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1.  INTRODUCTION

Olive ridley turtles Lepidochelys olivacea (Esch -
scholtz, 1829) are the most abundant marine turtle
species (Abreu-Grobois & Plotkin 2008), with wide-
spread distribution in tropical and subtropical oceans,
except for the Gulf of Mexico. Despite their wide dis-
tribution and abundance, olive ridleys are among the
least studied species in terms of satellite-tracking,
with a total of 25 publications, a number higher only
than that for Kemp’s ridley L. kempii (n = 18) and that

for flatback turtles Natator depressus (n = 4), both of
which have more restricted distributions (Jeffers &
Godley 2016).

Globally, olive ridleys exhibit greater plasticity of
behavior and habitats than other marine turtles. Their
habitats may be mainly neritic, as recorded from
breeding areas located in Australia (McMahon et al.
2007, Whiting et al. 2007, Hamel et al. 2008), Oman
(Rees et al. 2012), French Guiana (Plot et al. 2015,
Chambault et al. 2016), and Brazil (Silva et al. 2011),
or oceanic, as seen in Costa Rica (Plotkin 2010), India
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areas were identified for 24 olive ridleys: 15 along the continental shelf of SE Brazil, 2 adjacent to
Ceará and Maranhão states (between the 25 and 75 m isobaths), and 7 off the African countries of
Cape Verde, Senegal, Gambia, Guinea-Bissau, and Sierra Leone. The results de monstrated the
complexity of olive ridley movements from northern Brazil, raised questions about connectivity,
and highlighted threats such as fisheries, ports, and hydrocarbon exploration fields overlapping
with, or near to, high-use areas. These results can be used as a basis for spatial management
measures to protect this endangered species.
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(Ram et al. 2009), and Gabon/Angola (Maxwell et al.
2011, Pikesley et al. 2013).

This species is subject to threats such as dredging
(Gold berg et al. 2015), vessel collision, and high
bycatch rates by coastal fisheries within breeding
and foraging areas (Gopi & Pandav 2006, Silva et al.
2010, Casale et al. 2017, Guimarães et al. 2018), or
during oceanic movements (Sales et al. 2008). In
Brazil, the main threat to olive ridleys is bycatch and
mortality associated with shrimp trawling. This fish-
ery occurs intensely along the continental shelf and
adjacent to nesting beaches (Silva et al. 2010, 2011,
Guimarães et al. 2018). Along these nesting beaches,
a large number of olive ridley strandings have been
recorded, and efforts are underway to reduce inci-
dental mortality (Silva et al. 2010). The main olive rid-
ley nesting area in Brazil is located in the NE of the
country, on the coast of Sergipe state and to the north
of Bahia state (between 10.5° and 12.5° S). Nesting
activity has also been recorded on the beaches of
Espírito Santo state, in the SE region of Brazil.

The nesting season occurs primarily during the
austral summer, from September to March, although
occasional nesting is observed in all months of the
year (Silva et al. 2007). Despite the recorded strand-
ings, the number of nests per year for this species in
Brazil shows an increasing trend. This is attributed to
the conservation strategy implemented over the last
3 decades (Silva et al. 2007). The Brazilian National
Action Plan for the Conservation of Sea Turtles (San-
tos et al. 2011) establishes the identification and pro-
tection of high-use areas for sea turtles as a conser -
vation priority. Among the available techniques to
assess the spatial−temporal distribution of animals,
in cluding high-use areas and range of migration
strategies, satellite telemetry tracking has become a
standard tool (Godley et al. 2008, Wilmers et al.
2015). To date, only 1 study using satellite telemetry
has been performed on olive ridleys in Brazil (Silva et
al. 2011). The 10 females tracked by Silva et al. (2011)
from nesting beaches in Sergipe highlighted post-
reproductive migration to neritic foraging areas along
the Brazilian coast, as well as oceanic movements for
2 animals. That study also showed the overlap be -
tween satellite tracks and fishing areas, mainly ner-
itic shrimp trawling and oceanic longliners, high-
lighting the potential of satellite telemetry to identify
threats and support management strategies (Silva et
al. 2011).

The objectives of the present study were to (1)
identify inter-nesting area(s), post-nesting migration
strategies, and foraging areas for olive ridleys from
the main breeding area in Brazil; (2) improve knowl-

edge on the ecology of this species; and (3) propose
alternatives for conservation in the Atlantic Ocean.

2.  MATERIALS AND METHODS

2.1.  Study site

The Pirambu beaches, located in the northern por-
tion of the state of Sergipe, Brazil, can be character-
ized as high energy, with a narrow continental shelf,
in the tropical zone, with warm temperatures and a
dry summer. These beaches comprise the main repro -
ductive site of Lepidochelys olivacea in Brazil, with
nesting of loggerheads Caretta caretta and hawks-
bills Eretmochelys imbricata occurring regularly as
well. Sporadic nests of green turtles Chelonia mydas
are also recorded (Silva et al. 2007).

