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1.  INTRODUCTION

Human activity is thought to impact every ecosys-
tem on Earth (Halpern et al. 2008, Cardinale et al.
2012). Marine litter as a mechanism of impact is re -
ceiving increasing attention (Fossi et al. 2018, Kar -
thik et al. 2018, Krishnakumar et al. 2018, Vlacho -
gianni et al. 2018, Sweet et al. 2019). It has been
estimated that abandoned, lost or discarded fishing
gear (ALDFG or ‘ghost gear’) make up ~10% of this
litter (Macfadyen et al. 2009). ALDFG, specifically
ghost nets, can have major impacts on ecosystems
and their biodiversity, entangling a vast array of spe-
cies (Stelfox et al. 2016) in a continuous process

referred to as ghost fishing (Smolowitz et al. 1978).
Sea turtles are particularly vulnerable to this type of
litter (Wilcox et al. 2016). Although non-target cap-
tures (bycatch) of sea turtles in active fishing gear
has been studied and shown to have significant
impacts on turtle populations (Bourjea et al. 2008,
Wallace et al. 2010, Peckham et al. 2016, Lucchetti et
al. 2017), the scale of impacts due to ghost nets is less
well understood.

It is likely that the life history characteristics of tur-
tles make them particularly vulnerable to entangle-
ment in ghost nets. For example, sea turtles are poik-
ilotherms (cannot directly regulate their own body
temperature) and are therefore seen basking on
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beaches (Whittow & Balazs 1982), and juveniles have
been observed using floating algal mats as a basking
substrate (Nichols et al. 2001). Ghost nets may there-
fore act as an alternative floating substrate and an
attractive option for turtles seeking to bask, resulting
in entanglement. Juvenile sea turtles are also often
attracted to floating algal mats (and therefore also
the floating nets) as a source of food and shelter
(Boyle & Limpus 2008).

Although ghost nets are a global issue, geographic
differences in ocean currents, climatic conditions and
local fishing practices are likely to generate spatial
heterogeneity in the impact on turtle populations.
This is further complicated by the high degree of re-
gional connectivity between ocean borders. For exam-
ple, a genetics-based study on olive ridley sea turtles
Lepidochelys olivacea caught in ghost nets around
Australia highlighted a variety of different, and mostly
unidentified, genetic lineages or haplotypes (Jensen
et al. 2013), indicating that ghost nets were impacting
several genetically distinct rookeries spanning large
geographical ranges (Jensen et al. 2013). In the Indian
Ocean there remains a sparsity of knowledge on
turtle populations and the effects ghost nets have on
these. Throughout this region, there is considerable
spatial heterogeneity in the use of fishing gear. For
example, purse seine fishing and the use of fish ag-
gregating devices (FADs) dominate throughout much
of the Western Indian Ocean (Da vies et al. 2014), and
pelagic gill nets and trawling are commonly utilised
throughout the Arabian and Bay of Bengal ecoregions
(Dar et al. 2017, Thomas et al. 2017, Jones et al. 2018,
Samanta et al. 2018). An additional source of com-
plexity affecting the distribution of ghost nets in the
Indian Ocean is the complex weather patterns, driven
by 2 major components; the north east (NE) monsoon
(where surface geostrophic currents generally flow
westward be tween November and April), and the
south west (SW) monsoon (where surface geostrophic
currents generally flow eastward between May and
October; Shankar et al. 2002).

The construction of reliable statistical models relat-
ing environmental conditions, regional fishing prac-
tices, and patterns in ocean currents to turtle entan-
glement in ghost nets, would enable the design of
more effective tools for management and mitigation
of this threat to turtle populations. However, the cryp-
tic and transboundary nature of ghost nets, the
limited knowledge associated with environmental
conditions at the time of entanglement and the identi-
ties of the fisheries that lose the gear in the first place,
make such models difficult to construct. Indeed, stud-
ies which have tackled such questions (but have fo-

cused on the effects of bycatch and turtle entangle-
ment) utilise temporal data (Casale et al. 2017) com-
bined with knowledge of the fishery res ponsible. For
ghost nets, this information is simply unknown. To
date, only one study has attempted to analyse the ef-
fect of ghorst net and turtle entanglement (Wilcox et
al. 2015). These authors indicated that larger mesh
sizes and lighter twine (indicative of pelagic gill nets)
increased the probability of entanglements in the gulf
of Carpentaria, Australia. They then used a model to
estimate the scale of the issue and hypothesised that
over 14600 turtles would have been caught in the
8690 nets sampled in their study, if these nets drifted
for only one year (Wilcox et al. 2015).

