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1.  INTRODUCTION 

Conservation of bird populations requires knowl-
edge of year-round habitat use and potential threats 

associated with those habitats (Grémillet & Boulinier 
2009, Gaston et al. 2017, Carneiro et al. 2020). For 
marbled murrelet Brachyramphus marmoratus, a 
species that feeds on forage fish in coastal areas and 
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over 3 years (2014−2016) from 3 different marbled murrelet conservation regions as defined by the 
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vation regions. We found limited support for the concept that birds tracked cooler waters as they 
headed northward. One bird remained in unusually warm waters near the capture sight in Desola-
tion Sound in 2016. Importantly, the arrival of BC birds in Alaska during summer could contribute to 
at-sea survey estimates of marbled murrelet abundance during the Alaska breeding season, and 
their occcurence in Alaska has implications for BC populations with respect to anthropogenic 
threats in the marine habitat, including the potential for incidental take in gillnet fisheries and risks 
from oiling. Our results demonstrate connectivity between BC and Alaska marbled murrelet popu-
lations. Overall, tracking duration was relatively short, and locations were confined to the deploy-
ment areas in BC. Our results indicate capture and tagging impacted study individuals and may 
have contributed to increased mortality. Our research, coupled with that of others, suggests that 
long-distance northerly migrations patterns may not be unusual in Brachyramphus murrelets.  
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nests in low densities in old growth forests, threats 
occur in both marine foraging and terrestrial nesting 
habitats. In Canada, the marbled murrelet is listed as 
threatened under the Species at Risk Act (ECCC 
2023) due to loss of old growth forest nesting habitat. 
Consequently the bulk of conservation action in Can-
ada has been aimed at identifying and preserving 
forest nesting habitat (Mather et al. 2010, BCFLNRO 
2018). Recently, research and conservation focus has 
expanded to include identification of marine critical 
habitat, threats from gillnet fishing, ocean climate 
warming impacts on prey populations, oil pollution, 
and risks from increasing vessel traffic (ECCC 2023). 

Previous satellite tagging of marbled murrelets 
revealed a long-distance post-breeding movement 
from BC to Alaska (Bertram et al. 2016), perhaps as a 
part of a molt migration strategy similar to ancient 
murrelets Synthliboramphus antiquus (Gaston et al. 
2017) and Kittlitz’s murrelets Brachyramphus brevi-
rostris (Piatt et al. 2021) and possibly related to 
longer day length at northern latitudes and availabil-
ity of forage fish such as capelin Mallotus villosus, 
Pacific sand lance Ammodytes hexapterus, Pacific 
herring Clupea pallasii, and lanternfish (Myctophi-
dae). For example, capelin are cold water fish with 
high caloric value which spawn in Alaska at pre-
dictable coastal locations including Glacier Bay 
(Arimitsu et al. 2007, 2008) attracting an abundance 
of Brachyramphus murrelets during July and August 
(Piatt et al. 2007, Hoekman & Johnson, 2020). If a 
long-distance movements pattern occurs periodically 
or consistently across the range of the species, it 
could have conservation implications because mar-
bled mur relets are listed as threatened in Canada 
(ECCC 2023) and under the US Endangered Species 
Act in Washington, Oregon, and California (USFWS 
1997), but not in Alaska. In addition, abundance esti-
mates of local populations in Alaska could be inflated 
during the late summer (July−August) if influxes of 
migrating birds from BC are a regular part of their 
life history. 

We tagged marbled murrelets in summer 2014−2016 
in 3 areas along the BC coast with with solar-powered 
platform transmitter terminals (PTTs). Our primary 
goal was to identify movement patterns and marine 
habitat use at various scales. Here we evaluate the 
utility PTTs for assessing marine habitat use and for 
tracking previously unknown long-distance move-
ments. We consider the implications of movement 
 patterns and habitat use identified by PTTs on at-sea 
population monitoring efforts and known threats, in-
cluding gillnet mortality and oiling risks in the marine 
environment associated with these habitats. 

