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BACKGROUND

From the early days of the Deepwater Horizon
(DWH) oil spill, it was clear that the disaster pre-
sented unique challenges of magnitude and nature.

It was the first time that US Government authorities
declared a ‘Spill of National Significance’: a spill so
severe and complex that it requires an ‘extraordi-
nary coordination of federal, state, local, and re -
sponsible party resources’ (40 C.F.R. § 300.5). Gov-
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ABSTRACT: From 2010 to 2015, a team of scientists studied how the BP Deepwater Horizon
(DWH) oil spill affected marine mammals inhabiting the northern Gulf of Mexico, as part of the
DWH Natural Resource Damage Assessment process. The scientists conducted the assessment on
behalf of the DWH co-Trustees, with the purpose of investigating whether marine mammals were
exposed to DWH oil and what types of injuries they suffered as a result of the DWH oil exposure,
and then quantifying those injuries to determine the appropriate amount of restoration required to
offset the injuries. Photographs, aerial surveys, spatial analyses of the co-occurrence between sur-
face slick and cetacean populations, and chemical fingerprinting of oiled and stranded carcasses
all confirm that at least 15 cetacean species were exposed to the DWH surface slick. Cetaceans
that encountered the slick likely inhaled, aspirated, ingested, and/or adsorbed oil. In this Theme
Section, marine mammal biologists, statisticians, veterinarians, toxicologists, and epidemiologists
describe and quantify the adverse effects of this oil exposure. Taken together, this combination of
oil spill dynamics, veterinary assessments, pathological, spatial, and temporal analyses of stranded
animals, stock identification techniques, population dynamics, and a broad set of coordinated
modeling efforts is an unprecedented assessment of how a major oil spill impacted a large and
complex marine mammal community and their connected habitats.

KEY WORDS:  Deepwater Horizon · Marine mammals · Oil · Petroleum · Natural Resource Damage
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ernment and industry stakeholders had to confront
a blowout in deep water 65 km offshore, re spond
to a widespread surface oil slick with a constant
source, survey a 3-dimensional footprint with a
diverse range of habitats and natural resources, and
apply regulatory statutes (such as the Oil Pollution
Act and the National Oil and Hazardous Substances
Pollution Contingency Plan) across a long timeline.
A critical concern for the team of DWH federal and
state Trustees to address was how the oil spill
affected the 22 species of marine mammals in the
northern Gulf of Mexico (nGoM).

This Theme Section describes much of the techni-
cal work that helped the DWH Trustees evaluate
the impact of the DWH spill on marine mammals.
The Trustees’ Natural Resource Damage Assessment
(NRDA) is described in the Programmatic Damage
Assessment and Restoration Program/ Programmatic
Environmental Impact Statement (PDARP/ PEIS)
(DWH NRDA Trustees 2016). In this overview paper,
our goal was to (1) describe the elements of the as -
sessment that informed how and to what extent
nGoM marine mammals were exposed to DWH oil,
and (2) provide the reader with a broader context for
each of the papers in this Theme Section, as well as
manuscripts published elsewhere, and how they fit
into the overall marine mammal assessment.

This Theme Section is not meant to be a complete
catalog of the studies undertaken or considered by
the DWH Trustees, nor should the results be inter-
preted to represent a ‘final’ description of the short-
and long-term harm to nGoM marine mammals.
 Scientists who contributed to the NRDA as well as
scientists working outside of the NRDA continue to
investigate how the DWH oil spill has affected and
may continue to affect nGoM marine mammals.

SCIENTIFIC APPROACH IN 
THE CONTEXT OF NRDA

In the wake of the Exxon Valdez oil spill in 1989,
the US government passed the Oil Pollution Act of
1990 (OPA), which prompted government agencies
to develop regulatory language to formalize the pre-
vention, response, liability, and compensation associ-
ated with oil pollution in US waters. Under the OPA,
parties responsible for oil spills must compensate the
public for the harm that the discharged oil causes to
natural resources, and that compensation must be
used to restore those resources that were harmed.
The National Oceanic and Atmospheric Administra-
tion (NOAA) has issued guidance to natural resource

Trustees for conducting an oil spill NRDA (Huguenin
et al. 1996). The guidance for the NRDA process lays
out the technical requirements to demonstrate that a
specific incident has caused harm (‘injuries’) to natu-
ral resources, and in turn, how the Trustees propose
to restore the resources that were injured. For each
resource affected by the DWH oil spill, including
marine mammals, the Trustees and their technical
experts evaluated:
• How were the resources exposed to DWH oil? When,

where, to what degree, and for how long? Is there a
reasonable pathway by which DWH oil moved from
the source of the oil at the well site to the site of
exposure?