Here, we aim to utilise data collected at multiple
locations within the Maldives over a period of 5 years
to develop statistical tools for modelling the probabil-
ity of turtle entanglement. The geographical position
of the Maldives (centred in the Indian Ocean) offers a
rare opportunity to assess the spatial dynamics of
ghost nets through regional connectivity. As fishing
by nets (in the Maldives) is limited to bait fishing
associated with the tuna fishery (Miller et al. 2017), it
is reasonable to assume that a large proportion of the
floating ghost nets in this region originate from
neighbouring countries (Stelfox et al. 2015). Addi-
tionally, the atolls in the Maldives draw a perpendi-
cular line across the direction of ocean currents, with
the atolls and outer reefs acting as traps for floating
debris (Stelfox et al. 2015). This therefore acts as a
‘natural’ sampling filter. Here, we build on the study
by Wilcox et al. (2015) by developing a model in a
new geographic area (Maldives) and in cluding an
aspect of seasonality (NE and SW monsoon) as a
potential factor affecting the probability of turtle
entanglement. Furthermore, we also investigate the
applicability of a novel approach of clustering net
characteristics to identify groupings of gear types
found drifting into the Maldives.

2.  MATERIALS AND METHODS

There are several statistical methodologies available
for relating independent variables (in this in stance
characteristics of the nets and/or environmental fac-
tors) to the probability of a turtle entangling with a
ghost net, all of which have comparative strengths
and weaknesses. In this study, we therefore utilised a
suite of methods (logistic regression, random forests
and partitioning around medoids [PAM] clustering;
detailed below). These methods were chosen as they
have been extensively used in several research fields,
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are well understood mathematically, and represent a
transition from traditional statistical methods, through
machine learning, to exploratory methods. Addition-
ally, they are relatively robust to outliers and can be
effectively applied to smaller data sets.

The Olive Ridley Project (ORP) is a UK charity col-
lecting data from citizen scientists on ghost net and
turtle entanglements found in the Indian Ocean. Here
we report on data that was collected in the Maldives
between 2013 and 2017 (51 months in total). Ghost net
characteristics thought to be potential factors affecting
the probability of turtle entanglement, were collected
opportunistically following a protocol de veloped by
the International Union for Conservation of Nature
(IUCN) and the ORP (see Table S1 in the Supplement
at www. int-res. com/ articles/ suppl/ n040p309 _ supp. pdf)
(https://oliveridleyproject.org/report-a-ghost-net). All
ghost nets were reported by citizen scientists when
finding them on beaches and/or on their way to
dive/snorkelling sites floating on the surface or entan-
gled on shallow coral reefs inside the atolls of the Mal-
divian archipelago. The location and date of net dis-
covery, and whether a turtle was entangled or not
(with a species identification if known) were also re -
corded. Photographs accompanied each turtle entan-
glement to help validate species identification. Those
with no photographs were excluded from further ana -
lyses. Moreover, only whole carcasses were re corded
in this analysis, skeleton and bones were excluded be-
cause species could not be accurately identified. The
majority of ghost nets were burnt or sent to landfill
after data collection, with a small proportion recycled
into bracelets. A second independent dataset (n = 49
nets) was also collected in the same way, but over a
shorter period (September 2017 to January 2018). The
second dataset was utilised as independent data for
testing predictions derived from the final model (ran-
dom forest, explained below) developed using the first
dataset (see below). This independent dataset did not
overlap the study period of the first dataset and nets
were incinerated after data collection.

2.1.  Logistic regression

Logistic regression used the generalised linear
model (GLM) framework with a logit link function
and binomial error distribution (Eq. 1). This relates
explanatory variables (ghost net and environmental
characteristics) to a binary response variable (entan-
glement, no entanglement) (McCullagh 1984). Thus,
here the link function relates effects of net character-
istics and seasons to the probability that a net will

contain an entangled turtle. The link function is usu-
ally expressed in the form of the natural logarithm
(log) of the odds (of a net containing a turtle):

(1)

where the left-hand term is the logit link, with π being
the probability of an event (entanglement) oc curring.
Therefore, the logit form is the log of the odds of an
event occurring. The right-hand side is the standard
linear regression form showing the effects (β coeffi-
cients) of each of the explanatory variables (x1, x2 … xi)
on the log of the odds. β0 represents the expected log
odds value when all independent continuous vari-
ables have value zero, and factor variables have their
baseline value.

Two of the independent variables, mesh size (min =
10 mm, max = 9700 mm, mean = 128.49 mm) and
twine diameter (min = 0.1 mm, max = 15 mm, mean =
1.65 mm) had very skewed distributions and were
therefore log transformed prior to performing logistic
regression. We added 1 to twine diameter before log-
ging to keep values within the domain of the log
function due to some being close to zero in the first
instance.