Here we focus on the northward movements dur-
ing and after the breeding period of marbled mur-
relets from BC to Alaska in 2014−2016. Our study 
coincided with unusaully warm sea surface tempera-
tures (SST; Chandler 2018), including a record 
strength El Niño Southern Oscillation (ENSO) event 
in 2015−2016 (multivariate ENSO index; NOAA 
2022). Marbled murrelets may move northward dur-
ing summer, possibly in search of cooler water with 
increased prey availability or for other reasons. Here 
we attempt to tease apart the effects of cooler tem-
perature versus latitude on migrating birds, and 
determine how these effects might influence bird 
movements by modeling SST with latitude and 
removing the correlation between latitude and water 
temperature. 

2.  MATERIALS AND METHODS 

2.1.  Capture and PTT attachment 

We captured birds using the night lighting tech-
nique (Whitworth et al. 1997) in 3 of the 7 marbled 
murrelet conservation regions of BC (Fig. 1). We cap-
tured birds near Hartley Bay, BC, during 2014 (n = 6; 
Northern Mainland Coast), in Desolation Sound dur-
ing 2015 (n = 9; Southern Mainland Coast) and 2016 
(n = 7), and in Clayoqout Sound during 2016 (n = 5; 
West and North Vancouver Island). Captured birds 
were weighed to the nearest gram (±1.0 g), and 
tarsus, wing, and culmen length were measured 
(±0.1 mm). A small blood sample (<50 μl) from the 
meta tarsal vein spotted on Whatman 903 protein 
saver cards (Sigma-Aldrich) was taken for molecular 
gender determination (Griffiths et al. 1998). We 
tagged birds using 5 g (2.2% average murrelet body 
mass equivalent) solar-powered satellite transmitters 
(solar PTT 100-5, Microwave Telemetry; 24 × 14 × 
7.5 mm, length × width × height, antenna 213 mm). 
Methods followed those previously used for radio-
tagging marbled murrelets (Bertram et al. 2016) 
which are modified from methods tested by Newman 
et al. (1999). The tags were affixed to a loose fold of 
skin (or ‘scruff’) located at the base of the dorsal neck 
using 2 sets of transverse sutures, one securing the 
anterior aspect of the transmitter and one securing the 
posterior. The correct placement of the transmitter 
was first determined by positioning the unit on the 
dorsal surface of the neck with the skin lying flat. The 
loose fold of skin underneath the cranial aspect of the 
transmitter was then gently grasped at the appropriate 
transmitter width using the thumb and forefinger. A 
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1.5 inch, 18-gauge needle (inner dia meter 0.838 mm) 
was inserted through the pinched skin. One or 2 
strands of a sterile, 2-0 synthetic, non-absorbable 
monofilament suture (Ethilon™, Ethicon, Johnson 
and Johnson) was then threaded through the lumen 
of the needle. The needle was then withdrawn, result-
ing in a portion of the suture being retained subcuta-
neously under a 5−10 mm wide section of skin and its 
2 ends being free and exposed. One free end of the 
suture was fed through the transverse channel at the 
cranial aspect of the transmitter. The 2 free ends of 
each suture were then tied together using a surgeon’s 
knot with 4 to 5 throws. This resulted in a transverse 
suture, with a cranial knot located lateral to the corner 

of the transmitter. If 2 strands of suture 
were used, lateral knots were placed 
on opposite sides of the transmitter. A 
haemostat was used to temporarily se-
cure the second strand of suture, while 
the first strand was being tied. This 
procedure was then repeated to secure 
the caudal channels of the transmitter. 
Care was taken to ensure that the su-
tures were snug and posed no risk for 
entanglement (Kissling et al. 2015). 
Care was also taken to confirm that the 
transmitter and its antenna had an ap-
propriate cranial−caudal, midline ori-
entation, that the 4 corners of sutures 
were even in their tension, and that the 
skin underneath the transmitter re-
mained flat and unpuckered. The 
transmitter was sutured as close to the 
skin as possible while allowing the 
contour feathers to assume normal po-
sitioning. A small bead of superglue 
was applied to the knots to facilitate 
sut ure security. In some instances, the 
curved, swaged-on suture needle was 
used to seed the subcutaneous sut ures. 
However, the straight 18-gauge needle 
allowed for better placement of the 
transmitter. Birds were not anesthe -
tized and were released within 1.5 h 
after the time of capture. The PTTs 
were attached by a Wildlife Veterinar-
ian under Animal Care Certificate 
(1121 B-06 from Simon Fraser Univer-
sity) and Environment Canada band-
ing permit (10667 A). In 2014, and 
2016, transmitters were programmed 
to signal for 10 h followed by a 48 h off 
cycle to optimize the discharge/re -

