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1.  INTRODUCTION

The term ‘cryptic species’ refers to 2 or more spe-
cies that are classified, or have been classified, as a
single nominal species because of their (at least
superficially) indistinguishable morphology (Bick-
ford et al. 2007). Although this concept has been
recognised for nearly 300 yr (Winker 2005), it is only
over the last 2 decades that molecular delimitation
methods have revealed that cryptic species are quite
common and widespread across most animal phyla
(Pfenninger & Schwenk 2007, Adams et al. 2014,
Pérez-Ponce de León & Poulin 2016). Cryptic species

require special consideration in conservation plan-
ning because a species already considered threat-
ened may be composed of multiple species that are
even more rare than previously thought (Bowen et al.
1991, Schönrogge et al. 2002, Ravaoarimanana et al.
2004, Sugawara et al. 2018, Yan et al. 2018). The dis-
covery of cryptic species within a threatened species
is rare, but has been found in the myrmecophilous
hoverfly Microdon mutabilis (Schönrogge et al.
2002), lentic salamander Hynobius dunni (Sugawara
et al. 2018), Chinese giant salamander Andrias da -
vidianus (Yan et al. 2018), olive ridley sea turtle Lep-
idochelys olivacea (Bowen et al. 1991), and Ma lagasy
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lemur Lepilemur septentrionalis (Ravaoarimanana et
al. 2004). These discoveries are essential for planning
appropriate conservation strategies because each
different species might have different requirements
for effective conservation (Schönrogge et al. 2002,
Davidson-Watts et al. 2006).

The short-tailed albatross Phoebastria albatrus
is a Vulnerable (D2) (BirdLife International 2018)
seabird found in the north Pacific Ocean. Although
several million birds bred in at least 14 colonies in
the late 19th century, the number of individuals
was drastically reduced owing to feather hunting
during the late 19th and early 20th centuries (Tick-
ell 2000, Hasegawa 2003, US Fish and Wildlife
Service 2008), and they were once declared ex -
tinct in 1949 (Austin 1949). In 1951, however, a
remnant population was re-discovered at the Tsu -
bamezaki colony on Torishima Island. During the
1954−1955 breeding season, only 23 birds and 7
eggs were observed worldwide, all on Torishima
(Ono 1955, Fujisawa 1967). Thereafter, the number
of birds began to increase as a result of conserva-
tion efforts, and adult birds were also found on
Minamikojima Island, Senkaku Islands in 1971
(Research Group for Senkaku Islands at Ryukyu
University 1971). Furthermore, artificial transloca-
tion of chicks from Torishima to Mukojima Island
in the Bonin Islands during the 2008 and 2012
breeding seasons resulted in the establishment of
a new colony in the Bonin Islands (Deguchi et al.
2017). At the end of the 2013−2014 breeding sea-
son, the global population was estimated to be
4200 individuals, with 3540, 650, and 10 birds on
Torishima, the Senkaku Islands, and the Bonin
Islands, respectively (Deguchi et al. 2017, BirdLife
International 2018). Research on the Senakaku
Islands has not been conducted since 2002, mainly
because of the difficulty in accessing the islands
due to political reasons.

The short-tailed albatross was tacitly regarded
as a single management unit with 2 breeding sites,
and international conservation projects considered
its population structure to be of low concern (US
Fish and Wildlife Service 2008, Deguchi et al.
2012, BirdLife International 2017), although previ-
ous studies suggest that the species could include
cryptic species (Eda 2004, Eda & Higuchi 2012,
Eda et al. 2012, 2016). Eda (2004) and Eda et al.
(2012) found that the 2 populations of short-tailed
albatross existed ~1000 yr ago, and descendants of
each population seem to have survived, basically
on Torishima and the Senkaku Islands. Addition-
ally, they revealed that the sequence di vergence

between the 2 clades is greater than that between
other Diomedeidae sister species (Eda & Higuchi
2012), and that strong but incomplete pre-mating
isolation was observed between birds fledged on
Torishima and those fledged on Senkaku Islands
when they bred sympatrically (Eda et al. 2016).
Thus, in addition to these lines of genetic and
behavioural evidence, morphological examination
of individuals of the 2 types is essential for taxo-
nomic re-evaluation of the species (Eda & Higuchi
2012, Eda et al. 2016). However, the difficulty in
accessing the Senkaku Islands has prevented
examination.