An information theoretic approach (Akaike infor-
mation criterion [AIC]; Akaike 1981) was used to
select the minimum adequate model. This approach
is regarded as being a more robust selection method
than likelihood ratio tests (Burnham et al. 1995). Both
forward and backward step-wise selection was used
to ensure consistency in selection. The logistic re -
gression provided a complimentary analysis to our
random forest models (explained below). This al -
lowed for exploratory analyses of the relationship be -
tween independent variables (Table S1) and turtle
entanglement. A comparison of residual deviance and
degrees of freedom indicated no problems with over
or underdispersion.

2.2.  Building classifiers with rare events

Random forests were chosen as a classification me -
thod as they are known to perform well on complex
non-linear data, have few statistical assumptions, are
relatively robust when dealing with missing data and
automatically incorporate interactions in their con-
struction (Faraway 2016). Additionally, such models
have been utilised in similar studies of bycatch (Báez
et al. 2014, Oliver et al. 2015, James et al. 2016). For
these reasons, our random forest was selected as our
final predictive model and used to calculate the prob-
ability of turtle entanglement.

( )π
π

= β + β + β +…+ βlog
1 –

0 1 1 2 2 i ix x x
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The choice of hyperparameters used in the con-
struction of random forests can alter model output,
with studies indicating that the number of parame-
ters randomly sampled at each split in the tree (mtry)
being the most influential hyperparameter improving
performance (see Probst et al. 2018 for a re view). In
this study, mtry was tuned based on a se quential
range between 1 and 20 (20 representing the full set
of independent variables). When using the same
cross validation sets to tune model hyperparameters
and estimate model performance, optimistically biased
estimates are known to occur (Cawley & Talbot
2010). To overcome this bias, a nested cross valida-
tion was conducted which allowed for hyperparame-
ter tuning in the inner loop and an estimate of the
overall model generalisation to be made on the outer
loop (Varma & Simon 2006). This ensured that no
data was ‘leaked’ from the test set during model tun-
ing. Inside both loops a stratified k-fold cross valida-
tion (k = 10) was performed. This allowed minority
and majority cases to be present in each random fold.
A combination of F1 score (explained below) and sen-
sitivity (tpr) and specificity (tnr) measures were used
to assess the applicability of hyperparameter values
and to evaluate model generalisation.

The best random forest classifiers (those most likely
to generalise well on unseen data) were selected as
those giving the highest F1 score, closest to 1. Sensi-
tivity and specificity were then used as additional
metrics to quantify rates of false negatives and false
positives respectively.

All analyses were conducted using the statistical
programming language R v3.4.2 (R Core Team 2018).
Random forest classifiers were constructed using the
‘randomForest’ package (Liaw & Wiener 2002), with
variable selection done using the ‘cforest’ function in
the ‘party’ package (Hothorn et al. 2006). The cforest
algorithm does not show bias when a mix of cate -
gorical and continuous variables are used, unlike tra-
ditional variable importance measures for random
forests (Strobl et al. 2008). k-fold cross validation (k =
10) was performed within the ‘caret’ package (Khun
2017). Variables used in the final random forest
model were selected based on starting with 10 of the
highest-ranking variables (according to the cforest
function), and then removing one variable at a time
until the highest F1 score was achieved.

2.3.  Dealing with rare events

Rare events, such as ghost net entanglements, are
a challenge when building classifiers. Many algo-

rithms perform poorly with such data, typically re -
sulting in the minority class (here turtle entangled)
being ignored (King & Zeng 2001). It is possible to
use ‘oversampling’ (replicating observations from
the minority class) and ‘under-sampling’ (removing
ob servations from the majority class) to try and
 minimise the impact of the rarity of the event (Esta -
brooks et al. 2004). However, over-sampling can
result in bias in the selection of the minority class,
while under-sampling can result in a loss of impor-
tant data (Weiss 2004). An alternative to these more
traditional methods is the synthetic minority over-
sampling technique (SMOTE). This takes minority
class observations and generates synthetic ones.
These are based on randomly positioning ‘new’
values of the minority class along a Euclidean path
within multi-parameter space, thereby joining pairs
of locations of actual observations of the minority
class (Chawla et al. 2002). SMOTE was used in this
study on our random forest classifiers to adjust the
class imbalance in order to ensure that there were
equal numbers of entanglement and no-entanglement
cases.