The importance of this area for the reproduction of
sea turtles led the Brazilian government to create the
Santa Isabel Biological Reserve in 1988. This protec -
ted area has the objective of maintaining the natural
characteristics of coastal environments and associated
biological processes in the area and covers approxi-
mately 40 km of sea turtle nesting beaches (Fig. 1).

2.2.  Tag deployment

We deployed 40 platform terminal transmitters
(PTTs) on olive ridley sea turtles nesting along the
Pirambu beach. Two PTT models were used: SPOT-
293A (n = 18) and SPLASH10-F-296A (n = 22), both
manufactured by Wildlife Computers©.

Night patrols to capture olive ridleys occurred over
31 km of beaches located between 36.847° W, 10.734° S
and 36.605° W, 10.582° S. The deployments occurred
between 14 January 2014 and 14 January 2015. Prior
to PTT attachment, individuals were measured and
classified into 3 size classes based on curved cara-
pace length (CCL): small (CCL ≤68 cm), medium
(CCL 69−73 cm), and large (CCL ≥74 cm). The PTT
attachment took place at the Pirambu TAMAR base.
The attachment protocol consists of cleaning the sec-
ond and third medial scutes of the carapace and
attaching the satellite tag with Tubolit® epoxy and
fiberglass. The SPLASH tags were initially protected
with a Propspeed anti-fouling coat. The full attach-
ment was then coated with anti-fouling paint (Inter-
national Yacht Paint) and allowed to dry for 60 min
before turtles were released. Inconel tags (National
Band and Tag) were attached to the trailing edge of
each front flipper following Balazs (1999).
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The SPOT and SPLASH tags were configured for
continuous collection of location data (no duty cycle).
To acquire more accurate localization signals (Fastloc
GPS), SPLASH tags were configured to obtain 1 GPS
location per hour. All data were transmitted via the
Argos system (www.argos-system.org), and the
tracking information was automatically downloaded
using the Satellite Tracking and Analysis Tool (STAT;
Coyne & Godley 2005). The decoding of GPS loca-
tions collected by the SPLASH transmitters was
accomplished using the Wildlife Computers© DAP-
Processor software.

2.3.  Switching state-space model (SSM)

An SSM was used to gain inference on animal be-
havior and smooth the satellite tracks into equal time
intervals. Prior to the application of the SSM, all loca-
tions were filtered with the Douglas filter (Douglas et
al. 2012) in Movebank (Wikelski & Kays 2015) to re-
move unrealistic Argos locations. GPS locations were
treated as equivalent to Argos location class 3 for the
purpose of the Douglas filter. Douglas filter parame-
ters were selected based on criteria established by
the Turtle Expert Working Group for hardshell turtles
(TEWG 2009) and included filters for speed and turn
angle. A best daily location was not selected, as the

subsequent SSM smoothed the
tracks into even time intervals. In
addition to the Douglas filter, both
GPS and Argos locations were re-
moved if they fell on land. The first
48 h of post-deployment locations
were re moved to account for any
behavioral changes associated with
tagging and release. Class Z Argos
locations were also removed. Lastly,
tracks were examined to determine
if gaps greater than 1 wk occurred
be tween subsequent points, in
which case the 2 track segments
were analyzed separately to avoid
over interpolation of locations.

A modified version of the state-
space switching model first intro-
duced by Jonsen et al. (2005), and
using code from Breed et al. (2009),
was applied to all Argos and GPS
locations. The code from Breed et
al. (2009) was modified by creating
additional error classes for GPS data
based on circular error described by

Bryant (2007) and subsequently combining GPS and
Argos locations in the SSM. The selected model was
originally developed for seals but is also applicable to
marine turtles (Hart et al. 2013).

The SSM was run using R (R Core Team 2015) and
WinBugs (Thomas 1994). We used 6 h as the time in -
terval to smooth the track, as a compromise between
detecting meaningful changes in movement modes
and model processing time. To reach convergence,
5000 burn-in iterations and 10 000 samples were
used. SSM diagnostics were examined to ensure that
Monte Carlo Markov chains were mixing and that
model parameters were converging appropriately.

The model attempted to classify smoothed points
into 2 states, an ‘area-restricted movement’ (ARM)
mode, inferred to be either inter-nesting or foraging
areas depending on timing and based on the known
ecology of marine turtles (see Section 2.4), and a
‘directional movement’ mode, inferred to represent
active migration.

