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1.  INTRODUCTION 

Beaches are critically important for sea turtle spe-
cies. Leatherback turtles Dermochelys coriacea nest 
on tropical and subtropical beaches worldwide and 
are listed on the IUCN Red List as Vulnerable (North-
west Atlantic Leatherback Working Group 2018). 
Southeastern Florida beaches have some of the high-
est leatherback nesting numbers in the USA, but as 
with sea turtle populations globally, direct anthro-
pogenic factors and climate change may threaten 
their persistence. Climate change has been increas-

ing atmospheric temperatures, which may rise 1 to 
5°C above the current temperatures by the year 2100 
(IPCC 2014). The expected increase is concerning 
for conservation efforts (Hamann et al. 2013), since 
rapid environmental changes can make it harder for 
organisms to adapt to the changed climatic con -
ditions. A rise in temperature will have the most 
significant impact on organisms whose physiology 
is  dependent upon environmental temperatures 
(Deutsch et al. 2008). Sea turtles are susceptible to a 
significantly warmer environment since their eggs 
incubate in the sand without parental care, and 
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developmental success is thus dependent on sand 
characteristics including incubation temperatures 
(Bolten et al. 2011). 

Incubation temperatures are not only impacted by 
sand temperatures; nest temperatures are also in -
creased by metabolic heat produced by the develop-
ing embryos themselves, mostly towards the end of 
the incubation period (Zbinden et al. 2006). Increas-
ing sand temperatures due to climate change cou-
pled with metabolic heating from the developing 
embryos can lead to average nest temperatures 
above 34°C in some areas and during certain por-
tions of the nesting season; 34°C is thought to be the 
approximate upper critical temperature for sea tur-
tles during early embryonic development (Ackerman 
1997), but more recent studies have shown later-
stage embryos can tolerate multiple days at tempera-
tures of 34 to 36°C (Broderick et al. 2001, Carthy et 
al. 2003, Maulany et al. 2012b, Booth et al. 2013). 
When nests rise above this critical maximum, there is 
often an associated decrease in hatching success and 
hatchling performance, depending on the develop-
mental stage (Maloney et al. 1990, Matsuzawa et al. 
2002, Bladow & Milton 2019). Embryo mortality has 
been shown to increase with increasing tempera-
tures, which can lead to a decrease in hatch and/or 
emergence success (Matsuzawa et al. 2002, Garrett 
et al. 2010, Kobayashi et al. 2017, Booth & Dunstan 
2018, Bladow & Milton 2019). There is also an associ-
ation between elevated incubation temperatures and 
an increase in the frequency of developmental 
abnormalities (Telemeco et al. 2013, Zimm et al. 
2017, Ingle et al. 2021, Tanabe et al. 2021), as well as 
a link between hotter nest temperatures and poorer 
hatchling performance (Ischer et al. 2009, Sim et al. 
2014, Wood et al. 2014), including in leatherbacks 
(Rivas et al. 2019). 

Incubation temperatures also impact the incuba-
tion period of sea turtle eggs, where the length of 
incubation increases at cooler temperatures and 
decreases at warmer temperatures (Hendrickson 
1958, Kaska et al. 1998), resulting in altered embry-
onic growth rates (Hendrickson 1958, Miller 1985). 
Hatchlings coming from nests incubated at higher 
temperatures are often smaller in size, with a larger 
yolk reserve, while the reverse is true for hatchlings 
coming from nests incubated at lower temperatures 
(Booth 2017, Rivas et al. 2019). A larger body size 
could mean hatchlings can better escape predators 
by crawling or swimming faster, as well as reduce the 
chance of being preyed upon by gape-limited preda-
tors (Booth et al. 2004, Salmon et al. 2015), though a 
larger yolk reserve could be beneficial when search-

ing for food and as an energy source in the initial 
swim offshore (Booth et al. 2004). Conversely, a large 
yolk reserve and less muscle tissue in smaller hatch-
lings could potentially hinder the hatchling’s per-
formance, which in turn would decrease their sur-
vival if they are unable to make it to the water (Booth 
et al. 2004). Previous studies on loggerhead turtles 
Caretta caretta and green turtles Chelonia mydas 
have found increased incubation temperatures 
resulted in a decrease in locomotion performance in 
the water and on land (Ischer et al. 2009, Fisher et al. 
2014, Henaghan 2018, Fleming et al. 2020), while 
leatherback nest relocation to a shaded area resulted 
in larger hatchlings with better crawling and righting 
abilities than those from nests exposed to the sun 
(Rivas et al. 2019). Since the crawl from the nest to 
the water is a time of potentially high predation (San-
tidrián Tomillo et al. 2010, Erb & Wyneken 2019), 
poorer physical performance could increase mortal-
ity. We are still investigating why temperature influ-
ences performance, however; one possible explana-
tion is morphological differences in the carapace and 
flippers due to differential growth rates during incu-
bation (Booth et al. 2004, Mickelson & Downie 2010, 
Fisher et al. 2014, Fleming et al. 2020). 

