the IUCN’s ‘Endangered’
list, in Appendix II of the Convention on International
Trade in Endangered Species (CITES), and is under
consideration for listing according to the US Endan-
gered Species Act. The humphead wrasse is the
highest priced species in the live reef fish trade
(Sadovy et al. 2003b), and targeting continues des -
pite its rarity (Poh & Fanning 2012). In the absence of
home-range data it was not possible to evaluate
Point 1. Only 1 publication exists on home range and
movement (Chateau & Wantiez 2007), limited to a
single individual that departed the small study re -
gion after 25 d, compromising the estimate of home
range. Therefore, knowledge of the humphead
wrasse’s home range would allow its evaluation for
all 3 umbrella species criteria.

Here we present home-range estimates for the
humphead wrasse measured with an acoustic obser-
vation network. We compare these estimates to the
sizes of existing MPAs in the geographic distribution
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of the species’ using a retention model, and make
recommendations on a MPA scale. We present both
home-range area and home-range length (HRL: the
longest dimension of a shape; Kramer & Chapman
1999), and discuss the value of the humphead wrasse
as an umbrella species for conservation of coral reef
fishes.

MATERIALS AND METHODS

Study species

The humphead wrasse Cheilinus undulatus has a
broad Indo-Pacific distribution (Sadovy et al. 2003a).
It is a protogynous hermaphrodite that matures as a
female at about 5 yr of age and 35 to 50 cm total length
(TL), with some individuals changing to ma ture males
at about 9 yr of age and 70 to 80 cm TL, and others re-
maining female (Sadovy et al. 2003a, Choat et al.
2006, Sadovy de Mitcheson et al. 2010). The species
reaches 2 m TL and 190 kg, and ages of at least 30 yr
(Sadovy et al. 2003a, Choat et al. 2006). The hump-
head wrasse eats a wide variety of invertebrate and
teleost fish prey, and is notable in being one of the few
predators of Acanthaster planci, the crown-of-thorns
starfish (Randall et al. 1978, Sadovy et al. 2003a). De-
spite the large observation effort by scientists, divers,
and fishers, understanding of its spawning behavior
was only recently developed (Colin 2010). Only one
publication exists on home range and movement
(Chateau & Wantiez 2007), limited to a single individ-
ual that departed the small study region after 25 d,
compromising the estimate of home range.

Field site

We conducted a multi-year study at Palmyra Atoll,
Line Islands, Central Tropical Pacific (5.9° N, 162.1° W).
Palmyra is one of the few remaining parts of the world
with healthy populations of humphead wrasse (Zglic -
zynski et al. 2013). Palmyra Atoll provided an ideal
field site to test hypotheses about home-range size in
large coral reef fishes due to the combination of a
large-scale reef and the bordering oceanic waters that
prevent emigration to other reefs. Palmyra Atoll has
approximately 60 km2 of reefs and lagoons, and far
exceeds the scale of the median reserve today
(0.4 km2), as well as the previously published hump-
head wrasse home range length, which we estimated
to be 756 m by measuring the width of the detection
ranges in Fig. 1 of Chateau & Wantiez (2007).

Experiment

We deployed a network of 51 acoustic receivers
(VR2W, Vemco). Animals with acoustic transmitters
(V9, V13, and V16 coded tags, 2 min delay, 193 to
3033 d battery life) were detected when inside the
detection radius of a receiver yielding presence−
absence data. Fish were tagged in 2010 and 2011,
and receivers were downloaded in 2011 and 2012.
The network covered all habitats of the atoll (i.e.
lagoons, forereef, and backreef areas).

Fish were captured with hooks or by divers using
nets, and were placed in a holding tank aboard a
boat. Anesthesia was conducted using MS-222; a
small incision was made in the abdomen, a transmit-
ter was inserted, and the wound was closed using
surgical suture. Transmitters and instruments were
soaked in povidone-iodine solution. Following sur-
gery fish were placed in the holding tank to recover
before being released.