charge cycle of the battery. In 2015, we selected XT 
programming, which uses the standard 10−48 h on/
off schedule but will turn on to transmit additional 
 location data during the programmed ‘off’ cycle 
whenever there is sufficient battery power to do so. 

2.2.  Satellite data processing 

Argos data were downloaded to Movebank (www.
movebank.org) and processed using the Douglas 
Argos-Filter (Douglas et al. 2012). This filter flags 
Argos locations that exceed thresholds for distance 
between consecutive locations and velocity and 
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bearing between consecutive movement vectors; the 
filter settings are provided as metadata in Bertram et 
al. (2022). 

Many of the birds did not transmit from new loca-
tions for extended periods or appeared to be trans-
mitting repeatedly from the same location, indicating 
that birds likely died or that the tags fell off on land. 
We did not attempt to locate stationary birds/tags so 
we could not confirm that birds had died. We used a 
combination of location patterns and temperature 
and voltage recordings to infer the fate of the birds 
(dead or unknown fate or tag failure) and to identify 
movements of living birds. We defined bird move-
ments as long-distance for birds that moved outside 
of the conservation regions where they were tagged. 
For suspected stationary tags that appeared to be 
moving due to Argos errors, we tested for movement 
in 2 wk bins by visual inspection of kernel density 
estimates (KDEs), derived assigning an error radius 
(KDE bandwidth in km) based on Argos location 
classes (LC = 3, 2, 1, 0, A, B) to each set of points, 
indicating the probability of encountering a tracked 
individual. 

2.3.  Monthly mean SST and latitude 

We downloaded monthly mean multi-scale ultra-
high resolution (MUR) SST analysis (fv04.1, Global, 
0.01) data from NOAA’s Coastwatch program (https://
coastwatch.pfeg.noaa.gov/erddap/griddap/index.html
?page=1&itemsPerPage=1000) for the months Au -
gust 2014, July 2015, and June 2016. We constrained 
the downloaded data to a bounding box with the fol-
lowing coordinates: 120−165° W and 45−64° N. In 
ArcGIS (ESRI v.10.6) we created a buffer of 20 km 
from the BC coastline including islands and elimi-
nated MUR data outside of the buffer. For each 
month−year, we fit a linear model for SST with lati-
tude and derived residuals for each MUR SST within 
the buffer (see Fig. 1) in R using the package ‘nlme’ 
(R v.4.2.2). We assigned residual values to each mar-
bled murrelt location to test for birds seeking colder 
waters without the effect of latitude and tested for 
the effects of these residuals (local SST variability) on 
the locations of northward migrating birds fitting a 
linear model as we did for SST and latitude. Linear 
models were constrained to individuals that were 
tracked for longer than 57 d. In addition, the 2016 lin-
ear model was constrained to the marbled murrelet 
banded in Clayoquot Sound that was tracked for 
longer than 57 d and moved north. The other 2016 
bird banded in Desolation Sound tracked for more 

than 57 d did not leave the conservation region 
where it was banded. 