• What types of injuries did DWH oil (and the associ-
ated response activities) cause to the resources? For
organisms, is there evidence that DWH oil caused
mortality, reproductive effects, and/or adverse health
effects?

• What is the magnitude of injuries caused by DWH
oil (and the associated response efforts)? For a
given resource, what was the spatial and temporal
extent of injuries? How severe were the injuries, at
any level of biological organization (e.g. suborgan-
ismal, individual, population)? How long will it take
for the resources to recover?
After evaluating oil fate and transport, and the

injuries that oil exposure caused to numerous organ-
isms and habitats, the Trustees developed a restora-
tion plan that describes the types of projects that
will offset the injuries that DWH oil, dispersants,
and re sponse activities caused to natural re sources
(DWH NRDA Trustees 2016). The plan will be im -
plemented via an $8.8 billion settlement. Specific
restoration projects for marine mammals and their
habitats will be designed and implemented over the
next 2 decades.

UNIQUE NATURE OF THIS 
MARINE MAMMAL NRDA

While assessing exposure and injuries to any
resource in the wake of an environmental disaster
is difficult, a Gulf-wide investigation of marine
mammals poses a particularly burdensome set of
logistical, regulatory, and ethical challenges. Mar-
ine mammals are large, long-lived species that can
be difficult to find and track in the open water. In
addition, all marine mammals are protected under
the Marine Mammal Protection Act (MMPA), and
some species are granted further protections under
the Endangered Species Act. This greatly limits the
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ability of scientists to conduct controlled laboratory
studies demonstrating the toxic effects of oil on
marine mammal species. Thus, the NRDA science
team had to carefully select and integrate appropri-
ate data from response activities (Wilkin et al. 2017,
this Theme Section), field studies, and laboratory
studies from the literature and from DWH-specific
activities.

Although studies on marine mammals following oil
spills are limited, both laboratory and field studies,
including science conducted in the wake of the
Exxon Valdez oil spill, have documented or inferred
the adverse effects of oil to marine mammals and
other wildlife species and their habitats (e.g. Peter-
son 2001, Peterson et al. 2003). While data are sparse,
both field and laboratory studies have shown that
cetaceans exposed to oil can suffer long-term im -
paired health, and potentially die as a result of that
exposure (Geraci & St. Aubin 1982, 1985, Engelhardt
1983, Matkin et al. 2008). Inference about the im -
pacts of oil exposure on the health of cetaceans is
more commonly drawn from the results of laboratory
studies on the effects of oil in other marine mammals
(e.g. pinnipeds) (Engelhardt 1983) and surrogate
mammalian species such as mink Mustela vison
(Mazet et al. 2000, 2001, Schwartz et al. 2004, Mohr
et al. 2008, 2010).

To address gaps in the marine mammal oil toxicol-
ogy literature, as well as specific issues related to
DWH and the nGoM, the Trustees developed a suite
of studies to assess the extent of DWH oil exposure to
nGoM cetaceans and to identify and characterize
potential exposure and injuries to these animals as a
result of the oil spill (Box 1). The Trustees also at -
tempted to investigate injuries to manatees; how-
ever, while response workers did respond to mana-
tees in contaminated waters (Wilkin et al. 2017), the
Trustees ultimately did not have adequate informa-
tion on exposure or injury to pursue injury quantifi-
cation for these mammals. Thus, the discussion here
of the impacts of DWH oil on marine mammals refers
specifically to the impacts on cetaceans.

As the spill progressed and DWH oil entered Bara -
taria Bay and Mississippi Sound, scientists collected
as much data as possible on bottlenose dolphins Tur-
siops truncatus in these oiled habitats. These stocks
were a good starting point for assessing and quanti-
fying injury to nGoM cetaceans because:
• A reasonable amount of biological and ecological

data are available for these areas, including envi-
ronmental data, oil exposure data, and information
on other affected resources/species beyond marine
mammals

• These areas had established stranding response
networks and other support elements (and there-
fore mortalities from these stocks were more likely
to be recovered compared to offshore stocks)

• NRDA-specific data could be integrated with strand-
ing response data, including temporal/ spatial ana -
lysis of strandings, necropsy findings, and tissue
analysis

• It was logistically feasible to conduct assessments
(in cluding live captures for health assessments) in
these areas compared to other more remote loca-
tions