The model produces 2 outputs for predicting be -
havioral state at each location: a mean and a mode of
the total samples. Many studies use the mean values
and cutoff thresholds to define one state or the other.
Here we used the mode of the prediction to retain as
many points as possible for analysis. In general, the
turtles showed very distinctive behavioral switching,
so we believe this decision to be justifiable.
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Fig. 1. Right: primary olive ridley nesting beaches in Brazil and locations of tagged
sea turtles along the Pirambu beach and Santa Isabel Biological Reserve (REBIO).
Left: the Brazilian coastal states of Maranhão (MA), Ceará (CE), Rio Grande do
Norte (RN), Alagoas (AL), Sergipe (SE), Bahia (BA), Espírito Santos (ES), Rio de 

Janeiro (RJ), São Paulo (SP), Paraná (PR), Santa Catarina (SC)
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2.4.  Home range

Home ranges in the form of parametric utilization
distributions (Worton 1989) for individuals were calcu-
lated using the R package ‘adehabitat’ (Calenge 2006).
Home ranges were calculated for the SSM ARM loca-
tions using a kernel density estimation (KDE) method.
The bandwidth, or smoothing parameter, of the KDE
was calculated for each home range using the ad hoc
(reference bandwidth, HREF) method (Worton 1989).
Surface contours (isopleths) were created from the
utilization distributions to measure core use areas, de-
fined as the 50% KDE, and the full home range, de-
fined as the 90% KDE.

Based on the available information about the ecol-
ogy of the species, a distinction between the home
ranges was made. The ARM locations near or associ-
ated with the reproductive beaches (deployment lo -
cations) were used to define inter-nesting area home
ranges. ARM locations at the end of tracks, or be -
tween segments of migration, were defined as forag-
ing areas. Turtles in this region enter a distinct mi -
gra tion phase after completion of nesting, allowing
us to confidently assume that ARM prior to direc-
tional movement was in the inter-nesting area (simi-
lar to Maxwell et al. 2011), and subsequent ARM
areas away from the nesting beaches were assumed
to represent foraging activity.

Primary productivity and fishing effort were quan-
tified within the inferred foraging ARM areas. Pri-
mary productivity was analyzed using a vertically
generalized production model (VGPM; Behrenfeld
& Falkowski 1997), and fishing effort was derived
from the ‘Daily fishing effort at 100th degree reso-
lution’ dataset (Kroodsma et al. 2018). The data were
downloaded for the years 2014 to 2016, which cor-
respond to the duration of the present  study. These
data are available at www. science. oregonstate.edu/
ocean. productivity/ index.php and https:// global fishing
watch.org, respectively. A 3 yr average for primary
productivity and the fishing effort sum was gener-
ated in the form of raster layers with a cell size of
32.210 m for VGPM and 5000 m for fishing effort that
covered the entire study area.

An ANOVA was applied to identify significant
variations between the mean values of productivity
(VGPM) and fishing effort (fishing hours) within ver-
sus outside inferred foraging areas. The mean values
of productivity and fishing effort within the com-
bined inferred foraging areas were compared to 10
sets of randomly selected sample areas. Sample
areas were generated from hexagons with a diameter
of 160 km, or 17 000 km2, corresponding to the aver-

age size of the foraging ARMs. The hexagons were
placed in a regular grid bounded by the distribution
of olive ridley tracks in the present study. Hexagons
were added at random to the sample until the size of
the sample area was approximately 498 584 km2, the
total area of the inferred foraging ARM home ranges.
Heterogeneous mean groups were identified by the
Tukey honestly significant difference test (Zar 1999).

2.5.  Inter-nesting residence time and inferred
inter-nesting interval

For the inter-nesting home range area, residence
time was defined as the number of days spent in
ARM mode (Barraquand & Benhamou 2008, Seidel et
al. 2018). Inferred second nesting events were also
evaluated following Maxwell et al. (2011). Given the
low satellite coverage in equatorial areas and system
limitations that prevent the transmission of all fastloc
GPS data collected by the SPLASH PTTs (N = 22),
secondary nesting events had to be primarily in -
ferred from on-land or nearshore Fastloc GPS and
Argos locations, taking into consideration their loca-
tion classes. For 2 olive ridleys, second nesting events
were confirmed by Fastloc GPS haul outs. The in -
ferred second nesting events were compared to the
known duration of the average inter-nesting interval
for olive ridleys in Brazil (Matos et al. 2012).