Sex of study individuals

We were not able to determine sex based on mor-
phology because there is no clear sexual dimorphism
in the species (Liu & Sadovy de Mitcheson 2011), and
we did not want to risk injuring animals by attempt-
ing to take gonadal samples. Therefore, we used the
data in Table II of Sadovy de Mitcheson et al. (2010)
to calculate mean TL for juvenile, female, or male
individuals (means were: juvenile, 33.8 cm; mature
female, 77.9 cm; and mature male, 104.6 cm). Then,
using a k-means clustering algorithm with mean TL
as input, we classified each of our animals into these
3 classes. We then compared the HRL with class
using an ANOVA to check if differences in HRL
could be detected between classes. The possibility of
primary males <85 cm TL exists (Colin 2010, Sadovy
de Mitcheson et al. 2010), so we cannot rule out the
possibility that individuals categorized as female
were small primary males. In addition, the existence
of rare large females (Sadovy de Mitcheson et al.
2010) means there is a possibility that individuals we
classified as male were actually female.

Data analysis

We quantified home range using 2 metrics, length
and area, and determined if these metrics were
related to the total length of the individual. Many
animals have asymmetric ranges, so the scale neces-
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sary for protection is given by the largest distance to
span the home range — the HRL (the distance be -
tween boundaries in the longest dimension; Kramer
& Chapman 1999). We also calculated home-range
area, since many MPAs are categorized by area
rather than length. Data were not normally distrib-
uted, so we used median and interquartile ranges to
report results.

We used 2 different approaches to determine HRL
and area: the kernel utilization distribution (KUD)
and the minimum convex polygon (MCP). Since the
KUD method is less sensitive to outliers, we report
KUD values in the results, and both in Table 1. These
methods were applied to locations from each animal
calculated at evenly distributed time points using a
weighted mean method (Simpfendorfer et al. 2002).
Because of the large number of detections (see
Table 1), and because of the relative insensitivity of
HRL and area to the choice of bandwidth, we used
the ‘ad hoc’ method for selecting the KUD band-
width, which is appropriate for large sample sizes

(Worton 1989). For calculation of both MCP and KUD
we used the package adehabitat for R Version 3 (R
Core Team 2013).

HRL was calculated as the longest dimension of the
95% KUD, or the longest dimension of the MCP. We
then compared HRL with TL using a quadratic
regression (with regression parameters beta0, beta1,
and beta2) to check for significant ontogenetic or sex-
based effects. To check the hypothesis that HRL
depends quadratically on TL we fitted the model
such that:

HRL ~ beta0 + beta1 × TL + beta2 × TL2 (1)

To determine if our study duration was sufficient to
allow for meaningful inference regarding home
range, we checked that HRL reached an asymptotic
value indicating that extending the study duration
would not yield different results. Starting with 1 d of
data we calculated 95% HRL, and repeated for in -
creasingly larger data subsets to produce a cumulative
home-range length over time (Heupel et al. 2004).

Tagging date Fish Total  Track HRL-95% HRL-MCP Area 95% Area MCP Days to 
ID length days KUD (km) (km) KUD (km2) (km2) asymptote of

(cm) HRL-MCP

9 Aug 2011 F1 77 394 14.4 14.4 5.6 21.3 331
12 Aug 2011 F2 61 362 9.2 9.4 2.9 7.7 307
15 Aug 2011 F3 67 371 14.4 18.8 5.9 43.9 329
18 Aug 2011 F4 66 340 7.0 6.6 5.3 6.2 37
24 Aug 2011 F5 83 380 10.3 9.7 9.0 15.5 166
15 Nov 2010 J2 41 375 0.7 2.1 0.1 0.5 179
17 Nov 2010 J3 32 374 0.8 0.8 0.1 0.2 36
22 Aug 2011 J6 28 202 0.4 0.4 0.0 0.0 186
16 Nov 2010 M1 103 349 3.7 3.6 0.9 4.0 71
17 Aug 2011 M3 107 372 3.3 5.6 0.4 14.6 61
19 Aug 2011 M4 87 386 2.0 4.3 0.2 8.1 117
20 Aug 2011 M5 100 385 2.1 4.4 0.4 4.5 107
25 Aug 2011 M6 109 378 4.3 5.6 3.3 14.6 172
26 Aug 2011 M7 89 362 2.5 1.9 1.4 1.9 21
All Median 80.0 373.0 3.5 5.0 1.2 7.0 142