• There are reasonable reference datasets from dol-
phins in the southeastern USA (e.g. Sarasota Bay)
for comparison.
By developing an in-depth analysis of these pop-

ulations and comparing them to populations that
were not exposed to DWH oil, such as those in
Sarasota Bay, the NRDA science team could rea-
sonably use the Barataria Bay and Mississippi
Sound stocks as case studies for inferring exposure
and injuries to other nGoM cetacean stocks. The
MMPA defines a stock as ‘a group of marine mam-
mals of the same species or smaller taxa in a com-
mon spatial arrangement, that interbreed when
mature’ (16 U.S.C. 1362 [3]). For the purposes of
the DWH NRDA, the marine mammal science team
assessed injuries by stock. Generally, the team lim-
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Box 1. Deepwater Horizon (DWH) marine mam-
mal assessment activities. Source: DWH NRDA 

Trustees (2016)

Oceanic species
        • Research cruises
                  · Distribution
                  · Exposure
                  · Demographics
                  · Prey availability
        • Remote biopsies
        • Tagging
        • Passive acoustic monitoring

Coastal species
        • Aerial surveys
                  · Distribution
                  · Abundance
        • Prey availability

Bay, sound, and estuary species
        • Longitudinal photo-identification (ID)
                  · Survival
                  · Abundance
        • Remote biopsies
        • Capture-release
                  · Health assessment
                  · Satellite tagging
        • Stranding investigation
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its the use of the term ‘population’ to analyses asso-
ciated with the population models described in
Schwacke et al. (2017, this Theme Section) and
DWHMMIQT (2015).

CETACEAN EXPOSURE TO DWH OIL

As DWH oil spread throughout the nGoM, re -
sponse workers, scientists, and media outlets docu-
mented cetaceans swimming through the oil
(Aichinger Dias et al. 2017, this Theme Section).
Occasionally, stranding networks were able to col-
lect oil samples from carcasses, and chemical fin-
gerprinting of those samples matched DWH oil (al -
though without additional studies, the Trustees
could not confirm whether the oil ex posure oc -
curred before or after death). However, most of
these observations were opportunistic be cause it
was infeasible to design and implement an all-
encompassing assessment of cetacean exposure to
DWH oil throughout the entire area of the nGoM
where DWH oiling oc curred. Rather, scientists in -
ferred the spatial and temporal extent of DWH oil
exposure to nGoM cetaceans using oil slick obser-
vations, and fate and transport models of DWH oil,
 combined with the historical distributions of each
ceta cean species (DWHMMIQT 2015). Finally, vet-
erinarians developed scenarios based
on the ex pected exposure conditions
in the field to identify and character-
ize the potential toxicological effects
of DWH oil to cetaceans, ruling out
alternative causes for the observed
adverse health effects (Schwacke et
al. 2014, Lane et al. 2015, Smith et al.
2017, this Theme Section). By consid-
ering unique as pects of cetacean
physiology and behavior (e.g. respi-
ratory system and diving physiology/
behavior) and the toxic effects of oil
components (e.g. polycyclic aromatic
hydrocarbons [PAHs]) described in
the literature, the NRDA science
team established plausible and likely
links between the release of DWH oil
into the nGoM and the increased
mortality and adverse health effects
observed in coastal common bottle-
nose dolphins (Fig. 1) (DWH NRDA
Trustees 2016), after ruling out other
causes of lesions, illnesses, and deaths
(Venn-Watson et al. 2015c).

Cetaceans in the surface oil footprint

The DWH surface oil footprint overlapped with the
known ranges of 21 species of nGoM cetaceans,
based on population ranges established by satellite
tag/  radio tracking, acoustic monitoring, and aerial/
vessel surveys (Waring et al. 2013, Aichinger Dias et
al. 2017). Cetaceans potentially exposed to the oil
included 13 separate stocks of bottlenose dolphins,
plus 18 stocks of other dolphin and whale species. In
estuarine nGoM waters, where many of the bay, sound,
and estuary (BSE) bottlenose dolphin stocks spend
time, there was an estimated 15 600 square-kilometer-
days of floating surface oil (the sum of the daily areal
extent over approximately 100 d). This floating oil
washing into BSE habitats resulted in approximately
2100 km of shoreline with observed oil. Barataria Bay
and Mississippi Sound were 2 BSE areas that were
heavily oiled (DWH NRDA Trustees 2016).