2.4.  At-sea distribution and abundance patterns 

We used data on the at-sea distribution and abun-
dance of marbled murrelet from the North Pacific 
Pelagic Seabird Database (NPPSD v.3; Drew & Piatt 
2015) to gauge broad scale seasonal pattterns in rela-
tion to satellite tracking results. The NPPSD is the 
largest publicly available repository for at-sea survey 
data in the North Pacific, with data contributions 
spanning years between 1973 and 2019 (Drew & Piatt 
2015). It includes seabird surveys that ranged widely 
over shelf and deep-ocean waters (e.g, Piatt & 
Springer 2003, Hunt et al. 2005, Renner et al. 2013) 
and includes specific surveys designed to estimate 
Brachyramphus murrelet abundance (e.g. Arimitsu 
et al. 2011, Kissling et al. 2011, Kuletz et al. 2011, 
Piatt et al. 2011). To identify general spatial and tem-
poral trends in BC and Alaska during summer 
months, we mapped monthly median log(x+1)-trans-
formed densities for marbled murrelets present in 
June through August within 6495 km2 hexagonal 
blocks (100 km diameter at the widest point). 

3.  RESULTS 

3.1.  Performance of PTT tags 

We captured and tagged 27 marbled murrelets 
during the breeding seasons in 2014−2016. Of these 
birds, 11 were male and 16 were female. The dura-
tion of tag function ranged from 0 d (tag failure) to 
153 d with 0−670 locations bird−1. Four female birds 
exhibited movement past 57 d, and 3 of those exhib-
ited long-distance movements. The bird that did not 
exhibit long-distance movement resided within 
60 km of the Desolation Sound capture area through-
out the summer of 2016 (Tag 159047). Location 
data, morphometrics, gender, and estimates of move-
ment duration and fate are provided for all individual 
birds in Sections S1.1 and S1.2 in the Supplement at 
www.int-res.com/articles/suppl/n051p215_supp.pdf 
and on Movebank (Bertram et al. 2022). 

Most tags showed limited movements and/or func-
tioned for only a short duration. In 2016, 87% (n = 7) 
birds from Desolation Sound appeared to have died 
or lost their tags within 38 d. In 2016, in Clayoquot 
Sound, 2 birds (Tags 159054 and 159055) showed 
evidence of moving north from the capture site over 
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time (ca. 100 km) along the west coast of Vancouver 
Island, but both either died or lost their tags within 
57 d. No tagged bird ever moved south more than 
60 km from its capture location. For birds/tags that 
likely did not move, there was wide variation in loca-
tion (mean variation in latitude among individuals = 
0.35 ± 0.069 SE degrees; mean variation in longitude 
among individuals = 0.83 ± 0.14 SE degrees), demon-
strating poor location precision (e.g. Tag 146871 and 
146872 from Desolation Sound 2015). Of the 27 tags 
deployed, the fate of 15 were unknown, 11 were clas-
sified as dead (including 2 of 3 long-distance mi -
grants, and the bird which resided in Desolation 
Sound during summer 2016), and 1 failed. 

3.2.  Long-distance movements 

Long-distance movements from BC to Alaska were 
observed in 3 individuals, including 1 bird in each 
year of the 3 study years. In addition, birds that 
moved to Alaska were tagged and originated from 3 
different marbled murrelet conservation regions of 
BC. In 2014, 1 bird travelled from Douglas Channel 
to the Katmai coast (2050 km, revised from the value 
of 1886 km of Bertram et al. 2016 due to the slightly 
different set of points resulting from additional data 
cleaning processes) (Fig. 2a); place names are 
mapped in Section S1.3). In 2015, a bird travelled 
from Desolation Sound to Glacier Bay (2912 km; 
Fig. 2b) and in 2016, from Clayoquot Sound to the 
Alexander Archipelago in Southeast Alaska 
(2158 km; Fig. 2c). Below we examine the tracks of 
these 3 birds and their northward movement during 
summer. 

3.3.  Monthly mean SST and latitude 

There was a significant relationship between lati-
tude and SST for each of the month−years. In August 
2014, SST declined at a rate of (mean ± SE) −0.15 
± 0.0006°C with degrees latitude (p <0.0001), July 
2015 at −0.23 ± 0.0006°C with latitude (p <0.0001), 
and June 2016 at −0.078 ± 0.0006°C with latitude 
(p <0.0001). We found that northward migrating 
marbled murrelet generally moved in cooler waters  
as expected by latitude but apparently sought out 
cooler than expected temperatures (accounting for 
latitude) for 1 of the 3 month−years, July 2015 
(Fig. 2d, Table 1). Furthermore, it appears that the 
trend in this year was driven by tagging marbled 
murrelets in Desolation Sound in that year, where 

SST is unexpectedly high for that latitude (i.e. higher 
intercept for both month−years, than for August 
2014). Once the bird moved out of Desolation Sound, 
the relationship between latitude and residual SST 
dissapeared. 