Q1 62.3 362.0 2.0 2.5 0.2 2.4 64
Q3 97.3 379.5 8.6 8.7 4.8 14.6 184

Females Median 67.0 371.0 10.3 9.7 5.6 15.5 307.0
Q1 66.0 362.0 9.2 9.4 5.3 7.7 166.0
Q3 77.0 380.0 14.4 14.4 5.9 21.3 329.0

Juveniles Median 32.0 374.0 0.7 0.8 0.1 0.2 179.0
Q1 30.0 288.0 0.6 0.6 0.1 0.1 107.5
Q3 36.5 374.5 0.7 1.4 0.1 0.4 182.5

Males Median 101.5 375.0 2.9 4.4 0.7 6.3 89.0
Q1 91.8 364.5 2.2 3.8 0.4 4.1 63.5
Q3 106.0 383.3 3.6 5.3 1.3 13.0 114.5

Table 1. Home range metrics for humphead wrasse Cheilinus undulatus. Home range length (HRL) is based on 95% kernel
utilization distribution (KUD) or on minimum convex polygon (MCP). ID: identification number; F: female; M: male; J: juvenile; 

Q1: 1st quartile; Q3: 3rd quartile
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MPA size

We used a global protected area dataset (IUCN &
UNEP 2009) to determine the area and boundaries of
tropical MPAs. To limit the analysis to MPAs contain-
ing coral reefs, we excluded all protected areas that
did not overlap with the coral reef polygons con-
tained in a coral reef dataset (Burke & Spalding
2011). Using the geographic distribution reported in
Sadovy et al. (2003a), we calculated MPA length for
each of the coral reef MPAs within the range of the
humphead wrasse. MPA length was defined as the
largest linear dimension of the protected area, and
was calculated using a rotating calipers method on
the minimum convex polygon enclosing the MPA.

To compare MPA length against the home-range
scale of humphead wrasse, we estimated juvenile,
male, and female retention rates for different sizes
of MPAs. Our simulations were conducted for puta-
tive MPAs across a large range of sizes, and not for
specific MPAs that exist around the world. We
assumed a linear coastline with uniform habitat
(Moffitt et al. 2009), and simulated the spatial distri-
bution of fish home ranges as a uniform random vari-
able. This means that the individual fish was the
same as its home range, for the purposes of the simu-
lation, and that the distribution of fish was random.
The number of individuals simulated was a function
of the viable population size for a species, so resource
managers should chose a number appropriate for
their case. We created random simulations of home-
range distri bution (n = 10 000 home ranges run−1) in
MPAs of  different length (L, in units of HRL) and
defined home range (R) as the sum of all home ranges
or parts of home ranges expected to fall within the
MPA divided by the sum of all the home ranges. We
used a large number of individual fish per run
(10 000) to ensure that results were not controlled by
stochastic processes.

(2)

where n is the total number of simulated home
ranges (10 000), i is the i th home range, H is the HRL
(which can be treated as 1), x is the length coordinate
and g(x) is a function defined to equal H−1 inside the
bounds of the MPA (situated along the line from 0 to
L), and equals 0 outside of it:

(3)

while li and ri are the left and right bounds of the i th

home range, defined as the home-range center (hi)
minus and plus half the HRL, respectively:

(4)

While home ranges in reality are not uniformly dis-
tributed due to the uneven distribution of suitable
habitat, the distribution of habitat should not affect
the expected behavior of our simulation (i.e. patchy
habitat distributions are equally likely to reduce or
increase retention). The results of our analysis dif-
fered for 2 conditions: in the first condition, we con-
strained the home ranges to be distributed so that
their centers always overlapped with the MPA:

h ~ U(0, L) (5)