Although cetaceans can move large distances and
have, in some controlled captive cetacean studies,
demonstrated an ability to avoid surface oil (Geraci et
al. 1983), one field study suggested that although
they can detect oil, they do not consistently avoid it
(Smultea & Würsig 1995). Regardless of their ability
to avoid oil if they sense it, the DWH oil spill was so
extensive in time and space (Box 2) that it was in -
evitable that cetaceans were exposed (see the photo-
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Fig. 1. Conceptual model of Deepwater Horizon (DWH) oil exposure routes in
nearshore environments, and how that exposure of bottlenose dolphins Tur-
siops truncatus was consistent with the observed injuries. The diagram starts
with route of oil exposure (white boxes), then moves to the specific mobiliza-
tion and exposure scenarios for cetaceans (black boxes), and finally to the 

most likely adverse health effects (grey boxes)
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graphs, videos, and data collections presented in
Aichinger Dias et al. 2017). Aerial/vessel surveys and
reports from response monitoring activities from
April to September 2010 documented over 1100 ceta -
ceans from at least 10 species in thick surface oil or
surface oil sheen (Aichinger Dias et al. 2017, Wilkin
et al. 2017).

Routes of exposure and unique anatomical/
physiological considerations

DWH oil contaminated the air and waters through-
out the nGoM from the deep ocean release point,
spreading throughout the water column, forming ex -
tensive surface slicks, releasing aerosols and vapors
above the surface slick, mixing across the shelf and
into estuaries, and finally being deposited on marshes
and beaches along the coast. Cetaceans use all of
these habitats. Characterizing the potential exposure
of nGoM cetaceans to DWH oil is complicated by the
variety of habitat preferences, feeding strategies,
and geographic ranges of each species and stock.
Animals likely experienced heterogeneous combina-
tions of exposures from contaminated air, water, and
sediment via inhalation, ingestion, aspiration, and ad -
sorption. For example, bottlenose dolphins in Bara -
taria Bay likely inhaled, ingested, aspirated, and came
into direct contact with intermittent pulses of weath-
ered surface oil. However, oceanic animals closer to
the wellhead were likely exposed to a more constant
flow of fresher oil from the broken riser pipe.

Inhalation

The toxic effects of inhaling petroleum-derived
chemicals are well-documented in mammalian labo-
ratory studies, human case studies, and human occu-
pational health studies (e.g. ATSDR 1999). Inhalation
exposures were a concern for any air-breathing
organisms (e.g. sea turtles, mammals, birds, humans)
near the DWH surface slick. Cetaceans breathing
just above the air/water interface would likely be

more consistently exposed to the highest concentra-
tions of surface oil droplets, volatile organic com-
pounds (VOCs), or aerosolized oil compounds than
either birds or humans. Similarly, the unique ceta -
cean physiological and ana tomical adaptations for
respiratory efficiency associated with diving would
increase the impacts of oil inhalation and  aspiration.

Cetaceans have deep lung air exchange (80 to 90%
of their lung volume compared to 10 to 20% for
humans). Some species can hold their breath for as
long as 2 h during deep dives, resulting in a greater
magnitude and duration of exposure to inhaled toxic
chemicals (Irving et al. 1941, Ridgway et al. 1969,
Green 1972, Ridgway 1972, Schorr et al. 2014). They
also lack turbinates that filter air en route to the
lungs, and they have an extensive blood supply in
their lungs, facilitating absorption of toxicants into
the blood. Depending on the lungs’ ability to meta -
bolize toxicants (Roth & Vinegar 1990), absorption of
toxicants by the lungs may be more detrimental than
ingestion and absorption via the gastrointestinal (GI)
tract, because blood from the lungs moves directly to
the heart and then is pumped to the rest of the body
before passing through the liver for detoxification
(Fig. 2). The physical effects of oil on the surface of
the lungs could also reduce gas exchange and dam-
age tissues, leading to other injuries (Stabenau et al.
2006).

Oil constituents in a surface slick can evaporate into
the air based on a variety of physical and chemical
 parameters at the air–water interface. Compounds
can be categorized by evaporation rates, ranging from
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Box 2. Extent of Deepwater Horizon (DWH) oil
contamination. Source: DWH NRDA Trustees 

(2016)

• >112 000 km2 of the ocean surface
• >2100 km of shoreline
• >1000 km2 of the deep sea floor
• >400 km plumes in deep ocean water

Fig. 2. Transport of oil constituents through a cetacean’s
body after inhalation into the respiratory tract, leading to ab-
sorption into the blood at the lungs, which is then pumped to
the rest of the body via the heart, notably bypassing the
liver’s detoxification process. If dolphins incidentally aspirate
liquid oil, it can be especially harmful as a physical irritant.
Illustration by Kate Sweeney; originally published in DWH 