3.4.  At-sea distribution and abundance patterns 

Historic at-sea survey data (NPPSD; Drew & Piatt 
2015) identified the greatest density of marbled mur-
relets in southeast Alaska during June and into July 
(Fig. 3). In BC, densities were greatest in June, and 
lesser densities occurred in July and August. 

4.  DISCUSSION 

In 3 consective years, marbled murrelets moved 
northward from disparate conservation regions of BC 
into Alaska waters. Our results are consistent with 
the historic long-term at-sea survey data from the 
NPPSD (Drew & Piatt 2015), which identified the 
greatest density of marbled murrelets in southeast 
Alaska during June and into July. In BC, densities 
were greatest in June, and lower densities in July 
and August, which would be consistent with north-
ward migrations to coastal Alaska by non-breeding 
(failed or otherwise) or post-breeding murrelets. 
Note that the southeast Alaska surveys have not 
been updated since 1994 and were focussed on June 
and July (Agler et al. 1998), so movements into and 
out of the region in August or later in the fall could be 
more extensive than currently known. 

SSTs began increasing on the BC coast in 2014 
(Chandler 2021), and in 2015−2016, our study coin-
cided with a record high multivariate ENSO index 
(NOAA 2022). The ENSO event contributed to pro-
found negative impacts on pelagic marine food 
webs (Suryan et al. 2021), including forage fish pop-
ulations in Alaska (Arimitsu et al. 2021) and the sur-
vival and reproduction of marine birds in the North-
east Pacific (Jones et al. 2018, Piatt et al. 2020). 
Despite removing the effects of latitude on SST, we 
did not find strong evidence to support the idea that 
birds tracked cooler waters as they headed north-
ward. The only signifcant relationship (2015) was 
driven by unusally high temperatures near Desola-
tion Sound part of the protected, shallow ‘inland’ 
waters of the northern Strait of Georgia. In addition, 
the 1 bird that did not move northward stayed in 
the warmest waters near Desolation Sound for the 
entire summer. 
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Fig. 2. Mean sea surface temperature (SST) values within a 20 km buffer from the BC coastline and positions for each marbled murrelet loca-
tion for (a) August 2014, (c) June 2015, and (e) July 2016. Residual SST-latitude (black dots), with assigned residuals based on marbled mur-
relet positions (red or blue dots), and regression between marbled murrelet residual SST and latitude (red line with confidence intervals) for  

(b) August 2014, (d) June 2015 and (f) July 2016
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Birds that moved northward did so at various times 
in each year. In 2014, the bird migrated north in 
August likely after completion of chick rearing prior 
to departure (Bertram et al. 2016). In 2015 and 2016, 
the birds that migrated north likely did not attempt, 
or failed to breed and left the capture region in June, 
earlier than would be expected if breeding was suc-
cessul (Ronconi & Burger 2008). This early departure 
could have been related to detrimental effects of the 
tagging, but alternatively it could have been due to 
negative effects of ocean warming on sand lance 
(Hedd et al. 2006) and herring production and 
recruitment (Boldt et al. 2019) in BC. Recent models 
based on time series data (1999−2018) of inland occu-
pany counts in Oregon found that murrelet coloniza-
tion rates were reduced during years when ocean 
temperatures were high and prey availability was 
low (Betts et al. 2020). Notably, declines in breeding 
effort in BC were not detected from radar surveys 
conducted in the subregions where birds were 
tagged (2014−2016; Drever et al. 2021). 