Leatherback turtle hatchling flippers are larger 
than those of most other species of sea turtles, and 
their crawling gait is characterized as a rowing 
movement, where the front flippers have synchro-
nized movement on each side to move the body for-
ward (Davenport 1987, Wyneken 1997). It has been 
suggested that this gait is more advantageous to 
leatherback hatchlings with narrow bodies and 
longer flippers compared to hatchlings with shorter 
flippers and wider bodies (Mickelson & Downie 
2010). Studies on nest temperatures and hatchling 
performance to date have focused primarily on green 
(e.g. Ischer et al. 2009, Henaghan 2018) and logger-
head (e.g. Fisher et al. 2014, Henaghan 2018, Flem-
ing et al. 2020) sea turtles. There have been a few 
studies on leatherback turtle nest temperatures and 
hatchling performance, but no study has been con-
ducted in the USA (Mickelson & Downie 2010, Rivas 
et al. 2019, Bandimere et al. 2021). Leatherback tur-
tle nests have low hatching success compared to 
other sea turtle species (Bell et al. 2004, Rafferty et al. 
2011, Perrault et al. 2012), and increased tempera-
tures hinder the performance of leatherback hatch-
lings upon emergence, suggesting the species could 
be more vulnerable to population declines resulting 
from climate change. The present study aimed to 
build on earlier work on green and loggerhead tur-
tles in South Florida and leatherback turtles in other 
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parts of the world, by examining leatherback turtle 
nests in South Florida, to determine how incubation 
temperatures may affect hatching success, emer-
gence success, hatchling morphology, and locomotor 
performance (crawling and self-righting response). 
Since leatherback nests, on average, are deeper than 
those of other species (Standora & Spotila 1985, 
Miller 1997, Booth & Astill 2001, Wallace et al. 2007, 
Santidrián Tomillo et al. 2017) and are typically laid 
in cooler months (Florida Fish and Wildlife Conserva-
tion Commission 2016), we hypothesized that they 
would have lower nest temperatures than those 
reported in other sea turtle species on South Florida 
beaches. We hypothesized that, as in other species 
and as in leatherback sea turtles in other locations, 
higher nest temperatures would result in lower 
hatching and emergence success and also result in 
lower hatchling locomotor performance. 

2.  MATERIALS AND METHODS 

2.1.  Study site 

This study was conducted on 9.6 km of beach in 
Juno Beach, Florida, USA. Juno Beach is located in 
northeastern Palm Beach County and was selected 
for this study due to the relatively high density of 
leatherback (Dermochelys coriacea) nests found at 
this location (Stewart et al. 2014). Leatherback turtles 
in this region generally begin nesting in February 
and are largely done by June; nests used in this study 
(12 in total and 115 hatchlings) were laid between 27 
March and 14 June 2019. 

2.2.  Nest temperature 

For this study, we divided the nesting season into 
early nests (4 nests laid between 27 Mar and 18 Apr), 
a mid-season group (4 nests laid between 3 and 16 
May), and a late-season group (5 nests laid between 
20 May and 14 Jun), based on the seasonal patterns 
of nesting in previous years. Either immediately fol-
lowing egg deposition or the morning after, a sea tur-
tle specialist from the Loggerhead Marinelife Center 
carefully removed the top egg layers and placed an 
Onset HOBO-U22 thermologger (accuracy of ±0.2°C; 
Onset Computer) at the approximate center of each 
clutch before replacing the eggs. The thermologgers 
recorded temperature throughout the incubation 
period at 30 min intervals. An average of the 30 min 
intervals was calculated to obtain the daily mean 

temperature of each nest. The highest mean 3 d tem-
perature was also calculated by generating rolling 
averages of the temperature intervals. The overall 
mean incubation temperature and the maximum 
temperature for each nest were also identified. 

2.3.  Hatchling collection 

When emergence was expected, permanent re -
straining cages were placed over the nests and 
checked periodically throughout the night(s). Upon 
emergence, an average of 10 (range 7−10, mean 9.7) 
hatchlings were collected per nest and placed in a 
dark cooler with warm damp sand for transport to 
laboratory facilities at the Loggerhead Marinelife 
Center in Juno Beach. 

2.4.  Body morphology and body condition index 

To evaluate hatchling morphology, digital calipers 
were used to measure standard straight carapace 
length (SCL, cm), straight carapace width (SCW, cm), 
body depth (BD, cm), and flipper length (cm). Right 
and left flipper lengths were averaged to calculate 
the average flipper length for each individual hatch-
ling. Mass (g) was determined using a digital scale. 
Body condition index (BCI) was evaluated using the 
formula adapted from Bjorndal et al. (2000): 

               BCI = (mass / SCL3) × 10 000 

2.5.  Hatchling locomotor performance 

Hatchlings were placed one at a time on their cara-
pace in a 5 gallon (19 l) bucket filled halfway with 
sand. The time it took for the hatchling to right itself 
onto its plastron was recorded. Each individual right-
ing trial lasted for a maximum of 30 s; the test ended 
when the hatchling had self-righted 3 times or the 
trial had been repeated 6 times, whichever came 
first. Between each trial, the hatchling had a rest 
period of 10 s. The hatchlings received a propensity 
score (adapted from Booth et al. 2013) from 0 to 6, 
with 0 meaning failure to self-right in any of the 6 
trials and 6 indicating successfully self-righting 3 
times in a row (Table 1). The mean righting response 
was calculated for each group. After completing the 
righting response trials, the hatchlings were placed 
in a sand-covered arena approximately 1 m in dia -
meter. A light was placed at one side of the arena to 
give a directional cue, and the hatchlings were re -
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leased one at a time on the side opposite the light. The 
time it took them to crawl ~1 m was recorded. The 
distance they crawled was measured with a meter 
tape measure and used to calculate crawling speed. 