Recently, bird censuses and genetic analyses re -
vealed that immigrants from the Senkaku Islands
have been breeding on Torishima (Eda et al. 2011,
2016). Since 1979, attempts have been made to
attach at least one leg ring to all albatrosses hatched
on Torishima before they leave the island (Sato 1999,
Yamashina Institute for Ornithology 2005). In total,
4146 short-tailed albatrosses were ringed from April
1992 to March 2014 (Yamashina Institute for Ornithol-
ogy 2002−2015), and 4140 nestlings were counted
over 23 breeding seasons (from 1991−1992 to 2013−
2014) on Torishima (Hasegawa 2015). However, un -
ringed subadult plumage birds have been observed
every year since 1996 in the Hatsunezaki colony,
which is located in the northwest of Torishima and
was artificially established using decoys and audio
devices (Sato 2009). Moreover, the number of un -
ringed birds has increased. As it is unlikely that these
unringed subadult plumage birds hatched on Tor-
ishima before 1979 or that they lost their ring(s), their
natal site is suspected to be the Senkaku Islands
rather than Torishima. This conjecture was sup-
ported by genetic analysis, because all of the 10 un -
ringed birds captured shared haplotypes from a
genetic lineage that was observed in all birds from
the Senkaku Islands captured before 2002 but this
applied to only 7.3% of the birds that hatched on Tor-
ishima (Kuro-o et al. 2010, Eda et al. 2011, 2016).

In this study, we examined morphological differ-
ences between birds from the Senkaku Islands and
Torishima for taxonomic re-evaluation of the species
and to fill the gap of morphological surveys. For this
purpose, ringed and unringed birds were captured
and measured on Torishima, and their mitochondrial
DNA (mtDNA) control region (CR) 2 was analysed to
confirm the origin population (= type) for each bird.
Results revealed morphological differences between
the 2 short-tailed albatross populations. The exis-
tence of cryptic species for this Vulnerable seabird is
also discussed.
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2.  MATERIALS AND METHODS

2.1.  Field studies

We captured adult short-tailed albatrosses in the
Hatsunezaki colony on Torishima (Fig. 1) during the
2012−2013 and 2018−2019 breeding seasons. To re -
duce the disturbance to breeding behaviour of birds
in the colony, we carefully selected isolated individu-
als as capture targets. Short-tailed albatrosses were
captured with permission from the Ministry of the
Environment and the Agency for Cultural Affairs,
Government of Japan, and in compliance with their
guidelines. Most birds in the colony were ringed and
confirmed to have fledged from Torishima, while
some were unringed and suspected to have emi-
grated from the Senkaku Islands (Eda et al. 2011).
Genetic analysis of 9 of the 14 unringed birds was

performed in a previous study (Eda et al. 2016),
which confirmed that they shared the mtDNA CR2
haplotypes mainly observed in birds from the
Senkaku Islands.

We took a maximum of 26 morphological measure-
ments for each bird: total length (TL), half wing span
(WS), natural wing (NW), tail length (TAIL), tarsus
length (TAR), total head length (TH), beak to gape
length (Gape), skull width (SK-W), exposed culmen
(EC), beak height at base (BH), beak width at base
(BW), beak tip to nostrils front length (NF), beak height
at nostrils (NFH), beak width at nostrils (NFW), pre-
maxillary nail length (PNL), mandibular nail length
(MNL), eye diameter (EYE), wing base to tip length
(WB-T), primary base width (PBW), scapular base
width (SBW), tarsus thickness (TT), tarsus width
(TW), web width (WW), web length (WL), ankle to
web length (A-W), and body weight (Table S1,

Fig. S1 in the Supplement at www. int-
res. com/ articles/ suppl/ n043 p375 _ supp.
pdf), but some morphological variables
were only measured in individuals
captured at a later point in the study.

To conduct a molecular phyloge-
netic analysis and molecular sexing,
blood samples (~0.5 ml) were taken
from the cutaneous ulnar vein of the
birds. Blood obtained was preserved
in 99.5% ethanol and stored, first in a
cool dark place (in the field) and then
in refrigerated conditions (in the labo-
ratory), until analyses.