2.6.  Directional movement mode

In order to identify important migration corridors, a
grid of hexagons with a 25 km diameter was overlaid
with locations identified by the SSM as directional
movement and inferred to represent migration. This
diameter of 25 km was selected because it best cap-
tured the size of the continental shelf in the region
(Dominguez et al. 2013), an important bathymetric
feature for olive ridley migration. Tracks were aggre-
gated by polygon, and points from individual tracks
were weighted by track duration so that tracks with
short durations biased the analysis less towards de -
ployment locations. Hexagons with higher values are
more important as migratory corridors. This ana lysis
was performed using ArcGIS 10.3 (ESRI 2014).

3.  RESULTS

Of the 40 olive ridleys, only 1 (PTT 135271) was
ex cluded from analysis because of the premature
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end of transmissions (after 13 d). Olive ridley CCLs
varied from 64 to 79 cm, with a mean ± SD of 71.5
± 3.85 cm. The duration of the transmissions
ranged from 44 to 431 d, with a mean of 165 ± 91.2
d. The average distance traveled per turtle, includ-
ing ARM and directional movements, was 4577 ±
1918.3 km, with a minimum and maximum of 1286
and 8562 km.

Descriptive parameters for PTT deployments, in -
cluding the capture and measurement of sea turtles,
duration of transmissions, inferred inter-nesting inter-
val, home range areas, duration in days for the differ-
ent SSM modes (ARM and directional movements),
and distances traveled during post-nesting migration
are presented in Tables S1 to S4 in Supplement 1 at
www.int-res.com/articles/suppl/n040p149_supp/.

3.1.  Inter-nesting period

Inter-nesting ARM was identified for 29 olive rid-
leys that stayed in the vicinity of the main nesting
beaches. It was possible to infer second nesting events
for 20 of those 29 turtles based on satellite locations.

For 10 olive ridleys, the post-nesting migration
started immediately after attachment of PTTs and
release. From the SSM it was clear when all animals

that had an inter-nesting period transitioned to direc-
tional movement at the end of nesting.

The sampled population’s total inter-nesting area, es -
ti mated as the combined 90% KDE home range used by
29 turtles, comprised the north coast of Bahia, all of the
continental shelf off Sergipe, and the southern coast of
Alagoas. The size of the combined inter-nesting area
was 7244 km2. Although the inter-nesting area was
relatively extensive, its core area (KDE 50%) totaled
approximately 1400 km2, which corresponds to 19%
of the total inter-nesting home range area (Fig. 2).

The turtles’ residence time in the inter-nesting area
ranged from 7 to 34 d, with a mean of 20 ± 7.6 d.
Inferred secondary nesting events occurred on an
average of 18 ± 4.5 d (range: 9−23 d) from tagging
release, with shorter durations possibly associated
with a false crawl followed by a re-nesting event.

The combined inter-nesting area derived from ARM
locations was adjacent to the main nesting beach for
the species in Brazil, comprised depths up to 1000 m,
and extended approximately 40 km from the coast,
reaching the continental shelf slope. The greatest
depths were associated with a submarine canyon fea-
ture, which was used by 11 of the turtles. The core area
(KDE 50%) was mainly located in shallow waters, as
deep as the 50 m isobath, reaching distances 22 km
from the coast (Fig. S1 in Supplement 1).

Fig. 2. Olive ridley combined kernel density estimation of the inter-nesting area used by 29 turtles and
platform transmitter terminal tag deployment locations (•)

https://www.int-res.com/articles/suppl/n040p149_supp/
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3.2.  Post-nesting period

3.2.1.  Directional movements

Olive ridleys from Brazil showed remarkable varia-
tion in their behavior, although classification into 2
main categories was possible: those who traveled and
settled along the coast, both to the north (n = 4) and to
the south (n = 16), and those with an oceanic migra-
tion strategy (n = 19). The oceanic migration strategy
included individuals with initial coastal and subse-
quent oceanic movements (n = 15), and those that
moved offshore immediately (n = 4).

For the 24 turtles that concluded their directional
movements and began an ARM, which was inferred as
foraging (coastal = 17 turtles and oceanic = 7 turtles),
there was significant variation in the distance trav-
eled and duration of the migration, which was longer
for the animals with oceanic movements (Table 1).

The directional movement locations highlighted a
migration corridor, which runs along the continental
shelf of Brazil, totaling 3370 km length. The width
of the migratory corridor was variable and was as -
sociated with the width of the continental shelf
(Fig. 3).

The southern migratory corridor, defined by 16 olive
ridleys’ directional movements, had an average length
of 2283 ± 281.69 km (range: 1507.18− 2606.65 km). An
average of 50 ± 7.1 d (range: 36−61 d) passed before
animals completed their directional movements. Of
the 16 olive ridleys with southern movements, only 1
(PTT 135248) ceased transmission before a switch to
ARM.