2.6.  Hatching and emergence success 

Nests were excavated 3 d after the initial mass 
emergence based on recommendations from the 
Florida Fish and Wildlife Conservation Commission 
(2016). During the excavations, hatching success, 
emergence success, and the top and bottom depths 
of the egg chamber were recorded. Hatching success 
was calculated by dividing the number of hatched 
eggshells by the total clutch size. Emergence success 
was calculated by subtracting the number of hatch-
lings found in the nest by the number of hatched 
eggshells and dividing it by the total clutch size 
(Miller et al. 1999). 

2.7.  Statistical analysis 

The data were analyzed for statistical significance 
using the RStudio 2023.031+446 (R Core Team 2012). 
The data were first tested for normality using the 
Shapiro-Wilk test, and it was found that all of 
the  data violated the assumptions of normality. A 
Kruskal-Wallis rank sum test was performed on the 
data for temperature, incubation period, hatching 
success, emergence success, body measurements, 
propensity score, and crawling speed between the 3 
groups (early-, mid-, and late-season nests). If the 
results were significant, a comparison using a pair-
wise post hoc Dunn’s test with Bonferroni adjustments 
(for temperature data) and a pairwise Wilcoxon rank 
sum test was conducted to see which groups were 
significantly different from each other. Since the 
sample size for each group was small, exact critical 

values from Conover (1999) were used to confirm 
the significance between groups. Spearman’s rank 
correlations were used to determine associations 
between temperature, incubation period, hatching 
success, emergence success, body measurements, 
propensity score, and crawling speed. A polynomial 
least-squares regression was performed on hatching 
success and mean nest temperatures, as well as on 
emergence success and mean nest temperatures, to 
show the relationship between nest success and 
mean nest temperature. 

3.  RESULTS 

3.1.  Seasonal nest temperatures 

Mean (±SD) temperatures for individual nests 
ranged from 29.0 ± 3.4 to 32.5 ± 1.5°C across the sea-
son and increased as incubation progressed (Fig. 1). 
The mean nest temperatures differed significantly 
(χ2(2) = 105.53, p ≤ 0.0001; early vs. late: p ≤ 0.0001; 
early vs. mid: p ≤ 0.0001; mid vs. late: p ≤ 0.0001) 
between the early-, mid-, and late-season nests, with 
median incubation temperatures of 29.3, 31.1, and 
32.0°C, respectively (Table 2). For the maximum 
incubation temperatures (χ2(2) = 28.59, p ≤ 0.0001; 
early vs. late: p ≤ 0.0001; early vs. mid: p ≤ 0.0001; 
mid vs. late: p = 0.25), early-season nests were signif-
icantly different from mid- and late-season nests, 
though mid- and late-season nests were not signifi-
cantly different from each other (Table 2). The nest 
having the highest (maximum half-hour interval) 
incubation temperature was a nest laid during the 
mid-season (11 May) that reached 36.4°C during the 
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Score                                       Condition 
 
0                                              No righting event in 6 trials 
1                                              1 righting in 6 trials 
2                                              2 rightings in 6 trials 
3                                              3 rightings in 6 trials 
4                                              3 rightings in 5 trials 
5                                              3 rightings in 4 trials 
6                                              3 rightings in 3 trials

Table 1. Hatchling self-righting propensity scores and  
definitions. Adapted from Booth et al. (2013)

Fig. 1. Representative daily mean temperature profile of a 
leatherback turtle (Dermochelys coriacea) nest. The nest 
had an overall mean temperature of 31.0°C and a maximum 
temperature of 35.0°C. The leatherback nest was a mid- 
season nest laid 5 May and had an incubation period of 62 d
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last week of incubation. This nest also had the high-
est mean 3 d maximum incubation temperature, with 
an average of 35.6 ± 0.7°C over a single 3 d period in 
the last week of incubation. For the mean 3 d maxi-
mum temperatures overall (χ2(2) = 29.05, p ≤ 0.0001; 
early vs. late: p ≤ 0.0001; early vs. mid: p ≤ 0.0001; 
mid vs. late: p = 0.07), only the early-season nests dif-
fered significantly from the mid- and late-season 
nests (Table 2). 

3.2.  Overall nest success and temperature 

There was a negative correlation between nest 
temperature and the incubation periods of nests 
(mean p ≤ 0.0001, corr. = −0.949; maximum p ≤ 0.001, 
corr. = −0.283; 3 d mean p ≤ 0.003, corr. = −0.269). 
The coolest nest (laid 27 May), with a mean (±SD) 
incubation temperature of 29.0 ± 3.4°C, had the 
longest incubation period at 76 d. The hottest nest 
(laid 5 Jun), with a mean incubation temperature 

of 32.5 ± 1.6°C, had the shortest incuba-
tion period at 58 d. 