In addition to the 3 birds which moved to Alaska, 2 
birds from Clayoquot Sound also began to move 
northward off coastal Vancouver Island before tag 
loss or mortality in 2016. Historic VHF radio-tagging 
of juvenile marbled murrelets also revealed north-
ward movements (200 km) from Desolation Sound 
(Parker et al. 2003) and Clayoquot Sound (N. Parker 

unpubl. data) during late summer. In California, his-
toric VHF telemetry revealed that a bird travelled 
724.5 km north of Redwood Creek, to Cape Johnson, 
WA (erroneously called Port Johnson), although most 
birds travelled less than 25 km away from their cap-
ture location in summer (Hébert & Golightly 2008). 
The authors concluded that birds from northern Cal-
ifornia were more likely to move north than south, 
which contributes to the genetic isolation of central 
California murrelets (Friesen et al. 2005). More re -
cently, VHF telemetry revealed that during the 2017 
breeding season individual birds exhibited move-
ments of >750 km to the south and >400 km to the 
north from their capture locations along the central 
Oregon coast, although the distance that birds could 
be tracked to the north did not extend into Canada 
(J. Rivers et al. unpubl. data). 

Based upon historical marine bird surveys in 
Alaska, our results of northward summer movements 
of marbled murrelets in the Gulf of Alaska are not 
unique to our study period. In Alaska, marbled mur-
relet densities increase from June to late July (and 
sometimes August) and usually depart en mass in 
August in many coastal regions (Fig. 3; Kuletz & 
Kendall 1998, Romano et al. 2004, Kuletz et al. 2008, 
Arimitsu et al. 2011). For example, marbled murrelet 
densities increased by 2- to 3-fold from June to late 
July and early August in Glacier Bay (13.5 to 42.7 
birds km−2; Romano et al. 2004) and Kenai Fjords 
(14.3 to 35.3 birds km−2; Arimitsu et al. 2011). Simi-
larly, extensive surveys at 3 locations around the 
Kodiak Archipelago also showed large increases in 
bird numbers in August compared to June (2011−
2013; Corcoran 2016). Numbers swelled at all Kodiak 
sites but most strikingly at Afognak, where almost 
50 000 were estimated in August 2012, up from 
20 000 in June 2012. The increase in density could be 
the result of both local breeders who are finished 
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                                   Slope (±SE)           t                  p 
 
Aug 2014                    0.02 (0.01)         1.37           0.17 
Jun 2015                    −0.34 (0.02)       −17.28        <0.0001 
Jul 2016                     −0.01 (0.02)          0.5             0.61

Table 1. Relationship between sea surface temperature−
latitude residuals and marbled murrelet locations with  

latitude

Fig. 3. Monthly marbled murrelet distribution (log(x+1) density where present, birds km−2) on at-sea surveys compiled 
(1974−2019) in the North Pacific Pelagic Seabird Database. Samples with zero birds observed are shown in grey, with greater  

transparency where fewer samples were collected
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with incubation and are congregating at sea, young 
of the year, and birds from elsewhere. Historical 
observations on the west coast of Vancouver Island in 
Barkley Sound noted that most adult birds departed 
from the sound after breeding in early August and 
presumably underwent prebasic molt elsewhere 
(Carter & Stein 1995). 

From a demographic perspective, movements of 
marbled murrelets in and out of study regions pres-
ents challenges for at-sea abundance and trend esti-
mation (Bertram et al. 2015). Long-distance move-
ment of birds from BC to Alaska in summer could 
contribute to variation in at-sea abundance estimates 
and trend detection efforts in Alaska. The 2014 
migration track of 1 our tagged birds generally over-
lapped with areas where at-sea surveys are con-
ducted for murrelets to identify at-sea abundance 
status and trends (Prince William Sound, Kenai 
Fjords) and ended adjacent to lands managed by the 
National Park Service and the U.S Fish and Wildlife 
National Wildlife refuge system and U.S. Forest 
Service. In Glacier Bay National Park and Preserve 
an intensive, long-term at-sea abundance Brachyra-
mphus monitoring program show marked interan-
nual variability in July marbled murrelet counts, 
ranging from 29 000 to 84 500 (mean 2009−2019 = 
60 417; Hoekman & Johnson, 2020). The surveys esti-
mated almost 84 000 ± 12044 marbled murrelets 
(mean ± SE) in July 2015, the second highest count 
on record. Our tracking study re vealed that the BC 
bird from Desolation Sound was in the Glacier Bay 
area from 1−15 July and could have been included in 
the large count from the 2015 survey. In our study, 
birds moved to Alaska in June, July, and August. The 
degree of regularity, timing, and duration of north-
ward migrations from BC to Alaska warrants further 
investigation to guage how immigration contributes 
to variation in local at-sea abundance estimates and 
the statistical power to detect trends. 