NRDA Trustees (2016)
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semivolatile organic compounds (SVOCs) to VOCs
(de Gouw et al. 2011, Stout 2015). For the DWH oil
spill, many of the VOCs released at depth either dis-
solved into the water column or evaporated from the
surface very quickly (Ryerson et al. 2011). However,
atmospheric particulate matter can form following
evaporation and atmospheric oxidation due to new
particle nucleation and/or scavenging onto pre-exist-
ing aerosols (de Gouw et al. 2011). This process led to
increases in secondary organic aerosol mass, gener-
ated mostly from C12 to C16 hydrocarbons (which in-
cludes 2- and 3-ring PAHs) evaporating from the
broader surface slick footprint, where cetaceans would
be exposed as they surfaced to breathe.

BP contractors collected a large number of meas-
urements on the personal airborne exposure of oil
spill response/clean-up workers and scientists to total
hydrocarbons. Results from a subset of the dosimeter
badges indicated that workers in Louisiana were
exposed to average total hydrocarbon levels 2 to 4
times higher than similar workers in Florida over the
period of 20 April through 10 August, and substan-
tially more than background levels prior to the spill
(Stewart et al. 2017). This analysis was limited to the
subset of individuals working on small vessels work-
ing near the shoreline that were not involved in de -
contamination activities, because these most closely
mimicked potential dolphin exposure. On 24 May
2010 near Barataria Bay, a stranding re sponse team
was able to collect tissue samples, in cluding lung tis-
sue, from a relatively fresh bottlenose dolphin car-
cass subsequently shown through chemical finger-
printing to have DWH oil on its skin. The lung  tissue
contained VOC/SVOCs consistent with an inhaled
dose, rather than aspirated liquid oil (Stout 2015),
which indicates that the animal was exposed to air-
borne oil compounds prior to death.

Disruptions to the air–water interface can create
small droplets with oil and water, which can become
indefinitely suspended in the air column (primary
aerosols) (Murphy et al. 2015). Whether as volatiles
or aerosols, cetaceans can be exposed to oil compo-
nents in the air column near the air–water interface.
Upon surfacing after a long dive, cetaceans exhale
through their blowhole, with sufficient energy to pro-
duce a cloud of seawater droplets (promoting vola ti -
lization) that can then be inhaled while the animals
recover their oxygen supply. Similar aerosols can be
generated by waves, wind, and rain, both in the pres-
ence and absence of oil — the application of disper-
sants increases the escape rate and decreases the
size of the droplets (Ehrenhauser et al. 2014, Liyana-
Arachchi et al. 2014, Murphy et al. 2015).

Aspiration

Cetaceans may incidentally draw seawater, and
presumably floating oil, into their lungs by breathing
in splashed droplets or liquid that has collected near
the blowhole just prior to inhalation. Aspiration of
liquid oil can cause physical injuries to the respira-
tory tract by irritating tissues/membranes (Gentina et
al. 2001). This can also lead to absorption of toxicants
into the blood, as in inhalation exposure (Fig. 2) (Cop-
pock et al. 1995, 1996, Prasad et al. 2011). In other
mammals such as cattle, for example, petroleum aspi-
ration can lead to severe inflammatory response and
lung disease, including pneumonia, fibrosis, and pul-
monary dysfunction (Coppock et al. 1995, 1996).

Ingestion

During the DWH incident, cetaceans hunting and
capturing prey near oil slicks would have been at risk
of ingesting petroleum components. Cetaceans have
many different feeding behaviors, including straining
water for krill, suction feeding on fish/ cephalo pods,
fish herding, and drilling on crabs/ benthic fish (Ross-
bach & Herzing 1997, Werth 2000). During highly
active feeding, a cetacean could be more likely to
drive entrainment of surface oil into the water col-
umn or disturb buried oil in sediments, making the oil
more available for incidental or direct ingestion. Dol-
phins may consume 4.5 to 13 ml kg−1 of seawater a
day as they seek and consume prey (Telfer et al. 1970,
Hui 1981); thus dolphins foraging in oil-contaminated
waters during the DWH spill would likely have in -
gested oil. Oil ingestion can cause GI tract mucosal
irritation, vomiting, and re gurgitation (Rowe et al. 1973,
Edwards 1989). Unlike toxicant absorption through
the lungs, toxicant ab sorption into the blood across
the stomach and intestinal tissues may be subject to
first-pass metabolism in the liver (Fig. 3). Bodkin et
al. (2012) reported that sea otters Enhydra lutris suf-
fered a variety of long-term effects from the Exxon
Valdez oil spill due to ingestion during intertidal for-
aging and the presence of oil near otter foraging pits
(the authors ruled out exposure by inhalation).