Hatching success of the nests ranged 
from 12 to 80%, while emergence success 
ranged from 10 to 77%. Hatching success 
varied with nest temperature; hatching 
success increased as mean nest tem -
peratures increased up to ~31.0°C but 
then decreased with temperatures above 
~31.5°C (Table 3, Fig. 2). The mid-season 
nests had the highest median hatching 
(χ2(2) = 45.61, p ≤ 0.0001; early vs. late: p = 
0.06; early vs. mid: p ≤ 0.0001; mid vs. late: 
p ≤ 0.0001) and emergence success (χ2(2) = 
23.19, p ≤ 0.0001; early vs. late: p = 0.07; 
early vs. mid: p ≤ 0.01; mid vs. late: p ≤ 
0.0001), and the early-season nests had 
the lowest median hatching and emer-
gence success (Table 4). The size of the 
hatchlings also statistically correlated 
with hatching and emergence success 
(Table 4). 

3.3.  Overall hatchling morphology 

The size of the hatchlings was influ-
enced by temperature. Nests with lower 
temperatures produced longer hatchlings 
(maximum p = 0.002, corr. = −0.291; 3 d 
mean p = 0.002, corr. = −0.287), and nests 
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                                                               Time of season 
                                          Early                     Mid                     Late 
                                  27 Mar−18 Apr        3−16 May       20 May−14 Jun 
 
Nest incubation               29.3a                               31.1b                             32.0c 

temperature (°C)         (29.0−30.1)           (30.7−31.0)          (32.0−32.5) 

Maximum                         33.6a                               34.7b                             35.1b 

temperature (°C)             (33.2−35.2)                (34.4−35.6)              (34.8−35.4) 

Mean 3 d maximum         33.6a                               34.5b                             34.7b 

temperature (°C)             (33.1−34.8)                (34.2−35.6)              (34.7−35.0) 

Incubation period (d)         67a                                   61b                                  58c 
                                        (64−76)                 (60−62)                (58−60) 

Table 2. Median (ranges in parentheses) leatherback turtle (Dermochelys 
coriacea) nest incubation temperatures and period of individual nests on 
Juno Beach, Florida, USA. Data with different letters are significantly dif-
ferent from each other for the same category (p ≤ 0.05). n = 4 nests for each 
part of the nesting season (early, mid, and late). Maximum temperature  

was recorded in the last week of incubation for all groups

                                                                 Time of season 
                                              Early                   Mid                     Late 
                                      27 Mar−18 Apr      3−16 May       20 May−14 Jun 
                                       (29.0−30.1°C)    (30.7−31.0°C)     (32.0−32.5°C) 
 
Hatching success (%)          44.2a                   69.3b                    49.2a 
Emergence success (%)       37.2a                   50.5b                    34.4a 
Incubation period (d)             67a                      61b                       58c

Table 3. Summary of leatherback turtle (Dermochelys coriacea) nest suc-
cess and significant correlations with nest temperatures. Numbers are 
reported as medians. Data with different letters indicate significant differ-
ences between groups in the same category (p ≤ 0.05). n = 4 nests for each 

part of the nesting season

Fig. 2. Effects of mean nest temperature on hatching and 
emergence success of leatherback turtle (Dermochelys cori-
acea) nests (n = 12). Hatching and emergence showed a sim-
ilar pattern, where nests incubating at either lower or hotter 
temperatures had low nest success. A polynomial linear 
regression line was fitted to both hatching and mean nest 
temperatures (y = −0.1217x2 + 7.5327x − 115.85, R2 = 0.729) 
and emergence success and mean nest temperatures (y = 
−0.1104x2 + 6.7803x − 103.54, R2 = 0.4029). Gray shading  

around each line indicates 95% CI



Endang Species Res 51: 305–317, 2023

with higher mean temperatures produced hatch-
lings with thicker BDs (mean p ≤ 0.0001, corr. = 
0.777; maximum p ≤ 0.0001, corr. = 0.453; 3 d mean 
p ≤ 0.0001, corr. = 0.486). Hatchlings from late-sea-
son nests had significantly shorter SCLs than hatch-
lings from early- and mid-season nests (χ2(2) = 
14.086, p ≤0.0009; early vs. late: p = 0.02; early vs. 
mid: p = 1; mid vs. late: p = 0.0009; Table 5). Hatch-
lings from early-, mid-, and late-season nests dif-
fered in BD as well, where later nests had hatch-
lings with larger BDs (χ2(2) = 32.153, p ≤0.0001; 
early vs. late: p ≤0.0001; early vs. mid: p ≤ 0.02; mid 
vs. late: p ≤ 0.0003; Table 5). BCI of the hatchlings 
differed between early-, mid-, and late-season nests 
(χ2(2) = 77.974, p ≤0.0001; early vs. late: p ≤0.0001; 
early vs. mid: p ≤ 0.0001; mid vs. late: p ≤ 0.01; 
Table 5). Flipper length is also correlated with tem-
perature (p ≤ 0.001, corr. = −0.292), with 
hatchlings from nests with the highest 
maximum temperatures having shorter 
flipper lengths. Mid- and late-season 
hatchling flipper lengths differed from 
each other, where hatchlings from mid-
season nests had longer flippers (χ2(2) = 
9.4202, p = 0.009; early vs. late: p = 0.46; 
early vs. mid: p = 0.31; mid vs. late: p = 
0.007; Table 5). Mid- and late-season 
hatchling masses also differed signifi-
cantly from each other, where mid-sea-
son hatchlings weighed more (χ2(2) = 
10.533, p = 0.005; early vs. late: p = 0.74; 
early vs. mid: p = 0.12; mid vs. late: p = 
0.004). Mass (mean p = 0.37, corr. = 
−0.084; maximum p = 0.20, corr. = 
−0.120; 3 d mean p = 0.51, corr. = −0.061) 
and SCW (mean p = 0.39, corr. = −0.081; 
maximum p = 0.10, corr. = −0.153; 3 d 
mean p = 0.16, corr. = −0.132) did not 
correlate with mean nest incubation tem-
perature (Table 5). 