Of the 23 post-nesting olive ridleys that moved
north, 19 showed oceanic directional movements and
4 traveled along the northern coast of South America.
The directional movements were concluded for 7
oceanic turtles after traveling an average of 4509 ±

984 km (range: 3442−6063 km) over 110 ± 24 d
(range: 75−142 d), moving toward different parts of
west Africa such as Cape Verde, Senegal, and Sierra
Leone. The other 12 turtles ceased transmissions dur-
ing directional movements with similar trajectories.
Two of the 4 neritic turtles ceased directional move-
ment off the Ceará and Maranhão state coasts in
northern Brazil, after traveling 1338 and 2260 km in
33 and 51 d, respectively. The other 2 turtles ceased
transmissions off the coast of Ceará, after traveling
1098 km in 30 d, and off French Guiana, after travel-
ling 3260 km in 61 d (Fig. 3).

3.2.2.  Olive ridley class sizes and post-nesting
directional movements

The olive ridleys that migrated along the northern
coast of Brazil had intermediate CCLs. Larger ani -
mals migrated south, and the smallest turtles traveled
to oceanic waters (see the video in Supplement 2 at
www.int-res.com/ articles/ suppl/ n040p149_supp/).
The relationship between CCL and migration strat-
egy was significant (ANOVA, F = 22.77, df = 36, p <
0.0001) with a heterogeneous group formed by the
largest olive ridleys that migrated to the south.

The distinct migration strategies also varied by the
time period in which they were observed. Southward,
coastal post-nesting migrations made by the largest
turtles started only between the months of Septem-
ber and March. Turtles began migrating to coastal
areas in the north and to oceanic waters throughout
the year (Fig. 4).

3.2.3.  Foraging ARMs

The SSM identified the transition from directional
movement behavior to ARM in 24 of the 40 tagged
turtles. The core sizes (50% KDE) of the coastal and
oceanic inferred foraging areas did not show sig -
nificant differences (Mann-Whitney U-test, median
coastal: 3442.04 km2, median oceanic: 3898.12 km2,
p = 0.391). However, high variability was observed
among individuals (mean ± SD: 5654 ± 5903 km2,
range: 35−24 795 km2).

The combined ARM home range area identified in
SE Brazil comprised almost the entire continental
shelf adjacent to the states of Rio de Janeiro, São Paulo,
Paraná, and the northern portion of Santa Catarina,
totaling 114 527 km2 (KDE 90%, n = 15 olive ridleys
combined). The core of this area (KDE 50%) was
22 523 km2 and comprised the middle portion of the

154

Migratory     Duration (d) U-test
strategy      N     Mean ± SD    Min Max U = 0.00

Coastal      17       49 ± 7.8        33 61 p = 0.000006
Oceanic       7        109 ± 24        75 142

                                               
              Distance (km) U-test
             N     Mean ± SD    Min Max U = 1.0

Coastal      17     2226 ± 349    1338 2607 p = 0.00015
Oceanic       7      4509 ± 984    3442 6063

Table 1. Descriptive parameters for duration and distance
traveled for the 3 olive ridley migration strategies, as well as

statistical comparison using the Mann-Whitney U-test

https://www.int-res.com/articles/suppl/n040p149_supp/
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continental shelf off São Paulo, between the 25 and
150 m isobaths, ranging around 40 to 160 km from
the coast (Fig. 5, and see Fig. S2 in Supplement 1).

The 2 neritic ARM areas identified in NE Brazil
were situated off the coast of Ceará (core area 35 km2),
about 35 to 40 km from the coast and between the 20
and 50 m isobaths, and off Maranhão state (core area
437 km2) about 130 to 155 km from the coast and
between the 50 and 100 m isobaths (Fig. 6).

The 7 oceanic ARM areas showed a wide variation
in size (core KDE range: 1370−24 794 km2) and loca-
tion. One ARM was near the archipelago of Cape
Verde, 5 were along the Cape Verde basin, off  the
coasts of Senegal, Gambia, Guinea-Bissau, Guinea,
and Sierra Leone, and 1 ARM area was off Liberia and
Ivory Coast. Of these olive ridleys, the area used by
PTT 140731 was the largest identified in this study, lo-
cated near the Sierra Leone Rise and overlapping the
edge of the continental shelf of Guinea Bissau (Fig. 7).

The southern and oceanic inferred foraging ARMs
showed a partial overlap with significantly high pri-

mary productivity and fishing effort areas, when
compared to the sets of randomly selected sample
areas (fishing effort ANOVA, F = 8.567, df = 10,
p < 0.0001; VGPM ANOVA, F = 7.8186, df = 10,
p < 0.0001; see Figs. S3 & S4 in Supplement 1).