2.2.  DNA analysis

To reveal the phylogenetic position
of each bird, the mtDNA CR2 domain
I (341 bp) sequence was determined
for all birds as described in Eda et al.
(2016). We refer to CR‘2’ owing to the
duplication of CR in Diomedeidae in -
cluding Phoebastria albatrosses (Abbott
et al. 2005, Eda et al. 2010). In brief,
whole DNA was extracted from blood
samples using a Puregene DNA isola-
tion kit (QIAGEN), CR2 domain I was
amplified via polymerase chain reac-
tion (PCR) using primers Lcon2.dio
(Eda et al. 2010) and H454.gr (Baba
et al. 2005), and PCR products were
cycle-sequenced using an ABI BigDye
Terminator ver. 1.1 Cycle SequencingFig. 1. Short-tailed albatross breeding sites
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kit (Thermo Fisher Scientific) and run on an ABI
PRISM 3130 genetic analyser (Thermo Fisher Scien-
tific). The obtained sequences were aligned with 24
sequences from 53 P. albatrus individuals sampled
on Torishi ma (41 ringed chicks, 9 unringed adults)
and the Senkaku Islands (1 chick, 2 adults) (Gen-
Bank accession numbers AB254197−AB254240 and
LC066675− LC066677) using ClustalX in MEGA
7.0 (Kumar et al. 2016). Four sequences of Laysan
 albatross P. im mutabilis (AB276048−AB276050 and
AB276055) and 5 sequences of black-footed albatross
P. nigripes (AB276051, AB276057, AB276059, AB27
6061, and AB276063) were included as outgroup
sequences. A neighbour-joining (NJ) tree with 1000
bootstrap re plications was constructed for the ob -
tained sequences from each bird and 33 sequences
retrieved from GenBank with MEGA 7.0. To identify
the sex of each bird, we used the CHD gene follow-
ing established protocols (Fridolfsson & Ellegren
1999).

2.3.  Morphological analysis

Morphological differences between sexes and pop-
ulations were tested using t-tests, a principal compo-
nent analysis (PCA), and discriminant function ana -
lysis (DFA). Because the molecular analyses revealed
that captured birds were biased to male and that
female birds originating from Torishima were rare
(see Section 3.2), morphological sexual differences
were tested only for birds originating from the Sen -
kaku Islands, while morphological population differ-
ences were tested only for male birds. To reveal the
general morphological similarities and dissimilari-
ties between populations and sexes, a PCA was con-
ducted using the 9 measurements obtained for all
captured individuals (WS, TAIL, TAR, TH, Gape, EC,
NF, NFH, and NFW), using a correlation matrix. To
reveal the effective discriminant criteria between
males from the 2 populations, DFA was conducted
using 3 beak measurements (EC, BH, and NFH) after
a homogeneity test of covariance matrices. The rea-
son for this selection was higher applicability for old
skin (all measurements), less overlap between the
populations (BH and NFH), and proportional differ-
ence between the 2 populations (EC) (see Section 3.3).
DFA was performed using the linear and quadratic
discriminant function, as covariance matrices were not
significantly different among species (see Section 3.3).
Leave-one-out classification was performed to test
the robustness of the identification criteria. All sta-
tistical analyses were conducted using Systat 13

(Systat Software). All measurements were log trans-
formed before conducting the analyses.

3.  RESULTS

3.1.  Field studies

During the research seasons, we captured 24 (10
ringed, 14 unringed) adult short-tailed albatrosses.
Although blood was collected from all captured birds,
measurements were not completed for some birds
because of the bird’s condition and some measure-
ments were only taken at a later point in the study
(Table 1).

3.2.  DNA analysis

The target mtDNA CR2 sequence was determined
for all bird blood samples, and 12 haplotypes were
found. By comparing these haplotypes with those
available in the GenBank database, we identified 4
as newly observed; these were de posited in the data-
base with accession numbers LC534780−LC534782.
The NJ tree clearly showed that there were 2 major
clades in the short-tailed albatross, which were sup-
ported by 80 and 95% bootstrap values, respectively
(Fig. 2). All 10 se quences from the ringed birds clus-
tered with 18 of 20 sequences from Tsubamezaki
colony on Torishima. Thus, birds belonging to the
clade are referred to herein as Torishima-type. All se -
quences obtained from 5 individuals without rings
clustered with 3 sequences from the Senkaku Islands
and previously analysed 9 unringed birds, and with 2
sequences from the Tsubamezaki colony. Thus, birds
belonging to this clade are referred to herein as the
Senkaku-type. Molecular sexing revealed that 10 out
of 14 Senkaku-type birds and 8 out of 10 Torishima-
type birds were male, and the remainder were
 female.