This was termed the ‘narrow’ condition and implies
that only fish whose home-range centers fall within
an MPA can be considered for calculations of reten-
tion rate. In the second condition (the ‘wide’ condi-
tion), we additionally allowed the home ranges to be
distributed so that their edges overlapped the MPA:

(6)

This more conservative definition, which con -
siders more individuals for calculations of retention
rate, always resulted in lower estimates for retention.
Both calculations yielded an MPA length (in units of
HRL) necessary to achieve a given level of post-
recruitment retention. Following a published method
(Kra mer & Chapman 1999), we chose 90% retention
of individuals inside the MPA as the target (R ≥  0.9),
but decision makers should choose a target level
appropriate to their case. HRLs are a strong function
of onto geny. MPAs that seek to boost the spawning
biomass of a species must successfully protect all 3
post-recruitment life stages; therefore, the life stage
with the largest HRL (female) was considered to set
the MPA length threshold for successful protection.

RESULTS

We captured and tagged 19 humphead wrasse
ranging in size from 27 to 109 cm TL (80 cm; 62–
97 cm TL [median; Q1–Q3]) during expeditions in
2010 and 2011 at Palmyra Atoll (Table 1). During
5030 fish-days, 188 585 detections were recorded,
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yielding detailed movement records for 14 individu-
als comprising 3 juveniles, 5 females, and 6 males
(Fig. 1, Table 1). Home-range metrics were calcu-
lated from both KUDs and MCPs; the methods
yielded similar values for HRL, but MCP provided
larger estimates for area. We report results from
KUDs, for which bandwidths averaged 0.06 km
(median; Q1–3: 0.03 to 0.13 km).

Home-range scale and ontogeny

The overall KUD-HRL was 3.5 km (median; Q1–
3: 2.0–8.6 km; Table 1). HRL varied by stage

(Kruskal-Wallis test: H = 11.31, df = 2, p = 0.00),
and was 0.7 km (0.6–0.7 km) for juveniles, 10.3 km
(9.2–14.4 km) for females, and 2.9 km (2.2–3.6 km)
for males (Fig. 2). Since females had the largest
range, they would not be protected by manage-
ment regimes based on male or juvenile home-
range scale. Therefore, females were used to
quantify the area required to protect a population.
Quadratic regression of HRL versus TL provided a
significant fit (R2 = 0.689; t-test for beta2: t = −4.17,
p = 0.00). That is, for individuals below a peak
value (77 cm TL) HRL increased as a function of
TL, whereas individuals >77 cm showed a decrease
in HRL.
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Home-range scale of coral reef fishes

The humphead wrasse had a greater HRL than
other coral reef teleost fishes from a wide variety of
families (Fig. 3), including the heavily targeted
groups Serranidae, Carangidae, Scaridae, Mullidae,
and Acanthuridae (Kramer & Chapman 1999). In par-
ticular, the median home-range scale of female
humphead wrasse (9.7 km) to our knowledge
exceeds all other measured HRLs of coral reef fishes,
including those reported for juvenile reef sharks of
considerably larger body size (Fig. 3; Table S1 in
the Supplement at www.int-res.com/articles/suppl/

n027 p251_supp.pdf). Using a power-law regression
be tween HRL and body length for 68 coral reef
fishes, we calculated that the juvenile, female, and
male HRLs are 6.7, 16.7, and 2.9 times larger than ex -
pected based on body length alone.

Home-range scale and marine protected areas

We used 2 metrics to evaluate the scale of existing
MPAs, based on how many individuals are consid-
ered in retention-rate calculations, with the narrow
condition being less conservative than the ‘wide’
con dition (see ‘Materials and methods’). Our calcula-
tions of ex pected retention rate indicate that the min-
imum MPA length necessary to achieve 90% reten-
tion of female humphead wrasse (median HRL:
9.7 km) is 24.3 km, or 2.5 times the HRL under the
narrow  condition, which considers fewer individuals,
and 87.3 km, or 9 times the HRL under the wide (con-
servative) condition, which considers more individu-
als (Fig. 4). Of the 2028 coral reef MPAs that have
been established inside the known range of Cheili-
nus undulatus, 23.0% of the MPAs meet the size cri-
terion for 90% retention under the narrow condition
and 5.3% meet the criterion for the wide condition
(Fig. 5).