Throughout their range, high variation in year 
to year at-sea counts of marbled murrelet are 
commonly reported (e.g. Pacific Northwest: Lorenz 
& Raphael 2018, Pearson et al. 2022, McIver et 
al. 2023; BC: Yakimishyn & Zharikov 2017, Parks 
Canada 2018, Pattison et al. 2023; Glacier Bay, 
Alaska: Hoekman & Johnson, 2020; Prince William 
Sound, Alaska: Agler et al. 1998). Our study and 
others demonstrate that birds can move long dis-
tances, taking them between countries and study 
regions. Inter-year variation in at-sea counts may 
therefore be related to large-scale bird move-
ments. For marbled murrelet conservation, there 
is a growing need to combine range-wide at-sea 

count datasets to look for evidence of large-scale 
movements and their underlying causes. Such a 
program would also benefit by integrating concur-
rent tracking work. 

We have stopped using the PTTs because they may 
have contributed to mortality among tagged birds 
or impacted mobility and their decision to breed 
(Bertram et al. 2016), consistent with congeneric Kit-
tlitz’s murrelet B. brevirostris tracked by researchers 
in Alaska (Piatt et al. 2021). Relatively high mortality 
(41%) was consistent with observations from Oregon 
in 2016 which used the same PTTs (although the 
range of transmissions was shorter and ranged be -
tween 9 and 25 d; Northrup et al. 2018). In Oregon, 3 
birds (out of 7 tagged, 42%) were found dead (2 from 
depredation and/or scavenging, 1 intact in poor con-
dition), and the other 4 were unrecoverable, leading 
the authors to ‘suspect that tagging negatively 
affected welfare of these birds’ (Northrup et al. 2018, 
p 47). However, it is important to note that both the 
Oregon and BC PPT studies were conducted during 
years with unprecedented marine heatwave condi-
tions which may have contributed to stress and poor 
reproductive performance (Betts et al. 2020) and led 
to large scale die offs of common murres in the Gulf 
of Alaska (Piatt et al. 2020). 

Tags did not provide sufficient spatial precision to 
identify marine habitat use patterns. We seek 
smaller, more streamlined tags with greater location 
precision to quantify the timing and duration of 
movements. In addition, knowledge of marine habi-
tat use will facilitate the identification of areas and 
times of known threats such as salmon gillnet fishery 
openings (Carter et al. 1995, Piatt & Naslund 1995, 
Smith & Morgan 2005, Manly 2007, 2009, 2015, Piatt 
et al. 2007, Bertram et al. 2021) and oiling risks from 
vessel traffic (Carter & Kuletz 1995, Kuletz 1996). 
GPS tags currently available are smaller, lighter, 
lower profile in shape, less prominent, with smaller 
antennas, but they run on batteries with a limited 
lifespan so are not best suited for detecting long-dis-
tance movements. Despite their drawbacks, the PTTs 
provided new information demonstrating long-dis-
tance movements of birds from 3 marbled murrelet 
conservation regions of BC to Alaskan waters, in 
the 3 consecutive years of our study. Although our 
sample size was low, long-distance northerly migra-
tions in the congeneric Kittlitz’s murrelet following 
breeding or failed breeding attempts has been 
described using similar methods (Piatt et al. 2021; 
see also Day et al. 2011). We suggest that the pat-
terns we ob served may not be unusual in Brachy -
ramphus murrelets. 
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