Similarly, the end point of the turtles’ tracks, in -
cluding the ones without ARM inferred for aging,
overlapped with areas of high fishing effort. This was
particularly evident within the equatorial Atlantic,
along the turtles’ displacements to west Africa and
on the continental shelf of French Guiana (Figs. S5
& S6 in Supplement 1).

4.  DISCUSSION

4.1.  Inter-nesting period

Lepidochelys olivacea residence times within the
inter-nesting area (mean 20 ± 7.6 d, range 7−34 d)
and the inferred second nesting intervals (mean 18 ±
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Fig. 3. Olive ridley post-reproductive displacement. (a) State-space model predicted behavior; (b) weighted point density per
25 km hexagon. Continuous high-density areas along the Brazilian continental shelf indicate a migratory corridor. Fr.: French

Guiana, Mrt.: Mauritania, Sen.: Senegal, GnB.: Guinea Bissau, Gin.: Guinea, S.L.: Sierra Leone
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4.5 d, range 9−23 d) were similar to the inter-nesting
intervals previously identified for this species in
Brazil, with shorter intervals possibly associated with
a false crawl followed by a re-nesting event (Matos et
al. 2012).

The duration of the inter-nesting interval is also
similar to observations for olive ridleys in other
regions, such as Australia (12−23 d, Whiting et al.
2007; 18 and 27 d, Hamel et al. 2008), Gabon and
Republic of the Congo (9−25 d, Maxwell et al. 2011),
French Guiana (18−39.8 d, Plot et al. 2012), and
Oman (17−30 d, Rees et al. 2012).

The core inter-nesting area, mainly out to the 50 m
isobath, can be characterized as a complex ecosys-
tem, in which the mud bottom (67%) is permeated by
sands (29%), gravel, and reef environment. This area
is the head of a submarine canyon (Neves et al. 2005,
Fontes et al. 2017). During the summer, when olive
ridley nesting occurs, cooler, nutrient-rich ocean
water has been recorded moving on to the continen-
tal shelf through the canyon, which affects the dem-
ersal fauna in the area (Paes et al. 2007).

We posit that the concentration of olive ridleys in
this area, including the submarine canyon, is associ-

ated with the diversity of features, bottom types, and
abundance of resources and refuge. This area con-
tains potential hazards, such as a port terminal with
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Fig. 4. Post-nesting migration strategies (square: coastal
N/NE; triangle: coastal S/SE, circle: oceanic) by month when
migration started, and curved carapace length (CCL, cm)

Fig. 5. Southeastern Brazil continental shelf olive ridley foraging area. The kernel density estimation
(KDE) combines the state-space model (SSM) foraging behavior locations of 15 turtles that showed sim-
ilar dispersal strategies. (a) Vertically generalized production model (VGPM) primary productivity
mean (2014 to 2016). (b) Hours of fishing effort km−2 (2014 to 2016). Brazilian states: ES: Espírito Santo,

RJ: Rio de Janeiro, SP: São Paulo, PR: Paraná, SC: Santa Catarina
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Fig. 6. Primary productivity off the coast of Brazil, with northeastern neritic foraging areas of olive ridley
turtles indicated by squares: (a) off the coast of Maranhão state and (b) off Ceará state. KDE: kernel density

estimation, VGPM: vertically generalized production model

Fig. 7. Olive ridley oceanic foraging areas in west Africa and the overlap with (a) primary productivity (verti-
cally generalized production model, VGPM) and (b) fishing effort in h km−2. KDE: kernel density estimation
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associated vessel traffic and dredging activities, as
well as shrimp trawling, which is implicated in olive
ridley strandings along the nesting beaches (Silva et
al. 2011). Considering the impacts, a portion of the core
area could be converted into a marine protected area,
as suggested by Dawson et al. (2017) and Maxwell et
al. (2011) for Gabon and the Republic of Congo. The
marine protected area should have restrictions for
the shrimp trawl fishery during the peak of the olive
ridley nesting season (December to March), as well
as for marine construction activities like drilling, pile-
driving, and dredging.

4.2.  Post-nesting directional movements

The results of the present study enhance the cata-
log of post-reproductive movements recorded by
Silva et al. (2011) with new records of transoceanic
migrations to West Africa and to the S/SE neritic
waters of Brazil and suggest an overlap with the use
area of olive ridleys nesting in French Guiana (Plot et
al. 2015, Chambault et al. 2016). The movements show
a remarkable overlap with areas of intense fishing
effort, especially for the oceanic directional move-
ments to west Africa, where 7 of 19 turtles stopped
transmitting locations. This corroborates the con-
cerns of Silva et al. (2011) regarding the impacts of
fisheries bycatch. The region has also been charac-
terized as a high fishing pressure area for leather-
backs (Fossette et al. 2014), including bycatch of
juveniles, possibly coming from west African nesting
beaches (Lopez-Mendilaharsu at al. 2019), which
also supports the importance of bycatch reduction
measures being implemented in this area.