3.3.  Morphological analysis

After identification and sexing, it was apparent
that 26, 13, 26, and 24 measurements were re corded
for Senkaku-type males, Senkaku-type females, Tor-
ishima-type males, and Torishima-type females, re -
spectively (Table 1). For Senkaku-type birds, males
were larger than females on average for 12 out of 13
variables, with TAIL being the exception. Significant
sexual morphological differences were revealed in 3
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out of 13 measurements (TL, TAR,
and body weight) for Senkaku-
type birds, while measurements
for males and females overlapped
for all measured variables. As
there were only 2 female Tor-
ishima-type birds, their morpho-
logical sexual difference could
not be statistically tested. How-
ever, on average, female birds
were smaller than male birds for
all 24 measurements. In addition,
both female birds were smaller
than the smallest male bird for 15
of the 24 measurements. On aver-
age, Torishima-type males were
larger than Senkaku-type males
for 24 of 26 mensural points, with
EC and NF  being the exceptions.
Moreover, TL and body weight
values of the smallest Torishima-
type male bird were higher than
those of the largest Senkaku-type
male bird. There were significant
differen ces between Senkaku-
and Torishima-type male birds in
16 of 26 measurements, with Tor-
ishima-type birds being larger
than Senkaku-type birds. There
were no significant differences in
EC and NF (Fig. S2).

PCA showed 2 principal compo-
nents (PC) with eigenvalues larger
than 1.0 (Table 2). PC1 and PC2
accounted for 51.9 and 20.6% of
the total variance, respectively.
Component loadings for PC1 were
positive in all 9 measurements. As
a higher PC1 score is related to a
larger body size, PC1 score was
regarded as an indicator of size.
Meanwhile, component loadings
for PC2 were positive for NF,
Gape, TH, and EC. All measure-
ments with positive component
loadings were related to the beak
length. Contrastingly, component
loadings were negative for TAR,
NFH, WS, TAIL, and NFW, none
of which were related to beak
length but were associated with
other body elements or the robust-
ness of beak. Therefore, higher
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PC2 score indicated relatively longer but thinner
beaks. The PC scores scatterplot revealed that most
males (with 2 exceptions in the Senkaku-type) had
positive PC1 scores, whereas females had negative
ones, and most Senkaku-type birds (with 2 excep-
tions) had positive PC2 scores, whereas Torishima-
type birds had negative ones (Fig. 3).

Males from the 2 populations differed significantly
in 3 beak measurements (BH, EC, and NFH) (Pillai’s
Trace = 0.774, F = 11.160, df = 4, 13, p < 0.001). There
was no significant difference between the covariance
matrices for males from the 2 populations (χ2 = 10.79,
df = 10, p > 0.05), and the following linear discrimi-
nant functions for Senkaku- (FLSM) and Torishima-
type males (FLTM) were derived:

FLSM = −28 270.777 + 13 793.542 × BH + 21 067.330 ×
EC − 7527.422 × NFH

FLTM = −28 420.975 + 14 051.214 × BH + 20 889.911 ×
EC − 7474.601 × NFH

In the leave-one-out classification, 89% of birds
were correctly identified, and Senkaku- and Tor-
ishima-type birds were correctly identified with 90%
(9 out of 10 individuals) and 88% (7 out of 8 individ-
uals) accuracy, respectively.

Quadratic discriminant functions for Senkaku-
(FQSM) and Torishima-type male (FQTM) were as
 follows:

FQSM = −18 142.694 + 10 840.443 × BH + 11 835.836 ×
EC − 4675.487 × NFH − 7246.289 × BH2 − 5398.385 ×
EC2 − 1264.094 × NFH2 + 4609.896 × BH × EC +
2441.798 × BH × NFH + 2151.18 × EC × NFH

FQTM = −115 853.159 + 53 105.462 × BH + 93 836.103 ×
EC − 37 254.71 × NFH − 10 994.199 × BH2 − 21 011.092
× EC2 − 9316.3 × NFH2 − 19 757.91 × BH × EC +
16 532.542 × BH × NFH + 18 436.724 × EC × NFH

In the leave-one out classification using quadratic
discriminant functions, all males were accurately
classified into Senkaku- or Torishima-type. Practi-
cally, the following function is useful for the discrim-
ination between bird types:

FQSM − FQTM = 97 710.47 − 42 265.02 × BH − 82 000.27 ×
EC + 32 579.22 × NFH + 3747.91 × BH2 + 15 612.71 ×
EC2 + 8052.21 × NFH2 + 24 367.806 × BH × EC −
14 090.744 × BH × NFH − 16 285.544 × EC × NFH

By substituting each log10-transformed measure-
ment, the bird is determined as Senkaku- or Tor-
ishima-type when the sign is positive or negative,
respectively.