Temporal and spatial adequacy of study

Home ranges for all animals were limited in size
compared to the size of the study area (Fig. 1).
Palmyra’s coral reef platform is 19.5 km long based
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on NOAA high-resolution bathymetry (www.soest.
hawaii.edu/pibhmc/pibhmc_pria_pal_bathy.htm). The
median HRL was significantly smaller than 19.5 km
(left-tailed sign rank test: W = 0, p = 0.00; we used
non-parametric tests because the distribution of HRL
is non-normal, Jarque-Bera test: JB = 3.01, p = 0.05).
This indicates that our study site was large enough to
obtain unbiased estimates of HRL.

Tracking durations for the 14 individuals ranged
from 202 to 394 d and averaged 373 d (median)
(Quartile 1 to 3: 362 to 379 d). Calculating HRL for
increasingly larger subsets of data indicated that
HRL reached an asymptote for most individuals at a
median of 142 d (Quartile 1 to 3: 64 to 184 d; Table 1).
The median tracking duration was greater than the
median time to asymptote (right-tailed sign rank test:
W = 105, p = 0.00), indicating that the temporal extent
of the study was sufficient to quantify HRL. To deter-

mine if animals had a fixed home range that shifted
spatially through time (thereby causing HRL to
increase through time), we also calculated HRL using
moving windows of 1, 2, 7, and 14 d. The maximum
HRL during the window width was not significantly
different from the maximum HRL across the whole
record (Kruskal-Wallis test: H = 0.55, df = 4, p =
0.969).

DISCUSSION

Our data reveal that the humphead wrasse has a
well-defined home range that exceeds the scale of
most existing MPAs globally. In the face of growing
international demand for wildlife products, protec-
tion of the humphead wrasse will require much
stronger conservation actions. Such actions would
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Fig. 4. Marine protected area (MPA) length thresholds for humphead wrasse Cheilinus undulatus. (A) MPA length to achieve
90% retention of post-recruitment individuals in units of female home range length (HRL). Gray indicates MPA lengths with
retention >90%. Length axis in multiples of HRL to show that MPA size scales with the species being considered. Narrow and
wide conditions are shown (see ‘Materials and methods’). (B) HRL for females versus size of MPAs within the species’ range.
Black polygon shows the cumulative frequency distribution of MPA size. Gray shading and black dashed lines show the
interquartile range and median MPA lengths with 90% retention of females, respectively. Females are presented as they have
the longest HRL and would not be protected by MPAs designed for males or juveniles. The percentage of MPAs meeting the 

narrow and wide conditions for median female HRL are 23.0 and 5.3%, respectively

Fig. 5. Length dimensions for marine protected areas (MPAs) in the Indo-Pacific region. Region bounded by dashed line shows
the geographic distribution of humphead wrasse Cheilinus undulatus after Sadovy et al. (2003). The color of MPAs is scaled 

to their length. Of the MPAs, 77 to 94% are too small to achieve 90% retention of female hunphead wrasse
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also have major benefits in terms of safeguarding
habitat for the entire ecosystem in which the hump-
head wrasse lives. The humphead wrasse fulfills 3
key criteria for an umbrella species (Caro & O’Do-
herty 1999, Roberge & Angelstam 2004): a larger
home range than sympatric species, a habitat shared
with the most diverse coral reef communities
(Roberts et al. 2002), and high vulnerability to fishing
(Sadovy et al. 2003a). Key considerations for the
design of marine reserves and networks include
habitat representation, risk, critical areas, MPA spac-
ing, duration, and climate-change resilience (Green
et al. 2014). Larval dispersal is an important consider-
ation for the spacing distance between MPAs; while
the key ecological determinant for the scale of any
individual MPA is the home range of one or more tar-
get species (Palumbi 2004). In this study, we focus on
the latter question, and the implications of new data
on the home range of the humphead wrasse.