The use of oceanic and coastal areas by Brazil’s
olive ridleys was also suggested by Petitet & Bugoni
(2017), based on stable isotopes analyses, and is now
confirmed by this study. The plasticity of olive rid-
leys’ post-reproductive behaviors, when considering
distinct breeding grounds around the globe, is
remarkable. In the Eastern Tropical Pacific, olive rid-
leys display oceanic nomadic movements, without
defined foraging areas (Swimmer et al. 2009, Plotkin
2010); similar patterns have been recorded in Africa,
mainly along Angola’s exclusive economic zone
(Maxwell et al. 2011, Pikesley et al. 2013), and off
India (Ram et al. 2009). In Australia, post-reproduc-
tive movements are mainly neritic, using distinct por-
tions of the continental shelf, including the slope
(McMahon et al. 2007, Whiting et al. 2007). Similar
behavior has been recorded for turtles nesting in
French Guiana (Plot et al. 2015, Chambault et al.

2016) and Oman (Rees et al. 2012). In Brazil, the driv-
ers of a mixed strategy are unclear and merit further
investigation. Among the available techniques, an
evaluation of the movements recorded here against
Lagrangian drifters or virtual particle trajectories
models, is recommended (Scott et al. 2014, Hays
2017, van Sebille et al. 2018).

The olive ridley movements along the continental
shelf of Brazil suggest a migratory corridor. This cor-
ridor is used by olive ridleys throughout the year
after leaving or returning to the nesting beaches in
Sergipe and northern Bahia, complicating conser -
vation of this species along the several thousand-
kilometer journey.

Remigration to the nesting area was partially
recorded for 1 olive ridley (PTT 140732, see Fig. S2 in
Supplement 1) that foraged in SE Brazil, with a total
track duration close to 1 yr (337 d). The return track
was similar to the post-nesting movement, which rein-
forces the hypothesis of a migratory cor ridor along
the Brazilian continental shelf. The im portance of
Brazil’s continental shelf as a migratory corridor has
also been reported for loggerhead, hawksbill, and
green turtles (Marcovaldi et al. 2010, 2012, Baudouin
et al. 2015).

Hays & Scott (2013) proposed that for cheloniid tur-
tles, breeding and feeding areas should be limited to
distances of less than 3000 km apart based on physi-
ological limitations. However, here we have recorded
greater distances for the oceanic migrations for olive
ridleys (averages of 4500 km in directional move-
ment and 3100 km in straight line distance). Hays &
Scott (2013) also stated that for leatherbacks and
juvenile cheloniids, feeding during their movement
limits dispersion to factors such as thermal niches or
currents. Considering the distance and the duration
of migrations recorded here (approximately 4500 km
in 110 d), it is plausible that some foraging is occurring
during oceanic movements for these olive ridleys.

Interestingly, our results showed that variation in
post-nesting migration has a relationship with animal
size and seasonality. The larger olive ridleys (mean
CCL: 74.9 ± 2.7 cm) captured on the nesting beaches
during summer migrated to neritic foraging grounds
in the south and southeast of Brazil. Smaller olive rid-
leys (mean CCL: 68.9 ± 2.5 cm) with oceanic migra-
tion behavior were observed nesting throughout the
year. An intermediate class size (mean CCL: 70.3 ±
2.7 cm) used neritic areas in the north and NE of
Brazil. Similar behavioral dichotomy was also ob -
served for loggerheads that nest in Japan (Hatase et
al. 2002) and Cape Verde (Hawkes et al. 2006), with
larger animals feeding in neritic areas, and smaller
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animals in the open ocean. The authors proposed
that the size variation may be related to dietary dis-
tinctions and nutritional characteristics of different
food sources (Hawkes et al. 2006), the recruitment
and settlement of the immature loggerheads (Hatase
et al. 2002), and an increased probability over time
for the turtle to find and re-settle in a more produc-
tive shelf area (Eder et al. 2012).

Another possible determining factor for the di cho -
tomy of olive ridley behaviors in Brazil is the seasonal-
ity of the coastal/oceanic currents. The importance of
currents for sea turtle dispersal and migratory routes
was proposed by Hays et al. (2010) and Scott et al.
(2014), and for early stages of sea turtle life by Putman
& Mansfield (2015). Variations in the bifurcation of the
South Equatorial Current (biSEC), and in the origin of
the Western Boundary Brazil and North Brazil cur-
rents (Stramma & England 1999, Silveira et al. 2000,
Amorim et al. 2011, Pereira et al. 2014) ap pear to be
related to the north and south dispersion patterns
recorded for loggerhead turtles in Brazil (Mansfield et
al. 2017). As the biSEC generally oc curs between 10°
and 14° S (Rodrigues et al. 2007), olive ridley hatchlings
leaving Sergipe nesting beaches are exposed to sea-
sonally varying ocean current conditions.