4.  DISCUSSION

4.1.  Morphological differences in the 
short-tailed albatross

We captured 24 adult short-tailed albatrosses at
the Hatsunezaki colony located on Torishima. Molec-
ular sexing revealed that captured birds were biased
to male (18 males and 6 females). Not only the raw
measurement data but also the PCA, especially PC1,
revealed that male birds were larger than female
birds in both Senkaku- and Torishima-types. How-
ever, t-tests revealed significant morphological inter-
sexual differences in only TL, TAR, and body weight
in the Senkaku-type birds, as t-tests could not be
conducted for the Torishima-type birds owing to the
small number of measured female birds. Morpholog-
ical sexual dimorphism, in which males were larger
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Fig. 3. Principal component analysis on 9 measurements of
24 short-tailed albatrosses. Red circles: Senkaku-type birds;
blue rectangles: Torishima-type birds. Filled and empty 

symbols: males and females, respectively
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Mensural points Component loadings
PC1 PC2

Half wing span (WS) 0.635 −0.416
Tail length (TAIL) 0.494 −0.406
Tarsus length (TAR) 0.610 −0.606
Total head length (TH) 0.732 0.435
Beak to gape length (Gape) 0.749 0.479
Exposed culmen (EC) 0.853 0.420
Beak tip to nostrils front length (NF) 0.766 0.512
Beak height at nostrils front (NFH) 0.804 −0.429
Beak width at nostrils front (NFW) 0.773 −0.323

Eigenvalues 4.67 1.85
% of total variance explained 51.94 20.56

Table 2. Principal component scores for the 2 principal com-
ponent axes based on 9 measurements of 24 short-tailed

albatrosses
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than females, has also been reported in other alba-
tross species (Tickell 2000).

Average values for 24 of the 26 measurements
were larger for Torishima-type males than those for
Senkaku-type males, and 16 of them were signifi-
cantly different according to t-tests. These results
suggest that Torishima-type males are larger than
Senkaku-type males in general. In measurements of
short-tailed albatross carpometacarpi at an archaeo-
logical site from ~1000 yr ago, birds from the Tor-
ishima-type ancestral population were larger than
those from the Senkaku-type ancestral population
(Eda et al. 2012), suggesting that the body size differ-
ence between types has persisted for at least 1000 yr.

In contrast, average EC and NF were longer in
Senkaku-type males than those in Torishima-type
males, suggesting that morphological differences are
not proportional. PCA, especially PC2 scores, sup-
ported this pattern and revealed that it also applied
to female birds, i.e. not only male but also female
Senkaku-type birds had higher PC2 scores, which
indicated relatively longer and thinner beaks than
those of both male and female Torishima-type birds.
As beak shape is highly related to feeding behaviour
and preference, the difference in beak between
Senkaku- and Torishima-type birds is likely associ-
ated with adaptation to different food and/or envi-
ronments. Despite the trend of assortative mating
between 2 types of birds, ringed and unringed pairs
likely raised hybrid chicks on Torishima and Bonin
Islands (Eda et al. 2016, Deguchi et al. 2017), and
hybridisation was confirmed by genetic analysis on
Bonin Islands (Deguchi et al. 2017). In addition, pairs
of Senkaku-type birds yielded chicks on Torishima
(Eda et al. 2016). Morphological investigations on birds
with parents of both the Torishima- and Senkaku-
type, and on Senkaku-type birds fledged from Tor-
ishima require further study.