However, ingestion of oil may also lead to impacts
on the cetacean lung. Humans and cattle that ingest
petroleum (e.g. through ingestion of contaminated
water) usually experience nausea and vomiting and
are at risk of aspirating oily vomitus into the lungs
(Coppock et al. 1995, 1996, Lifshitz et al. 2003, Sid-
diqui et al. 2008, Sen et al. 2013) (Fig. 3 inset). Aspi-
rating vomitus can cause pneumonia and, in some
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cases, may lead to lung abscesses and infections
(Coppock et al. 1995, 1996). Venn-Watson et al. (2015a)
linked aspiration pneumonia, lung abscesses, and
pulmonary infections in bottlenose dolphins to expo-
sure to DWH oil.

Dermal contact

Although cetaceans have a thick epidermis, lesions,
rake marks, or abrasions may create vulnerable areas
where oil could be absorbed and cause toxic effects
to underlying tissues, especially in combination with
other stressors, such as infectious bacteria, viruses, or
parasites. Oil exposure also has the potential to irri-
tate and denude mucus membranes such as the eyes
and mouth (Dutton 1934, Hansbrough et al. 1985).

Characterizing cetacean injuries 
from DWH oil spill

To assess injuries to cetaceans as part of the NRDA,
the Trustees conducted population studies and feasi-
ble and timely health assessments for some exposed
stocks of bottlenose dolphins, to analyze causal
factors for mortality from the high number of post-spill
strandings. From 2010 to 2014, the NOAA tracked a
cetacean unusual mortality event (UME) in the nGoM
(NOAA 2016). In reviewing the UME data, scientists
identified several distinct clusters of strandings (Litz
et al. 2014, Venn-Watson et al. 2015b): a cluster of

deaths resulting from cold temperatures and low
salinity in Lake Pontchartrain, Louisiana and western
Mississippi Sound in early 2010; a large number of
deaths in southern Louisiana (centered on Barataria
Bay) from 2010 to 2011 and a cluster with unusually
high numbers of perinates in Mississippi and Alabama
in 2011, both of which were attributed to DWH oil (see
below); and a Gulf-wide cluster in early 2013 (the au-
thors did not opine on the cause of the 2013 cluster be-
cause of insufficient data; Venn-Watson et al. 2015b).

Several studies examined the likelihood that the
UME clusters in southern Louisiana and Mississippi/
Alabama in 2010 and 2011 were the result of the
DWH spill. Dolphin health evaluations conducted in
Barataria Bay found a high prevalence of pulmonary
disease, compromised stress response, and reproduc-
tive failure (Schwacke et al. 2014, Lane et al. 2015).
Scientists conducting necropsies found a high preva-
lence of lung and adrenal lesions in dead dolphins
within the DWH oil spill footprint (Venn-Watson et al.
2015a). Combined evidence from statistical analysis
of the strandings clusters (Venn-Watson et al. 2015b),
necropsy data from the strandings (Venn-Watson et
al. 2015a, Colegrove et al. 2016), and findings from
live health assessments conducted in Barataria Bay
following the spill (Schwacke et al. 2014, Lane et al.
2015) linked these adverse health effects to exposure
to the DWH oil after examining and ruling out other
potential causes.

This Theme Section contains additional papers on
the adverse effects described in the previously re -
ported studies and the PDARP/PEIS. Interestingly, al -
though the prevalence of some of the adverse health
effects seen in Schwacke et al. (2014) has declined,
other symptoms of oil exposure in dolphins still linger
in Barataria Bay, including pulmonary abnormalities
and an impaired stress response. These lingering
health effects continue in at least one other site (Mis-
sissippi Sound) within the oil spill footprint (Smith et
al. 2017). DWH oil exposure can result in immune sys-
tem dysregulation (De Guise et al. unpubl.), which is
consistent with the increased susceptibility of peri-
nates to in utero Brucella infection (Colegrove et al.
2016). Kellar et al. (2017, this Theme Section) provide
a deeper ana lysis of the reproductive failures seen in
bottlenose dolphins in Louisiana, Mississippi, and
Alabama, including a synthesis of hormone data from
remote biopsy samples and surgical biopsies from
dolphins sampled via capture−release health assess-
ments, as well as vessel surveys of animals in photo-
ID studies.