3.4.  Impacts of temperature on 
performance 

Incubation temperatures were nega-
tively correlated with righting propen-
sity score (mean temperature p ≤ 
0.0001, corr. = −0.509; maximum tem-
perature p ≤ 0.0001, corr. = −0.446; 
maximum 3 d mean temperature p ≤ 
0.0001, corr. = −0.478). Hatchlings 
incubating at higher temperatures 
struggled to right themselves; thus, 
late-season nests had significantly 

lower propensity scores (χ2(2) = 45.045, p ≤ 0.0001; 
early vs. late: p ≤ 0.0001; early vs. mid: p = 0.84; mid 
vs. late: p ≤ 0.0001) than mid- and early-season nests 
(Fig. 3). While the righting propensity scores ranged 
from 0 to 6, 31% of all the hatchlings tested across 
the season could not right themselves even 1 time. 
The hatchlings unable to right themselves came 
largely from late-season, warmer nests; late nests 
had the lowest median score of 0, while mid and 
early nests had median scores of 5 and 6, respec-
tively. The nest with the highest overall mean tem-
perature of 32.5 ± 1.6°C had the lowest propensity 
score; only 1 of 10 of those hatchlings was able to 
right itself at all, and then only 1 time in 6 attempts. 

The better-performing hatchlings came primarily 
from early- and mid-season nests, as late-season 
hatchlings in general were smaller and had greater 
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Variable                                                                                              p     Correlation 
 
Straight carapace width (mm) and hatching success (%)       <0.02         0.215 
Straight carapace length (mm) and hatching success (%)      <0.0001     0.402 
Mass (g) and hatching success (%)                                            <0.0001     0.481 
Straight carapace width (mm) and emergence success (%)   <0.0001     0.587 
Straight carapace length (mm) and emergence success (%)  <0.0001     0.479 
Mass (g) and emergence success (%)                                        <0.0001     0.685 

Table 4. Correlations between different measures of hatchling morphology 
and leatherback turtle (Dermochelys coriacea) hatching and emergence  

success (n = 115 hatchlings)

                                                                Time of season 
                                             Early                   Mid                     Late 
                                     27 Mar−18 Apr      3−16 May       20 May−14 Jun 
                                      (29.0−30.1°C)    (30.7−31.0°C)      (32.0−32.5°C) 
                                                   
Straight carapace                60.6a                           60.7a                              58.8b 
length (mm)                    (55.6−64.2)        (54.8−65.4)          (52.6−63.3) 

Straight carapace                 41.3                    40.7                     40.4 
width (mm)                      (35.6−43.6)        (34.8−43.5)          (34.9−43.9) 

Mass (g)                               43.9ab                          45.1a                              41.5b 
                                         (33.8−50.7)        (38.5−50.5)          (36.4−52.1) 

Body depth (mm)                 24.7a                           25.3b                              26.4c 
                                         (22.4−28.0)        (22.8−28.1)          (24.2−29.2) 

Body condition index           2.0a                              2.0b                                 2.1c 
                                           (1.7−2.4)            (1.7−2.8)              (1.7−3.1) 

Average flipper                   53.9ab                          55.2a                              53.3b 
length (mm)                    (48.2−60.3)        (49.8−58.9)          (48.1−58.9)

Table 5. Leatherback turtle (Dermochelys coriacea) hatchling morphomet-
rics. Data represent median values (ranges in parentheses). Data with dif-
ferent letters indicate significant differences between groups in the same 
category (p ≤ 0.05). n = 4 nests for each part of the nesting season. Maximum  

temperature was recorded in the last week of incubation for all groups
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BDs (Table 5). Hatchlings having a wider (p = 0.003, 
corr. = 0.276) and longer (p = 0.001, corr. = 0.293) 
carapace and longer flippers (p = 0.0001, corr. = 
0.347) were able to right themselves more quickly. 
Hatchlings that were smaller and/or had a larger BD 
(p ≤ 0.0001, corr. = −0.440) struggled to right them-
selves (Table 6). Mean crawling speeds ranged from 
0.008 to 0.092 m s−1 (Fig. 4). There was no correlation 
between incubation temperature and crawling speed 
(mean temperature p = 0.51, corr. = −0.062; maxi-
mum temperature p = 0.76, corr. = −0.029; maximum 
3 d mean temperature p = 0.48, corr. = −0.068) nor 
between crawling speed and hatchling size (Table 6). 
Crawling speed did not significantly differ between 
early, mid, and late nests (χ2(2) = 2.01, p = 0.366). 