4.3.  Foraging ARMs

In general, the olive ridley post-nesting movements
observed here ended in areas that can be character-
ized as high primary productivity, either due to the
presence of either upwelling systems (oceanic and
southeast coast of Brazil) or neritic mud bottoms
(southeast Brazil). The association of olive ridley for-
aging areas with higher productivity zones was pre-
viously re corded for olive ridleys, either for those
located on the continental shelf (Whiting et al. 2007,
Plot et al. 2015, Chambault et al. 2016) or related to
oceanographic fronts, eddies, and upwelling (Ram et
al. 2009, Swimmer et al. 2009, Plotkin 2010, Pikesley
et al. 2013). The oceanic foraging areas off west Africa
showed high primary productivity values when close
to the continental slope and are also used by logger-
heads that nest in Cape Verde, which illustrates the
importance of the area for different species and pop-
ulations of sea turtles (Hawkes et al. 2006).

Many of the areas highlighted as important for
olive ridley sea turtles in this study are heavily im -
pacted by fisheries. The oceanic portions of migratory
movements, as well the inferred foraging grounds in
west Africa, are associated with high levels of pelagic
long-lining (Sales et al. 2008, Fossette et al. 2014).

Foraging grounds in SE Brazil overlap with an indus-
trial bottom trawl fishery that has the sixth highest
rate (relative to effort) of incidental capture of sea
turtles globally (Guimarães et al. 2018). If these areas
remain poorly protected, it is possible that they could
act as population sinks, negating positive initiatives
being undertaken elsewhere in Brazil and the wider
Atlantic.

5.  FINAL CONSIDERATIONS

The dispersion patterns identified for Lepidochelys
olivacea that nest in Brazil suggest that conservation
actions must consider that significant variation in the
ecology of a species can occur in the same nesting area,
as well as at the national and international level.

Among the identified high-use areas, the SE forag-
ing ground, as well as the inter-nesting area, may re -
present opportunities for the implementation or expan-
sion of marine protected areas. The use of satellite
telemetry data to confirm or reshape marine protected
areas was reviewed by Hays et al. (2019), and some
examples cited are Gabon (Maxwell et al. 2011, Casale
et al. 2017, Dawson et al. 2017), Mexico (Méndez et
al. 2013, Cuevas et al. 2018), and Indonesia (Hitipeuw
et al. 2007). In Brazil, such a measure would effec-
tively contribute to surpassing the Aichi Biodiversity
Targets (Convention on Biological Diversity). Another
action could be the update of the Joined Normative
Instruction No. 1, of 27 May 2011, which established
restrictive measures for activities such as pipeline
construction, drilling, and seismic research. The act
could be revised, and the protective measures ex -
tended for the new high use areas identified here
and dredging activities added to its scope.

In SE Brazil, the suggested measures could benefit a
set of threatened species in addition to olive ridleys,
such as fish (Epinephelus itajara, Lutjanus cyan op -
terus, Scarus trispinosus), rays (Manta birostris, Da -
syatis centroura), guitarfishes (Zapteryx brevirostris),
the shark Carcharhinus longimanus (Luiz et al.
2008), and one of the main foraging areas in Brazil for
Bryde’s whale Balaenoptera edeni (Gonçalves 2006).

To counteract fisheries bycatch in the inter-nesting
area, one possibility would be seasonal closures for
shrimp trawling. The closures should include the
months of December through March, which repre-
sent the peak of the olive ridley nesting season. Also,
the use of turtle excluder devices should be encour-
aged through monitoring and training programs, and
potentially made mandatory, wherever a high-use
area overlaps with shrimp trawl effort.
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In oceanic areas, despite the considerable com-
plexity in implementing protection measures for the
variety of fishery types and fleet nationalities, a
viable alternative is the use of circular hooks, which
have shown evidence of bycatch reduction, as well as
reduction in the severity of the injuries caused (Sales
et al. 2010), or restrictions on the use of surface long-
lines shallower than 100 m (Polovina et al. 2004).
Another option is to create an app or website, similar
to the TurtleWatch tool, that integrates bycatch data,
turtle tracks, and sea surface monitoring, to inform
fleets about fishing areas that must be avoided,
based on sea turtle habitat characteristics (Howell et
al. 2008).
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