Throughout the assessment, scientists considered
and designed studies to evaluate all feasible expla-
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Fig. 3. Transport of oil constituents through a cetacean’s
body after ingestion into the gastrointestinal (GI) tract, lead-
ing to some absorption into the blood but also detoxification
through the liver. Animals that ingest oil also may become
nauseous and vomit oil and ingesta, which may be aspirated
into the lungs (inset). Illustration by Kate Sweeney; originally 

published in DWH NRDA Trustees (2016)
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nations for the observed injuries to cetaceans. By
weighing the plausibility, specificity, consistency,
and strength of association among the data, the team
developed a rigorous, scientifically defensible basis
for a causal relationship between the DWH incident
and the injuries to cetaceans in the nGoM (Venn-
Watson et al. 2015c).

Scientists investigated other factors that have
contributed to cetacean UMEs in the past, including
biotoxins from harmful algal blooms, human/fishery
interactions, infectious disease outbreaks (e.g. mor-
billivirus, Brucella), extreme environmental condi-
tions (e.g. cold weather, low salinity), and non-DWH-
related chemical contamination, before con cluding
that DWH oil exposure caused cetacean injuries.
For example, Fauquier et al. (2017, this Theme Sec-
tion) investigated the relationship between the
increased strandings and morbillivirus outbreaks in
the nGoM — just one example of how the NRDA
science team took alternative hypotheses into
 consideration.

Quantifying DWH cetacean injuries

The increases in mortality, reproductive failure,
and adverse health effects represent a limited view of
how DWH oil exposure impacted bottlenose dolphin
stocks in Barataria Bay and Mississippi Sound in the
few years immediately following the spill. They do
not capture the cumulative effect of the injuries on
these populations, nor do they represent the entire
scope of the DWH oil spill injury to each population
into the future.

The NRDA science team conducted a coordinated
set of studies to characterize and quantify injuries to
the Barataria Bay and Mississippi Sound bottlenose
dolphin stocks (Fig. 4). The coordinated studies were
designed to provide necessary inputs to parameter-
ize a population model (Schwacke et al. 2017) for
both stocks that compared their expected population
trajectories (assuming the DWH spill had not oc -
curred) to the post-DWH trajectories. These trajecto-
ries were influenced by increased mortality, de -
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Fig. 4. A variety of field data, historical data, and statistical models/analyses were combined to create population models that
quantified how Deepwater Horizon (DWH) oil changed population trajectories for each stock that was exposed. Baseline data
(black boxes) were used to help predict what each population’s trajectory would have been if the DWH oil spill had not oc-
curred. The Barataria Bay (BB) and Mississippi Sound (MSS) stock populations had higher levels of mortality and reproductive
failure because of exposure to DWH oil (dark grey boxes). The injury information from BB and MSS was combined with data
and modeling efforts to estimate the injuries to other bottlenose dolphin bay, sound, and estuary (BSE) stocks. For each stock,
a population model based on an age-structured matrix was run to determine the number of dolphins lost each year (lost dol-
phin years) because of the effects of DWH oil. Most of the studies and analyses in this diagram are described further in the pa-
pers in this Theme Section. For anything else (e.g. Siler model), please refer to DWH NRDA Trustees (2016) and DWHMMIQT
(2015). GLARMA: generalized linear autoregressive moving average; ADCIRC: advanced circulation model (www.adcirc.org)
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creased reproduction, and increased adverse health
effects resulting from DWH oil exposure. To establish
post-spill population vital rates (i.e. survival and re -
productive success), the NRDA science team con-
ducted photo-ID surveys and performed mark−
recapture analyses in Barataria Bay (Kellar et al.
2017, McDonald et al. 2017, this Theme Section) and
Mississippi Sound (DWHMMIQT 2015, DWH NRDA
Trustees 2016, Kellar et al. 2017). In addition, the
NRDA science team analyzed bottlenose dolphin spa-
tial preferences (Wells et al. 2017, this Theme Sec-
tion) and the density of dolphins within different
habitat strata (e.g. near barrier islands vs. inside the
bays) (McDonald et al. 2017). To appropriately esti-
mate the total population of each stock as an input for
the population model, the team extrapolated from the
numbers of dolphins estimated across habitat strata
within the photo-ID survey areas (McDonald et al.
2017) to the number of dolphins within the entire
stock area using spatial modeling bounded by salin-
ity gradients to estimate the bottlenose dolphins’
likely habitat area (Hornsby et al. 2017, this Theme
Section).