2.4.  Assigning fishing nets to fisheries

Partitioning around medoids (PAM) was utilised to
create clusters of net characteristics (Kaufman &
Rousseeuw 1990). PAM works in a similar way to k-
means clustering but uses representative objects
(here particular nets) as ‘centres’ of clusters. This
contrasts with utilising locations in multi-dimensional
space that do not correspond with a particular object.
Medoids are identified based on minimised mean
dissimilarity of an object and the other objects in the
corresponding cluster. This has the effect of reducing
the sensitivity of cluster designations to outliers. Dis-
similarity distances were based on the Gower dissimi-
larity index to allow for mixed variables. Distances
were calculated using the ‘daisy’ function in the
‘cluster’ package (Maechler et al. 2017). The average
silhouette width (Rousseeuw 1987) was used to
assess the validity of the PAM clustering. Silhouette
width is a measure of how similar an object is to its
own cluster. Values range be tween –1 and +1, and a
high value indicates that the object is well fitted to its
cluster.

PAM clustering can be susceptible to finding the
local maximum causing the preferential influence of
categorical variables. To avoid this problem, we
evenly weighted the numerical variables (mesh size
and twine diameter) more heavily than the categori-
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cal variables and adjusted these until the silhouette
width reached local maxima. The ’construction’ vari-
able was also weighted to allow mono filament fish-
ing nets, rarely found in the Maldives, to influence
the clustering. Categorical variables were treated
as nominal values in the calculation of the Gower
indices, and the 2 continuous variables (stret ched
mesh size and twine diameter) were treated as ratio
scaled.

3.  RESULTS

A total of 1069 ghost net fragments, entangling 7
green turtles Chelonia mydas, 18 hawksbill Eretmo -
chelys imbricata, 1 leatherback Dermochelys cori-
acea, 348 olive ridley Lepidochelys olivacea and 3
unidentified sea turtles were reported. Due to limita-
tions in the field not all ghost nets could be meas-
ured. Therefore, 752 ghost net fragments were ana-
lysed in total, of which 80 had 1 or more turtle(s)
entangled (Fig. S1). A total of 131 sea turtles were
entangled in the 752 reported ghost nets, olive ridley
turtles made up 97% of turtles caught. A further 49
ghost nets entangling 7 olive ridley turtles were re -
ported between September 2017 and January 2018.
These latter data were utilised as the test set to assess
the performance of our final predictive regression
tree model. For more information on the ghost nets
typically found in the Maldives please refer to Stelfox
et al. (2015).

3.1.  Logistic regression

Our stepwise logistic regression analyses identified
mesh size, seasonality (i.e. NE monsoon), and pres-
ence of floats as variables significantly affecting the
probability of turtle entanglement (Table 1). How-
ever, the estimated fit of the model was poor (0.055;
pseudo-R2 following McFadden 1979).

The probability of entanglement increased as the
log mesh size increased (Fig. 1) but decreased when
floats were present. Additionally, the model indi-
cated that turtles were more likely to be entangled
during the NE monsoon when currents flow from east
to west. Despite net colour (blue) having a marginally
insignificant (p = 0.08, α = 0.05) positive impact, this
trait was still included in the model as the model had
the lowest AIC value (348, with maximum AIC values
of other models ranging up to AIC = 368.49), and we
took a conservative approach given the complexities
of the structure of the data.

3.2.  Random forest model predictions

Adjusting for class imbalance using SMOTE great -
ly improved the random forest model (F1 = 0.24 com-
pared with F1 = 0.04). Model generalisation was best
when variables were reduced to the top 6 ranking
variables (Fig. 2) (F1 = 0.26, tpr = 0.66, tnr = 0.58).

Variable selection for the random forests generally
complimented the final logistic regression model
structure. However, twine diameter was judged to be
an additional influential variable (Fig. 2).

A systematic grid search approach using the top
6 ranking variables did not show any convincing
trends in effects on mtry selection (Fig. S2). Searching
for the optimal value for mtry was inconclusive, and
we used a value of 3, based on it resulting in the
highest F1 score (F1 = 0.30).

Our final model (6 top ranked variables and mtry = 3),
when applied to the test data set, generalised to a
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Coefficient Estimate SE Z p

Intercept −4.021 0.673 −5.979 <0.0001
Logmesh 0.335 0.122 2.738 0.006
NE monsoon 0.568 0.256 2.219 0.027
Floats −0.917 0.247 −3.709 0.0002
Blue 0.489 0.280 1.743 0.081

Table 1. Estimated regression coefficients for the minimum
adequate logistic regression model, estimating the probabil-
ity of a ghost net having captured a turtle. The minimum ad-
equate model was obtained from stepwise selection using
the Akaike information criterion. Logmesh: log mesh size;
blue: ghost nets made of blue material; floats: floats attached 

to ghost nets

Fig. 1. Estimated effect of net mesh size on the probability of
turtle entanglement (solid blue line) based on the minimum
adequate logistic regression model. Black rugs at the top of
the graph represent entanglement events, and rugs on the
bottom represent no entanglement events. The positions of
the rugs along the x-axis mark the log of the mesh size for
the corresponding net. The grey band represents the 95% 

confidence intervals for the estimated probability
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similar extent to that of the model in the develop-
mental stage (F1 = 0.32). The low sensitivity (tpr =
0.57) and higher specificity (tnr = 0.66) demonstrate
that the models are sensitive to type I errors. How-
ever, we were able to capture 63% of ‘true’ events,
even though this was at the expense of an increase in
the number of false positives (Fig. 3).