Because all Torishima-type males had longer TL
and heavier body weight than those of all Senkaku-
type males, these 2 measurements are useful for dis-
tinguishing between the 2 male types. However, the
small sample size should be considered before draw-
ing any significant conclusions, i.e. 8 and 10 males
for Torishima- and Senkaku-type birds, respectively.
Additional samples could show overlap in these
measurements between both types. In addition, TL is
difficult to measure for skin, especially for older indi-
viduals. Furthermore, body weight shows seasonal
change and cannot be measured after a bird has
been stuffed. Therefore, we conducted DFA to reveal
the identification criteria between the Senkaku- and
Torishima-type male birds. Results of leave-one-out

classification revealed that all individuals were cor-
rectly identified by quadratic discriminant functions
of 3 beak measurements, i.e. EC, BH, and NFH, sug-
gesting that the morphometric approach is useful for
discrimination between the 2 types of male birds.
Because PCA showed a similar pattern of beak shape
difference between female birds from the 2 types, it
will be possible to establish the morphometric dis-
crimination criteria for female birds if we conduct
additional female bird measurements.

4.2.  Cryptic species in the short-tailed albatross

The morphological differences found in this study
support the idea of the presence of cryptic species. In
genetic analysis, mtDNA CR2 sequences of modern
short-tailed albatross from Torishima and the Sen -
kaku Islands revealed that there were 2 distinct hap-
lotypic clades, and that one was specific to Torishima
and the other was distributed across both regions
(Eda et al. 2010, 2011, Kuro-o et al. 2010). This genetic
structure, the co-existence of 2 distinct lineages in a
region, i.e. Phylogeographic Pattern II (Avise et al.
1987, Avise 2000), can be explained by 2 population
history scenarios: (1) 2 isolated populations with
recent admixture on Torishima, or (2) a population
with a large evolutionarily effective population size
and significant gene flow, in which 2 separate an -
cient lineages were retained by chance. Contrast-
ingly, ancient DNA, stable isotope, and morphomet-
ric analyses of zooarchaeological bones from the
Hamanaka 2 site revealed that birds from different
clades formed different populations at that time
(~1000 yr ago), and supports the first scenario, i.e.
recent co-existence on Torishima (Eda 2004, Eda et
al. 2012).

According to phylogenetic analysis, the sequence
divergence in the cytochrome b region of mtDNA
between the 2 bird types (0.0061−0.0088) is greater
than that between other Diomedeidae sister species,
including those between the Campbell Thalassarche
impavida and black-browed T. melanophris alba-
trosses (0.0026−0.0079) and between wandering
Diomedea exulans and Amsterdam D. amsterdamen-
sis albatrosses (0.0053) (Eda & Higuchi 2012). Camp-
bell and black-browed albatrosses are clearly dif -
ferent in their iris colour, whereas wandering and
Amsterdam albatrosses are obviously different in
their final plumage (Tickell 2000). These facts sug-
gest that the divergence between Senkaku- and Tor-
ishima-type birds was large enough to accumulate
genetic differences affecting phenotypic characteris-
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tics. Assuming the evolutionary rate of the third
codon of cytochrome b region sequence as 1.58%
Myr−1 (Nunn et al. 1996), the genetic divergence
between the 2 lineages occurred 638 000 yr ago (Eda
2018).

From an ecological perspective, birds originating
from Torishima and the Senkaku Islands were observed
sympatrically on Torishima but paired assortatively
with few exceptions, suggesting that Senkaku- and
Torishima-type birds achieved a strong but incom-
plete pre-mating isolation (Eda et al. 2016). Incompat-
ibility of mating displays and differences in the timing
of breeding could be proximate cues that result in the
trend of assortative mating in both bird types (Eda
et al. 2016). Some differences in courtship displays
between the 2 bird types were observed (F. Sato un-
publ. data). In addition, the breeding season on
the Senkaku Islands progresses earlier than that on
Torishima, as birds on the Senkaku Islands departed
from the breeding island ~2 wk earlier than those on
Torishima in 2002 (Hasegawa 2006). In articles pub-
lished over 100 yr ago, a similar trend was also re-
ported for the short-tailed albatross on Kuba-jima
and Uotsuri-jima islands in the Senkaku Islands
(Kuroiwa 1900, Miyajima 1900), supporting the hypo -
thesis that Senkaku-type birds have an earlier breed-
ing season than Torishima-type birds. Difference
in breeding phenology is recognised as one of the
speciation mechanisms for seabird species without
apparent physical barriers to dispersal (Friesen 2015).
Furthermore, a lifespan difference in food intake be-
tween Senkaku- and Torishima-type birds was sug-
gested by carbon and nitrogen stable isotope analyses
of zooarchaeological bones (Eda et al. 2012).