4.  DISCUSSION 

This is the first study to examine the effects of incu-
bation temperature on South Florida leatherback 
(Dermochelys coriacea) hatchling performance. In 
this study, we found that, similar to other sea turtle 
species and as in leatherback turtles in other loca-
tions (Ackerman 1997, Booth et al. 2004, García-Gra-
jales et al. 2019, Usategui-Martín et al. 2019), cooler 
nest temperatures resulted in longer incubation peri-
ods than warmer nest temperatures. Temperatures 
were correlated not only with incubation length but 
also with nest success and hatchling locomotor per-
formance. This suggests that there could be a tem-
perature sweet spot for incubation since the mid-sea-
son nests had both higher hatching and emergence 
success and better hatchling physical performance. 
This finding is consistent with previous works (Booth 
2017; their Fig. 1). Further studies need to be con-
ducted on leatherback turtles to confirm the finding 
in this study since this study only had a sample size 
of 12 nests. 

4.1.  Nest temperatures 

In a concomitant study of loggerhead and green 
turtle nests at the same location, we found that 
leatherback turtle nests had lower mean nest tem-
peratures than loggerhead and green nests (Seaman 
2020). However, the maximum nest temperatures 
still reached as high as loggerhead and green nest 
temperatures (data not shown) (Seaman 2020). 
Leather back turtle nest temperatures reached 36°C, 
which is thought in other species to be near the 
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Fig. 3. Leatherback turtle (Dermochelys coriacea) hatchling 
righting propensity score varies with temperature. Late-
season nests (mean temperature of 32.1°C) had a signifi-
cantly lower propensity score when compared to mid-sea-
son (31.1°C) and early-season (29.4°C) nests (Kruskal-Wallis 
chi-squared = 102.02, df = 2, p < 2.2e−16). Sample size: early, 
n = 4 nests (38 hatchlings); mid, n = 4 nests (40 hatchlings); 
late, n = 4 nests (37 hatchlings). Dunn’s test with Bonferroni 
adjustments results are shown as letters above each box. 
Medians not sharing the same letter are significantly differ-
ent. Bar: median; box: 25th–75th percentile (IQR); whiskers:  

max./min. 1.5× IQR above/below box; dots: outliers

Variable                                                  p         Correlation 
 
Straight carapace length (mm)        <0.001          0.293 
Straight carapace width (mm)          <0.003          0.277 
Mass (g)                                             <0.001          0.294 
Average flipper length (mm)            <0.0001        0.347 
Body depth (mm)                               <0.0001      −0.440    
Body condition index                        <0.0001      −0.365    

Table 6. Correlations between hatchling morphometrics and 
leatherback turtle (Dermochelys coriacea) performance 
(righting response). All hatchlings from all 12 nests were  

included in these analyses (n = 115)

Fig. 4. Mean nest temperature did not have a significant 
effect on leatherback turtle (Dermochelys coriacea) hatch-
ling crawling speed. All hatchlings from all 12 nests were  

included in this analysis (n = 115)
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upper critical temperature, even though their nest 
depths (top: 61 cm; bottom: 81.3 cm) are deeper 
than average loggerhead nest depths (top: 35 cm; 
bottom: 53 cm) on the same beach (Seaman 2020) 
and they begin nesting earlier in the season than 
loggerhead turtles. One study on leatherback nests 
in the West Indies showed slightly cooler nest tem-
peratures, but this is most likely due to differing 
nest environments in the West Indies compared to 
the current South Florida nest environment (Mickel-
son & Downie 2010). Studies conducted in Costa 
Rica observed similar nest temperatures as those 
reported in this study and found that nest shading 
and precipitation impacted the nest temperatures 
(Santidrián Tomillo et al. 2009, 2014, Hill et al. 2015, 
Santidrián Tomillo et al. 2017, Swiggs et al. 2018). A 
more recent study on leatherback nests in Mexico 
found nest temperatures have increased over the 
years, and their recent nest temperatures are similar 
to our findings and to those of other recent studies 
on other sea turtle species (García-Grajales et al. 
2019, Usategui-Martín et al. 2019, Fleming et al. 
2020). Charles et al. (2023) recently reported similar 
leatherback mean nest temperatures in Grenada, 
West Indies, with highs also reaching above 36°C. 
These similarities between leatherback and logger-
head nest temperatures in Florida and elsewhere in 
the Caribbean suggest that all nest depths are sus-
ceptible to the impacts of increasingly higher envi-
ronmental temperatures. 