3.3.  Ghost net clustering

The diversity of ‘types’ of net used within the
Indian Ocean region is high. However, the average
silhouette width gave statistical support for 11 appar-

ent net clusters (0.65) amongst the
752 net fragments analysed in this
study (Fig. S3).

Eight of these 11 clusters had grea -
ter average silhouette width, mea ning
that these 8 clusters are well assigned
and likely to reflect true variation in
net types. In contrast, the remaining 3
clusters (8, 10 and 11) showed in -
correct or poorly assigned observa-
tions which subsequently reduced the
average silhouette width (Fig. S4).
While the heterogeneity within these
3 clusters was not large enough to
warrant the addition of a cluster ac -
cording to the average silhouette
width, all their respective medoids
had characteristics which were dis-
tinct from those of the other clusters
(Table 2). For example, cluster 11 had

only 1 observation which gave a negative silhouette
width, and its characteristics are unlikely to be asso-
ciated with any net in the Indian Ocean. Further, nets
(n = 13, Table 2) in cluster 8 had far heavier twine
than the other clusters and, in contrast, nets in cluster
10 (n = 54) had a larger mesh size but light twine.

The bulk of observations were in the first 2 clusters
and included most of the ghost nets which were pre-
dicted to have high probabilities of entangling tur-
tles. Clusters showed a large overlap in mesh sizes,
making it unlikely that individual clusters could be
linked to specific fisheries (Fig. S5). For example, the
heterogeneity in clusters 1, 2, 4, 6, 7 and 10 meant
that the clustering did not involve a clear distinction
between gill and trawl nets among these clusters.
However, the clustering did lead to some broad sep-
arations of net types based on net characteristics.

4.  DISCUSSION

4.1.  Causes of turtle entanglement

The results of the present study indicate that turtle
entanglement is more likely to occur as the mesh size
of a ghost net increases. This supports other studies
conducted across Northern Australia (Wilcox et al.
2015) and the US mid-Atlantic region (Murray 2009).
While the latter study focused on bycatch and not
ghost net entanglement, this illustrates the impor-
tance of mesh size in relation to the entanglement of
turtles on a global scale. In the present study, the
majority of ghost nets encountered were largely
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Fig. 2. Ranking (decreasing order) based on the influence of variables on the
random forest model. Floats: floats attached to ghost nets; NE: north east
monsoon; SW: south west monsoon; mesh: mesh size (mm); net colour (blue,
green, black, white, rare colours [yellow, orange and red]); twine: twine dia -
meter (mm); S1–S5: number of strands (1–5); net construction (braided, 

multi[filament], mono[filament]); material (synthetic, natural)
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Fig. 3. Confusion matrix of the final random forest model on
unseen data (F1 = 0.32). 0: no entanglement; 1: entangle-
ment. Red numbers indicate correctly identified observa-

tions. The proportion of false positives was 0.29 (14/48)
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damaged fragments which had likely been torn away
from the main body of the net. Damaged small-
meshed nets may have an altered mesh size or large
openings which could become problematic for sea
turtles. Wilcox et al. (2015) highlighted that thinner
twine was more likely to entangle turtles. Although
this was not captured by our logistic regression, it
was identified as a possible factor in the random for-
est analysis. Therefore, we suggest that although
twine diameter does not appear to be a dominant
variable explaining turtle entanglement it remains
important for building predictive models, at least in
this instance. Here, we also highlight that ghost nets
found during the NE monsoon showed a significantly
greater probability of having entangled turtles in
them compared to ghost nets found in the counter
currents generated from the SW monsoon. This sup-
ports previous studies which highlight the impor-
tance of seasonality and turtle entanglements in
active fishing gear (Tomás et al. 2008, Kot et al. 2010).
In the Indian Ocean, the NE monsoon coincides with
peak nesting season for olive ridley turtles along the
east coast of India (Pandav et al. 1997). Therefore, it
is reasonable to assume that this results in an in -
crease in turtle entanglement.