Home range of humphead wrasse and the scale 
of existing marine reserves

Most existing MPAs are too small to protect the
humphead wrasse (Figs. 4 & 5). Globally, reserves
range from 0.004 to 640 000 km2, but the average is
small in scale, 1 to 10 km2 (IUCN & UNEP 2009).
Considerations for the design of reserves and reserve
networks include size, spacing, and shape, with the
aim of maintaining ecosystem function in the face of
fishing, pollution, development, natural disasters,
and climate change (Botsford et al. 2003, Friedlander
et al. 2003, Shanks et al. 2003, Palumbi 2004, Fernan-
des et al. 2005, McLeod et al. 2009). The size of re -
serves should be related to the home range of key
species, while the spacing of reserves should be
related to distances of larval connectivity (Palumbi
2004). Furthermore, different functional groups and
size classes have contrasting responses to marine
reserves, with more-predatory and large body-sized
species increasing the most after protection and
some groups decreasing as a result of predation and
other factors (Micheli et al. 2004).

The existing literature suggests that coral reef
MPAs should be 4 to 20 km in length (Friedlander et
al. 2003, Shanks et al. 2003, Palumbi 2004, Fernandes
et al. 2005, McLeod et al. 2009). Our results suggest
that MPAs should be roughly an order of magnitude
larger (20 to 80 km length) to protect the humphead
wrasse. Given this, what benefits would accrue to
coral reef ecosystems by scaling up MPAs to protect
humphead wrasse?

Comparison of our home-range data with the liter-
ature shows that the humphead wrasse is an effective
umbrella species for coral reef ecosystems. The
median HRL of female humphead wrasse (10.3 km)
exceeds all other published HRLs of coral reef teleost
fishes, including the heavily targeted families (Fig. 3;
references in Table S1). Since this species falls above
the body size−home range regression for coral reef
fishes, it has more value as an umbrella species than
indicated by its size. To realize the conservation ben-
efits of using the humphead wrasse as an umbrella
species, a major scaling-up of MPAs will be required.
Geographically, the greatest threats to coral reefs
overlap with the smallest MPAs in the Coral Triangle
(Fig. 5), indicating that this region is of particular
concern. The 344 000 km2 Great Barrier Reef Marine
Park (GBRMP), which constitutes one of the largest
MPAs in the world, implemented a zoning plan in
2004 which establishes 20 km as the minimum length
of the smallest dimension of any no-take reserve,
and, as of 2005, nearly half of the 122 offshore re -
serves in the GBRMP had been expanded to fit this
definition (Fernandes et al. 2005). The use of hump-
head wrasse as an umbrella species would empha-
size similar, or more conservative, standards in spa-
tial management systems for coral reefs across the
Indo-Pacific.

Extinction risk in marine fishes

How likely is extinction in marine fishes? Due to
large ranges and high dispersal and fecundity, mar-
ine extinctions were considered unlikely in the past.
However, both extinctions and major range contrac-
tions have occurred among marine fishes (Carlton et
al. 1999, Dulvy et al. 2003, Sadovy & Cheung 2003).
For those species that command unusually high
prices, management via Adam Smith’s ‘invisible
hand’ does not work (Thornton 2009). The perception
of rarity can increase the value of such products (Hall
et al. 2008), so hunters and fishers continue to target
such species when rare (Price & Gittleman 2007). The
humphead wrasse and many sympatric species exist
across a vast area of the Indo-Pacific Ocean, so fish-
eries have little chance of causing extinctions. How-
ever, massive habitat loss is possible in the near
future, resulting from ocean acidification and com-
pounding stressors (Kleypas et al. 1999, Orr et al.
2005, Doney et al. 2009), meaning that species with
large present-day geographic distributions may have
small or patchy distributions in the future. Given the
potential for such changes, maintaining systems in
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their most intact form appears to be a sensible strat-
egy for coral reef resilience.