4.2.  Nest success 

Our results on hatching success and emergence 
success are consistent with previous work conducted 
over 10 yr (2002−2012) on Florida beaches, which 
reported hatching success was 41.2% and emer-
gence success was 37.4% for leatherback turtle nests 
(Brost et al. 2015). These results are also consistent 
with studies on leatherback turtles in other locations 
(Santidrián Tomillo et al. 2009, 2014, Veelenturf et al. 
2022). Studies in Costa Rica on leatherback turtle 
nests showed higher leatherback nest success due to 
precipitation, shading, and the moisture content of 
the sand, reflecting how the beach environment can 
alter nest success (Santidrián Tomillo et al. 2015, 
Swiggs et al. 2018, Rivas et al. 2019). In 2019 (the 
year of this study), there were 187 leatherback nests 
laid on the study beach, with nest success deter-
mined for 149 of them. Hatch success for all the found 
nests on Juno Beach was 44.7%, with emergence 
success at 37.3%; thus, the hatch and emergence 

success reported here for both early- and late-season 
nests was similar to the study site as a whole, while 
mid-season nests performed better than the mean. 
Peak nest success occurred in nests with mean tem-
peratures around 31.0°C (Fig. 2). These results are 
consistent with those reported for leatherbacks in 
Costa Rica (Santidrián Tomillo et al. 2017), with a 
peak in hatching success between 29.0 and 30°C. In 
South Carolina, loggerhead turtles had a peak hatch 
success when incubated at 29.0°C, indicating that 
while there might be an ideal temperature for sea 
turtle nest success, the specific temperature likely 
varies by location and/or species, as local adapta-
tions may be present (Fisher et al. 2014, Santidrián 
Tomillo et al. 2017, Monsinjon et al. 2019, Bentley et 
al. 2020). It is interesting to see Florida leatherback 
turtles showing peak hatching and emergence suc-
cess at 31.0°C but South Carolina loggerheads peak-
ing at 29.0°C; this suggests that South Florida sea tur-
tle hatchlings may be tolerant of the hotter and 
possibly drier summers of the sub-tropics (Henaghan 
2018), as the temperatures seen in this study and for 
green and loggerhead turtles in other studies con-
ducted in South Florida (Lolavar & Wyneken 2015, 
Henaghan 2018, Fleming et al. 2020) are above those 
seen in studies performed in cooler climates (Ischer 
et al. 2009, Fisher et al. 2014). 

It should be noted that this study did utilize a small 
sample size, and there should be further studies to 
confirm this trend with larger sample sizes and on 
other beaches. The leatherback turtle nests in this 
study had an overall lower hatching success (45%) 
than the loggerhead (73%) and green (70%) sea tur-
tles in the concomitant study (Seaman 2020), so even 
though maximum nest temperatures experienced in 
leatherback turtle nests were as high as those found 
in the nests of other species in South Florida, and 
may contribute to embryonic death, there must also 
be something else contributing to the low hatching 
success compared to green and loggerhead hatch-
lings. Previous studies have suggested that genetics, 
embryonic mortality due to disease, maternal health, 
and climatic conditions play a role in the low hatch-
ing and emergence success of leatherback turtles 
(Bell et al. 2004, Rafferty et al. 2011, Perrault et al. 
2011, 2012, 2013, Patino-Martinez et al. 2012, Hill et 
al. 2019, Monsinjon et al. 2019, Charles et al. 2023). 

4.3.  Body morphology 

Leatherback hatchlings that experienced hotter 
nest temperatures had a higher BCI, resulting from 

312



Seaman & Milton: Leatherback morphology and performance

smaller carapaces and a thicker BD. By convention, a 
higher BCI would suggest that the organism is in 
good health (Herbst & Jacobson 2003). However, the 
formula used to calculate BCI is typically used for 
larger turtles to suggest if an animal is emaciated 
(Herbst & Jacobson 2003). The body condition for-
mula may not be the best way to measure hatchling 
body condition (Nishizawa & Joseph 2022), as it most 
likely largely represents the degree of yolk remain-
ing. Leatherback hatchlings from this study had a 
larger BD when incubating at hotter temperatures. 
Nests incubating at hotter temperatures also had a 
shorter incubation period, which means embryo 
developmental time is shortened, and hatchlings are 
unable to convert as much of the yolk mass to body 
tissue growth. As with other studies (Booth et al. 
2004, Mickelson & Downie 2010, Booth 2017), the 
lower conversion of yolk mass into body tissues 
causes hatchlings to have larger BDs. BCI may thus 
be a poor measure of hatchling health because 
hatchlings from warmer nests were shorter and of 
greater BD but also had the lowest emergence suc-
cess and the poorest righting scores, which together 
mean fewer hatchlings from the hottest nests are 
likely to make it to the ocean. Mass was the 1 meas-
urement with no correlation between leatherback 
hatchling morphometrics and nest temperature, con-
sistent with previous research (Ischer et al. 2009, 
Read et al. 2012, Booth et al. 2013, Wood et al. 2014, 
Sim et al. 2015). It is thought that as egg yolk is 
absorbed and converted to tissue, the net body mass 
remains the same as those hatchlings where the yolk 
has not been fully absorbed (Booth & Astill 2001). 
Hotter leatherback nests similarly produced hatch-
lings with shorter flipper lengths in addition to 
shorter SCLs, which could also hinder their locomo-
tion performance. Interestingly, similar incubation 
periods for leatherback, loggerhead, and green tur-
tles on this beach imply similar cellular and organ 
differentiation rates, but the larger body mass of 
leatherback hatchlings must mean significantly faster 
growth rates (mass or size increase per unit time) in 
leatherback embryos. 