Surprisingly, ghost nets with no floats attached
appeared to be more likely to entangle turtles. This
contradicts studies focusing on active fishing gear
and turtle entanglement which found the opposite
trend, and which led to the suggestion of decreasing
or removing floats from active fishing gear to reduce
the probability of entanglement (Echwikhi et al.
2010, Gilman et al. 2010, Peckham et al. 2016). It
could be hypothesised that the added buoyancy with

floats may keep turtles at the surface for longer, giv-
ing them more time to escape. However, further
work is needed to understand why this difference
occurs and if management decisions need to take this
into account.

Blue netting was also identified by the random
forests as being a high-ranking variable, and was
marginal in the logistic regression. Turtles have a
well-developed sense of vision that clearly plays an
important part in foraging behaviour (Swimmer et al.
2005, Southwood et al. 2008). However, most of our
knowledge of sea turtle vision is derived from studies
of loggerhead turtles Caretta caretta (Narazaki et al.
2013, Piovano et al. 2013) and Chelonia mydas
(Mäthger et al. 2007). In contrast, no information on
the visual capabilities for olive ridley turtles exists. It
remains unknown if olive ridley turtles are more at-
tracted to blue nets than those with other colours, or if
blue nets remain invisible given their lack of contrast
against the blue of the ocean. To the best of our
knowledge, this is the first time that a possible link be-
tween turtle entanglement and ghost net colour has
been made. However, the exact form and mechanism
of the relationship remain to be identified and further
research needs to be conducted to explore this.

Interestingly, in this study we estimate entangle-
ment rates of ~0.17 (131/752), while in the most com-
parable study (Wilcox et al. 2015), rates were much
lower (~0.02). It is uncertain why the Maldives has
significantly higher entanglement rates, but given
their proximity to one of the largest aggregations of
olive ridleys in the world (Shanker et al. 2004) this
could be one major driver increasing the probability
of entanglement.
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Net type Cluster Medoid values n Turtle entanglements
Mesh Twine Strands Colour Construction Material Actual Predicted Adjusted

Gill/trawl 1 75 1 3 Blue Multi Synthetic 259 23 59 42
Gill/trawl 2 150 2 3 Green Multi Synthetic 204 23 65 46
FADs 3 115 4 1 Black Braided Synthetic 21 2 9 6
Gill/trawl 4 133 1.5 3 Blue Multi Synthetic 58 8 33 23
Gill net 5 49 1 1 White Mono Synthetic 21 0 0 0
Gill/trawl 6 260 3 3 Green Multi Synthetic 78 10 32 23
Gill/trawl 7 275 4 3 Blue Multi Synthetic 41 6 19 14
Trawl net 8 160 5 3 Green Multi Synthetic 13 2 7 5
Unknown 9 1200 15 2 Green Multi Synthetic 2 0 0 0
Gill/trawl 10 580 2 3 Green Multi Synthetic 54 6 12 9
Unknown 11 9700 3 3 Blue Multi Synthetic 1 0 0 0

Table 2. Medoid characteristics showing the number of observations (n) assigned to each cluster. Turtle entanglements are
shown as the total number of turtles entangled in each cluster (actual). The number of entangled turtles predicted by the
 random forest before type I error correction (predicted), and the number of entangled turtles predicted after the type I error
correction (adjusted by −29%). FADs: fish aggregating devices; multi: multifilament; mono: monofilament; mesh: mesh size; 

twine: twine diameter
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4.2.  Impact on sea turtles

Our predictive models (random forest) estimated
that 168 turtles (n = 236 non-adjusted models) were
entangled across all 752 ghost nets found during the
course of this study. Although this number seems
inflated when compared to the actual number of
entanglements (n = 80), it is important to consider
that we only recorded ghost nets at the end of their
life, and therefore we were unable to account for
those turtles that managed to escape or decomposed
prior to net stranding. Reports of turtle remains in
ghost nets are not uncommon in the Maldives (Fig. 4)
but there is little information on the decay rate of tur-
tles in this region. Research in other areas of the trop-
ics suggest that turtles may decay rapidly in only 5 to
18 d (Santos et al. 2018). With a decay rate of 5 d, if
we assume that on average nets drift for 1 yr and tur-
tles are evenly distributed across the region where
ghost nets drift, then the portion of turtles entangled
that could be detected would be 0.0137 yr−1. There-
fore, based on the predicted 168 turtles entangled,
this suggests that ~12 200 turtles may have been
entangled in the nets recovered over the length of
our study (51 mo). With a decay rate of 18 d this drops
to ~3400. These calculations are based on assuming
an average behaviour of ghost nets, but it is impor-

tant to recognise that there is likely to be consider-
able temporal and spatial heterogeneity in the prob-
ability of encountering a net with an entangled turtle
prior to the completion of decay. If we are to more
accurately estimate entanglement probabilities and
the true numbers of turtles being entangled, then 2
key parameters need to be quantified much more
accurately: decay rates in the Indian Ocean and the
actual number of ghost nets in the oceans at any par-
ticular time. Moreover, our random forest models
have a relatively high false positive rate (0.29). Our
dataset was imbalanced, particularly with respect to
the number of entanglements compared with the
number of non-entanglements. This is well known to
produce high false positive rates. In an effort to ad -
dress this issue we used SMOTE. Although this un -
doubtedly improved the situation, it is possible that
some impacts of imbalance remained as a result of
SMOTE not being completely effective.