Reviews of marine extinction highlight species dis-
tribution scale as a predictor of risk, but do not dis-
cuss individual home ranges. Specific traits are cor-
related with extinctions (Dulvy et al. 2004), including
rarity (Musick et al. 2000), large body size, late ma -
turity (Reynolds et al. 2005), specialized habitat
(Musick et al. 2000), narrow depth range (Graham et
al. 2011), small geographic range, endemism, sex-
changing ontogeny, and trophic category (macrocar-
nivores and mobile invertivores) (Bender et al. 2013).
Small body size has also been highlighted (Graham
et al. 2011), although this study excluded families
such as groupers, snappers, and jacks that skew to -
wards large body size. High fecundity alone does not
appear to impart resilience to extinction (Reynolds et
al. 2005). Naturally rare reef fish species may be tar-
geted more intensely by predators and wiped out of
some localities (Almany 2004). Our results suggest
that, in the context of a human-dominated ocean,
where human predation can be a key factor shaping
community structure, a large home range may in -
crease susceptibility to extinction. Island specialists
may have evolved traits for more consistent recruit-
ment than congeners living in ex tended reef systems,
potentially reducing vulnerability (Hobbs et al.
2011). Which of these traits occur in the humphead
wrasse? Rarity, large body size, sex-changing onto -
geny, and trophic category all put the humphead
wrasse on the vulnerable end of the spectrum, while
its large species distribution and moderate age at
maturity may provide resilience. Many species that
are resilient to fishing may have numerous natural
refugia (Sadovy & Cheung 2003), but the broad
accessibility of coral reefs means that legal or cultural
refugia are necessary.

Empowering conservation actions

Global challenges are increasing for marine species
and ecosystems (Harnik et al. 2012). As innovations
occur in marine conservation and planning (Cam-
pagna et al. 2007, Stelzenmuller et al. 2013), we re-
quire accurate biological information on which to base
new conservation strategies. While we aspire to man-
age optimally, acting before species or ecosystems are
lost means we must manage using the levers we can
pull, such as the CITES and the US Endangered Spe-
cies Act (Harris 2012). Levers also exist where interna-
tional, national, regional, and local entities are creat-
ing and modifying laws, rules, and customs for the

management of fisheries and the conservation of eco-
systems (Weeks et al. 2014). Whether the actions are
being taken by traditional leaders, fishery coopera-
tives, governments, non-governmental organizations,
or international bodies, the biology remains the same,
so conservation actions must be informed by the best
available information, and ‘scientific advances in fish
connectivity … necessitate refining advice for marine
reserve design’ (Green et al. 2014, p. 143).

Limited understanding of ecosystem function may
make it difficult to find keystones, and systems with
high functional redundancy may not have keystone
species. In contrast to a keystone species concept, the
umbrella species concept does not address the eco-
logical role of a species, or the level of functional
redundancy in the ecosystem. It simply addresses the
number of other species that are sympatric with the
candidate species (Noss et al. 1996, Berger 1997).
The umbrella species concept provides us a way to
understand the broader implications of the protection
of an endangered species. If we protect the habitat of
an endangered species with few sympatric species,
the system as a whole derives little benefit, whereas
habitat protection for an umbrella species, which has
many sympatric species, generates great benefits to
the ecosystem. Hence, where endangered species
are also effective umbrella species, they become the
surrogate of an entire ecosystem (Caro & O’Doherty
1999).

The umbrella species concept can be used to de -
velop suites of species that are more representative
of ecosystems than single species (Coppolillo et al.
2004), and can be validated through investigations of
whether umbrella species and co-occurring species
respond similarly to stressors, and to what degree
species co-occur (Saetersdal & Gjerde 2011). While
umbrella species may not exist for all systems, they
are effective in some (Butler et al. 2012, Nicholson et
al. 2013), and the concept allows us to act sooner than
is possible with the keystone species concept, which
requires exhaustive knowledge of functional roles.
We suggest that the humphead wrasse, with its large
home range and threatened status, can act as an
umbrella species for enhanced conservation of coral
reef fishes and their habitat.
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