While a correlation between hatchling size and 
incubation temperature has been shown in a number 
of studies in sea turtles, including leatherbacks (e.g. 
Ischer et al. 2009, Read et al. 2012, Wood et al. 2014, 
Fleming et al. 2020) and other turtle species (Rhen & 
Lang 1999, Steyermark & Spotila 2001), maternal 
influences including egg mass also play a role in 
hatchling size (Booth et al. 2013, Tezak et al. 2020). 
We did not measure egg mass in this study, so mater-
nal influences cannot be ruled out, though in snap-

ping turtle hatchlings egg mass only explained 47% 
of the variation in hatchling mass, so egg mass is just 
one factor impacting hatchling size (Steyermark & 
Spotila 2001, Tezak et al. 2020). It seems unlikely, 
though not possible to rule out, that a sampling bias 
occurred due to smaller eggs being laid primarily in 
warmer nests and larger eggs in cooler nests. 

4.4.  Locomotor performance 

Interestingly, locomotor performance did not show 
the same correlations with temperature as hatching 
and emergence success, indicating hatchlings can be 
good performers even if they come from nests with 
poor hatching and emergence success. The overall 
righting propensity score (mean score of 3) for leath-
erback hatchlings was lower than loggerhead (mean 
score of 5) and green (mean score of 5) scores in a 
parallel study on the same beach (Seaman 2020). Of 
the hatchlings tested, 70% of them were able to right 
themselves, which is somewhat lower than a study 
done on loggerhead sea turtles, where 83.5% were 
able to right themselves at least once (Henaghan 
2018). 

Nests incubating at mean nest temperatures of 
32.0°C or above generally saw a decline in righting 
response, with the one exception of the nest with a 
mean incubation temperature of 31.2°C that also 
showed low performance. These findings are consis-
tent with studies on other species, including logger-
head and green sea turtles (Fisher et al. 2014, Wood 
et al. 2014, Henaghan 2018), and leatherback hatch-
lings in Coast Rica (Rivas et al. 2019). In our study, 
maximum temperature appeared less important as 
an influence on performance than did overall mean 
nest temperature, as exemplified by 1 nest with a 
maximum temperature of 36.4°C but a mean of 
30.7°C, which still exhibited better performance than 
nests with higher mean temperatures. A study con-
ducted on olive ridley turtles Lepidochelys olivacea 
found hatchling performance to decrease if the nest 
experienced mean 3 d maximum incubation temper-
atures >34°C, which is consistent with our findings 
(Maulany et al. 2012b). The mean 3 d maximum 
has been found to be an indicator of thermal stress 
to  embryos during development (Maulany et al. 
2012a,b). Previous work on loggerhead and green 
turtles suggests that the greater the length of time 
at  higher temperatures, the greater the impact on 
survival (Bladow & Milton 2019, Turkozan et al. 
2021); a similar effect may occur with locomotion 
performance. 
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Leatherback hatchlings from this study crawled 
at speeds similar to those previously reported (Mick-
elson & Downie 2010). We found no correlation be-
tween crawling speed and temperature, unlike 
studies in other species which reported a negative 
correlation between crawling speed and temperature 
in both loggerhead and green hatchlings (Ischer et al. 
2009, Booth et al. 2013, Sim et al. 2014, Wood et al. 
2014, Henaghan 2018), and was also reported by 
Rivas et al. (2019) in leatherbacks. A study on logger-
heads in Boca Raton, Florida, found loggerhead 
hatchling crawling speed declined with nests incu-
bating at mean temperatures of 32.0°C and above 
(Henaghan 2018). In our study, the leatherback hatch-
lings crawled at similar speeds, regardless of incuba-
tion mean or maximum temperature, which suggests 
there are other factors influencing crawling perform-
ance. One factor that may influence terrestrial per-
formance of leatherback hatchlings is their overall 
body morphology compared to the other species. 
Overall, leatherback hatchling locomotor perform-
ance is lower than that in loggerheads and greens in 
similar studies in South Florida; they righted them-
selves less well and crawled more slowly (Henaghan 
2018, Fleming et al. 2020). While sea turtle body 
shape is a compromise between efficient locomotion 
in the water and sufficient locomotion on land, leath-
erback hatchlings may be less suited for terrestrial lo-
comotion than either green or loggerhead hatchlings. 
The results may have been different if we had utilized 
performance tests in the water (i.e. swimming, self-
righting in a bucket of water). Studies on leatherback 
hatchling locomotion and energetics in water would 
be beneficial since sea turtles spend the majority of 
their life in the sea, and leatherbacks are more 
pelagic than other species (Musick & Limpus 1996). 

Overall, the most significant findings of this study 
were that leatherback nest temperatures potentially 
influence the development of hatchling morphology, 
and that hatchling morphology and performance are 
correlated. Leatherback nests laid later in the season, 
which overlap in time with the early part of logger-
head nesting in South Florida, can reach equally 
high mean and maximum temperatures, and high 
temperatures result in low hatching and emergence 
success and poor physical performance; the sweet 
spot of incubation temperatures for these nests ap -
pears to be around 31.0°C. While leatherback turtle 
nests are laid in the cooler months in South Florida 
and are deeper than the nests of other species, tem-
peratures can still rise surprisingly high, and further 
studies should investigate the cause. Thus, increas-
ing temperatures due to climate change pose a sig-

nificant threat to a species that already has lower 
nest success than other species which share the same 
nesting beaches. 
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