4.3.  Potential origin of nets

There is a general pattern of concern from artisanal
fishers resulting from an increase in competition and
conflict, leading to a loss of catch (Bennett et al. 2001,
Whitmarsh et al. 2003). As a result, artisanal fishers
have become increasingly opportunistic and carry
multiple gear types during a single fishing trip. By
doing so they can target different species and sizes,
thus maximising fishing effort (Samoilys et al. 2017).
A better understanding of the effects of ghost nets on
turtle populations requires a much better knowledge
of how many of the active nets become ghost nets.
However, gaining such knowledge and identifying
the origins of ghost nets is very difficult with the
diversity of fishing gear design being utilised at
local scales. Further, the complexity of ocean cur-
rents and surface movement driven by wind direc-
tion makes identifying ghost net origins considerably
more difficult.

Our PAM analyses could not cluster net types ac -
cording to fisheries and this could be explained by
the similarities in gear type across fisheries and
countries. For example, multifilament gill nets target-
ing seer fish, mackerel and pomfret in Mumbai, typi-
cally have light twine and mesh size ranging be -
tween 70 and 150 mm (Dar & Thomas 2016). In
con trast, drifting gill nets used to target Caranx sp. in
Sri Lanka have mesh sizes ranging between 150 and
450 mm (Thivviyan & Jayakody 2017). Therefore, in
theory, these 2 fisheries should have separated out in
the analysis. However, in Maharashtra, India gill nets
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Fig. 4. Humerus bone of an unidentified species of sea turtle
in the Maldives as an example of evidence of prior entangle-

ment. Photo credit: Claire Petros
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targeting pomfret, mackerel and seer fish have light
twine and mesh sizes ranging between 40 and
280 mm. Similarly, trawl fisheries in Andhra Pradesh,
India, have been reported to have a mix of net types,
ranging between 20 mm at the codend to 2000 mm at
the mouth of the net (Rajeswari et al. 2012). These
overlaps within and between fishery types likely
affect the ability of statistical methods to cluster net
types according to fisheries. The same issues apply
when trying to identify the geographical origin of the
ghost nets. For example, if we aimed to ascertain
where in the Indian Ocean ghost nets are coming
from, we would need to be able to differentiate be -
tween major fishing districts. However, these fish-
eries predominantly use the same gear type. For
example, of 2 surveys of fishing net types used in 2
different districts in India (Maharashtra) for gill nets
(Nirmale et al. 2007) and Kerala for trawl nets
(Sayana et al. 2016), both report mesh sizes ranging
between 20 and 200 mm. However, certain patterns
and trends could be discerned from our data. For
example, most nets reported in cluster 3 were dark
braided nets. Upon closer inspection, fragments of
bamboo were regularly associated with these nets
(M. Stelfox pers. obs.) and these are consistent with
FADs deployed predominantly in the western Indian
Ocean and operated by fishers from the EU (Balder-
son & Martin 2015). These nets are found in varying
conditions, and occasionally trackers have been
found to be attached, supporting these conclusions.
Further, by adjusting weights in the model we were
able to cluster rarely seen nets such as monofilament
gill nets that are occasionally found in the Maldives
(as in cluster 5). As highlighted above, these types of
nets are widely utilised across many fisheries and
many countries in the Indian Ocean. However, few
were found in our surveys throughout the Maldives,
and few of those had entangled turtles within. This
may be because the density of nylon (the material
commonly used to make monofilaments nets) is
1.14 g cm−3, meaning that it will sink in seawater. It is
important to note that, although our study indicates
that these nets are unlikely to be a major threat of
entanglement, we are not suggesting that this im -
plies any reduction in their effects on other marine
life. Indeed, these nets are more likely to impact local
fishing grounds and therefore be found close to fish-
ing operations. Critically, the use of nets, other than
for bait fishery, is banned in the Maldives. However,
illegal fishing does occur due to lack of enforcement
(M. Sweet pers. obs.), therefore some of the nets
reported in this analysis may have actually been
utilised in the Maldives.