Under the general lineage species concept, which
defines a species as a ‘separately evolving metapop-
ulation lineage’, evidence of morphological diagnos-
ability, reciprocal monophyly, ecological difference,
and intrinsic reproductive isolation support the in -
ference of a species boundary (De Queiroz 2007).
As mentioned above, Senkaku- and Torishima-type
birds had diagnosable morphological characteris -
tics, reciprocally monophyletic mtDNA sequences, a
clear trend of assortative mating, and heterochronic
breeding phenology. Despite the absence of physical
barriers to dispersal, the 2 bird types evolved sepa-
rately over the course of ~638 000 yr. Therefore, we
propose that Senkaku- and Torishima-type birds
should be classified as different cryptic species.

The short-tailed albatross Phoebastria albatrus was
named by Pallas in 1769, based on specimens cap-
tured in the Kamchatka Sea, recently called the Sea
of Okhotsk (Pallas 1769). It is difficult to determine

whether Senkaku- or Torishima-type birds should
inherit the species name P. albatrus, for 3 reasons.
Firstly, the type locality, Sea of Okhotsk, has likely
been used by both types of birds (Eda et al. 2012, N.
Tomita et al. unpubl. data). Archaeological albatross
remains (~1000 yr ago) from the Hamanaka site on
Rebun Island, located where the Sea of Japan and
the Sea of Okhotsk meet, included bones from both
types of birds (Eda 2004, Eda et al. 2012), and light-
based geolocator tracking revealed that both types of
birds visit the Sea of Okhotsk (N. Tomita et al.
unpubl. data). Secondly, the original description by
Pallas (1769) is not sufficient for species identifica-
tion. Although Pallas (1769) reported 1 value for each
of 12 morphometric measurements, it is unclear
whether they are comparable with the measure-
ments in the present study and whether all of them
were taken from the same individual. Finally, the
type specimens were lost (V. Loskot and S. Frahnert
pers. comm.). In addition to albatrus, at least 3 names
for these species have been coined, i.e. chinensis,
brachyura, and derogata. Nomenclatural studies are
required to determine which type of bird takes the
name albatrus and to determine an appropriate name
for the other type.

4.3.  Implications for short-tailed albatross
 conservation

After the extinction declaration in 1949 (Austin
1949), only 23 birds were observed on Torishima dur-
ing the 1954−1955 breeding season (Fujisawa 1967),
and the bird numbers and area of occupancy drasti-
cally declined within 3 generations (72.3 yr for the
species) (Hasegawa & DeGange 1982, BirdLife Inter-
national 2018). Therefore, the combined taxon, short-
tailed albatross P. albatrus sensu lato, was Critically
Endangered under the current Red List guideline
(IUCN Standards and Petitions Committee 2019) in
the 1954–1955 breeding season. With great conser-
vation efforts and considering it as a single manage-
ment unit with 2 breeding sites, the species popula-
tion in  creased thereafter and was listed as Vulnerable
in the 2018 IUCN Red List under criteria D2 (BirdLife
International 2018). However, the present study re -
vealed that the species in cluded cryptic species. To
the best of our knowledge, this is the first case of
cryptic species being identified in a threatened avian
species.

When we consider that the species includes cryptic
species, Senkaku- and Torishima-type albatrosses
should be assessed and managed separately. Differ-
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ent cryptic species might require different conserva-
tion strategies (Schönrogge et al. 2002), as they may
be exposed to different risks. Potential threats to the
Senkaku-type birds are probably posed by their
small population size and management problems for
researchers owing to low accessibility due to political
issues. At the end of the 2013−2014 breeding season,
the number of mature birds was estimated to be 1734
(Deguchi et al. 2017, BirdLife International 2018).
Assuming a similar demographic composition on the
islands, the number of mature birds was estimated to
be 1462 and 269 birds on Torishima and the Senkaku
Islands, respectively. Thus, the estimated number of
birds on Senkaku can be close to the limit at which a
population is classified as 'Endangered' (<250; IUCN
Standards and Petitions Committee 2019). A recent
increasing trend of immigrants from the Senkaku
Islands may be related to the environmental degra-
dation of breeding island(s), or full carrying capacity
preventing juveniles from recruiting to the Senkaku
Islands. In addition, long-distance (>1500 km) disper-
sal of juvenile birds and a linear relationship between
colony size and proportion of juveniles recruiting to
their hatching place were observed in wandering
albatross (Inchausti & Weimerskirch 2002). Thus, col -
ony size difference between the Senkaku Islands and
Torishima could explain the dispersal trend from the
Senkaku Islands. Research is urgently required at
the Senka ku Islands to confirm the number of indi-
viduals and explain the increasing dispersal trend.