After estimating population-level injuries in Bara -
taria Bay and Mississippi Sound, the NRDA science
team needed a plausible model to estimate the sever-
ity and extent of injuries to other stocks across the
nGoM. In the majority of these other stocks, injury
data were limited to those collected from the investi-
gation of dead strandings. Given the increased strand-
ings numbers, how could the scientists (1) identify
the stock to which each of the carcasses belonged
(e.g. BSE vs. northern coastal); (2) determine how
much of the observed mortality was associated with
the DWH oil; and (3) translate the number of ob -
served strandings to an estimate of the number of
actual mortalities, knowing that the vast majority of
carcasses are never observed? To address the first
question, Thomas et al. (2017, this Theme Section)
developed a hierarchical Bayesian model to assign
stranded carcasses to BSE or coastal stocks using
both genetic data (Rosel et al. 2017, this Theme Sec-
tion) and stable isotope data (Hohn et al. 2017, this
Theme Section).

The NRDA science team then used a generalized
linear autoregressive moving average (GLARMA)
model to evaluate the observed strandings in each
BSE to determine the deviation from annual and sea-
sonal trends in relation to the degree of surface oiling
over time, including consideration for abnormally
cold temperatures (these analyses are not described
in this Theme Section, but are available in DWHM-
MIQT 2015). These DWH oil exposure-related excess

observed strandings (by stock) were then scaled to
an estimated total number of excess mortalities using
models to correct for carcass beaching and recovery
efficiencies, including a carcass drift model (DWHM-
MIQT 2015). Finally, Schwacke et al. (2017) and
DWHMMIQT (2015) used results from all of these
analyses to estimate how DWH oil-related injuries
combined to impact the trajectory of each stock’s
population.

Cetaceans are long-lived, slow-maturing species.
Thus, populations have difficulty recovering from the
loss of reproductive adults, whether from premature
death or a decrease in reproductive success. The
population model, applied separately to 9 BSE and 2
coastal bottlenose dolphin stocks, allowed considera-
tion of long-term impacts resulting from immediate
losses and reproductive failures in the few years fol-
lowing the spill, as well as expected persistent im -
pacts on survival and reproduction for exposed ani-
mals well into the future. While the focus of this
Theme Section is on the effects of the DWH oil spill
on bottlenose dolphin stocks, the NRDA science team
used a similar approach to quantify injuries to other
cetacean stocks in the nGoM, using spatial compar-
isons of each stock with the DWH oil footprint and
integrating mortality and reproductive failure esti-
mates into a population model for each stock (DWH-
MMIQT 2015).

CONCLUSIONS

The cetacean investigations following the DWH
incident provided an example of how scientists (from
state and federal government agencies, academics,
nonprofit organizations, and the private sector) and
decision-makers can mobilize and coordinate to
respond to a major environmental disaster and assess
its impacts. Despite the uncertainties involved in
working at such large scales over time and space,
and the restrictions associated with studying marine
mammals, the studies described here form a coher-
ent story of exposure (via inhalation, ingestion, and
aspiration of DWH oil) and injury (including mortal-
ity, reproductive failure, and adverse effects on lung
and the hypothalamus-pituitary-adrenal axis).

Oil from the DWH blowout contaminated the water,
air, sediments, and prey in the nGoM. The footprint
of the surface slick overlapped with 31 stocks of
cetaceans, likely resulting in inhalation, ingestion,
and aspiration of toxic oil components. Exposure to
oil over similar ranges of time, magnitude, and bio-
logical pathways has been shown to be toxic to a
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variety of animals (including humans) both in labora-
tory and field studies (e.g. Engelhardt 1983, Gold-
stein et al. 2011, DWH NRDA Trustees 2016 Section
4.3). The wide range of adverse health effects and
increased mortality/reproductive failure observed in
cetacean populations throughout the nGoM over the
last 6 yr are consistent with the exposure scenarios
described here (Schwacke et al. 2014, Venn- Watson
et al. 2015a, Colegrove et al. 2016, Smith et al. 2017).

Each of the animals and their unique injuries con-
stitute a basis for action under the NRDA process;
however, the NRDA science team was also able to
use statistical approaches and models to better de -
scribe how the injuries to individual animals will im -
pact the population status and dynamics into the
future. While many of these studies have now been
published here and elsewhere, a true understanding
of the long-term effects of DWH oil contamination
(and the associated response activities) on nGoM
marine mammals will require sustained investigation
and monitoring.
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