5.  SOLUTIONS AND MITIGATION

5.1.  Gear traceability

Traceability of ghost nets was one of the major
goals of this study. However, the complexity of usage
of gear types used by fishers suggests that this is
unlikely to be possible. The FAO have recognised
that gear marking is a valuable method to improve
traceability of ownership of gear types (FAO 2019).
Moreover, methods such as barcoding, gear modifi-
cation, radio frequency identification (RFID) and
global positioning systems (GPS) can help improve
traceability of lost fishing gear (He & Suuronen
2018). However, these methods require significant
human resources and can be expensive. One possi-
ble solution that may complement existing gear
marking methods would be to utilise blockchain
technology (Swan 2015) to improve traceability.
Block chain is a decentralised, immutable and distrib-
uted ledger that offers a transparent method to store
data (Probst 2019). The blockchain would allow
traceability of fishing nets from the fisher to the con-
sumer at the end of the supply chain. Each transac-
tion is stored as a ‘block’ and each new successive
block makes up the blockchain ledger. This type of
complex relationship has been reported to be hand -
led very well by the blockchain technology (Swan
2016) and a pilot study is being performed to improve
traceability of tuna caught in the Pacific Islands
(Visser & Hanich 2017). Utilising such technological
advances may therefore help to close the gap on
understanding what type of gear is being sold and
where, identify high net sales, problem areas and
potential red flags for certain gear types in a complex
system with many stakeholders. Furthermore, the
use of blockchain technology could be driven by con-
sumer demand for more sustainable fisheries with
greater accountability, leading to reduced gear loss
associated with illegal, unreported and unregulated
fishing activity.

5.2.  Ghost net prevention

Our study clearly highlights the need for an urgent
reduction in the loss of net fragments associated
with gill and trawl net fisheries. However, the difficul-
ties of implementing and enforcing such a broad re -
commendation in the region mean we may have to
look at alternatives. An important first step would be to
identify why gear is lost and develop solutions through
information sharing among all stakeholders within the
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supply chain. Improved compliance on gear loss re-
porting by member countries of the Indian Ocean
Tuna Commission (IOTC) may help determine which
fisheries are facing the greatest challenge with re -
gards to gear loss, which may help reallocate resources
to minimise the issue from these fisheries.

The important role of seasonality in determining
the probability of entanglement was highlighted by
the model in this study. Therefore, there is an urgent
need to identify migratory pathways of olive ridley
turtles in the surrounding area to help pinpoint fish-
ery overlap. Temporary closures in these overlapping
areas during high turtle activity may reduce the like-
lihood of turtle entanglement as a result of gear loss
caused by operational damage or general discard.
Moreover, establishing free, port side or landing site
recycling facilities would discourage small and large-
scale fishers from dumping damaged or end-of-life
gear at sea. Given the large number of damaged and
fragmented ghost nets reported in this analysis,
buffer zones could be developed to ensure rugged
bathymetric zones are avoided or controlled for,
reducing gear damage and subsequent gear loss.

Finally, we have also demonstrated that net colour
plays a role, albeit a relatively small one, in increas-
ing the likelihood of sea turtle entanglement. How-
ever, more research will need to be conducted in
order to understand this relationship before manage-
rial decisions can be made on gear modifications
related to net colour.

6.  CONCLUSION

Although we cannot be sure how long ghost nets
drift before being found in the Maldives, we have
attempted to quantify the number of turtles entan-
gled within this region and therefore highlight the
level of threat faced by this one aspect of marine lit-
ter. Our results highlight that ghost net entanglement
is likely a global issue and not a problem that individ-
ual countries will be able to deal with alone. Given
the potential threat of ghost nets to sea turtles in the
area we recommend that bycatch models account for
gear loss to ensure that the impact that fisheries
have on sea turtle populations is not underestimated.
Future research on this topic should focus on meth-
ods to age ghost nets, for example, bioaccumulation
rates so that this information can be fitted into models
such as those outlined in this study. This will allow us
to include drift times, allowing us to get one step
closer to identifying the source of individual nets and
reliably estimating the number of turtles entangled

over the lifetime of a net. Our clustering models high-
lighted the continued need for gear loss reporting to
researchers, charities and governmental agencies,
enabling existing evidence regarding gear loss in the
Indian Ocean to be gathered more effectively. There
is an urgent need to advance our knowledge on gear
types used by artisanal fishing communities. To this
end, we recommend the construction of a detailed
regional database of existing gear types so that
 positive identification of sources of ghost nets from
artisanal fisheries may be possible. This could be
coordinated by regional fisheries management orga -
ni sa tions such as the IOTC. Finally, future resources
should be focussed on a combination of improved
gear traceability and the implementation of realistic
measures to decrease gear loss in order to more
effectively reduce amounts of ghost nets.
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