Torishima is an active volcanic island, and its erup-
tion is a potential threat for Torishima-type birds.
However, models have shown that even small in -
creases in chronic mortality rates, such as those re -
sulting from bycatch, would have a greater impact
on population trends than stochastic and theoreti-
cally catastrophic events, including volcanic erup-
tions (Finkelstein et al. 2010). Comparative research
on oceanic distribution between the Senkaku- and
Torishima-type birds would be essential for estimat-
ing the risk of bycatch for each bird type.

The increasing trend in immigrants from the Sen -
kaku Islands could affect the genetic integrity of Tor-
ishima-type birds through interspecific hybridisation.
Viable F1 hybrids have been reported in interspecies
pairs in Diomedeidae, including species pairs of
black-footed × Laysan albatrosses (Rohwer et al.
2014), Campbell × black-browed albatrosses (Moore
et al. 2001), and northern royal Diomedea sanfordi ×
southern royal D. epomophora albatrosses (Robert-
son 1993). As the genetic distance between the
Senkaku- and Torishima-type birds is much smaller
than that between black-footed and Laysan alba-

trosses (Eda & Higuchi 2012, Eda et al. 2012), the
divergence between the 2 types is unlikely to achieve
complete post-mating isolation. In the Bonin Islands,
2 types of birds confirmed by genetic analysis paired
and yielded chicks (Deguchi et al. 2017), suggesting
that post-mating isolation mechanisms were not so
strong between these types. Therefore, the robust-
ness of pre-mating isolation is thought to have a
major impact on whether the admixture of 2 types of
birds will proceed. So far, 2 types of birds, discrimi-
nated by ring status, have shown a clear trend in
assortative mating on Torishima, but 6.8% of the
observed pairs were disassortative (Eda et al. 2016).
It would be important to note that 2 sequences from
the birds hatched at Tsubamezaki colony on Tor-
ishima (i.e. ringed birds) clustered with Senkaku-
type birds. Thus, some of the ringed birds may be
descendants of Senkaku-type birds that emigrated
from the Senkaku Islands and bred on Torishima.
Future studies analysing the nuclear and mtDNA of
ringed birds mating with unringed birds and their
chicks are required to accurately evaluate the assor-
tative and disassortative mating rates and to predict
whether species boundaries between these 2 species
break down over time.

The third breeding station, the Bonin Islands, could
suffer more serious issues in this context. The colony
was artificially established by the translocation and
hand-rearing of 69 chicks from the Tsubamezaki
colony of Torishima to Mukojima during 2008 and
2012, as a joint international conservation project be -
tween Japan and the USA (US Fish and Wildlife
Service 2008, Deguchi et al. 2017). Although the pos-
sibility of including cryptic species was suggested in
earlier work (Eda 2004), the project progressed with-
out genetic assessment of translocated birds owing to
the urgent requirements for establishing a third sta-
ble breeding location and the lack of taxonomic in -
formation about birds on the Senkaku Islands. The
translocated birds would be mainly Torishima-type
birds but could include Senkaku-type birds, which
represented ~7% of hatched birds in the Tsubame -
zaki colony (Kuro-o et al. 2010). As the hand-reared
birds may not have the ability to recognise the differ-
ent cryptic species and/or their original bird types,
they would thus not be able to mate assortatively.
Under genetically uninformed management efforts,
as a further example, the widespread and Critically
Endangered Chinese giant salamander, which con-
sists of at least 5 species-level lineages, was geneti-
cally homogenised in captivity, and hybrid offspring
were released back into the wild (Yan et al. 2018). To
exclude the risk of artificial population admixture, a
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paring census and genetic monitoring of chicks
fledged from the Bonin Islands using mtDNA and
microsatellite DNA are required. The present study
also emphasises the need for genetic assessments of
seemingly well-known threatened avian species in
conservation initiatives.
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