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1. INTRODUCTION

Urban and agricultural development poses a major 
threat to endangered species (Petranka 1998, Porej 
et al. 2004, McCune 2016, Stevens & Conway 2020). 
Roads built through habitats can become barriers to 
dispersal between populations (Compton et al. 2007), 
isolate populations through habitat fragmentation 
(Guerry & Hunter 2002, Rothermel & Semlitsch 
2006), cause vehicular casualties (Ashley & Robinson 
1996), and introduce invasive species that degrade 
the quality of remaining patches (COSEWIC 2010). 
Urban and agricultural development may also be 
sources of pollution (Guerry & Hunter 2002), degrad-
ing nearby forest and wetland habitats that are 
essential to endangered species (Stevens & Conway 

2020). To better understand how such threats are 
affecting endangered species, a critical first step is to 
estimate population distribution. Knowledge of how 
species are spatially distributed within their range, 
and what factors influence their distribution, can 
inform where to limit development (Porej et al. 2004, 
van Drunen et al. 2020), prioritize additional surveys 
and data collection (Rosner-Katz et al. 2020), and 
direct conservation and management actions (Srivas-
tava et al. 2019, Frans et al. 2022). 

Species distribution models (SDMs) are tools that 
can be used to infer the population distribution of 
rare species that are difficult to measure directly 
(Rosner-Katz et al. 2020). SDMs function by correlat-
ing the locality data of known occurrences with envi-
ronmental factors to model the ecological niche of 
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the species (Lunghi et al. 2018, Mills et al. 2020, Not-
tingham & Pelletier 2021). Specifically, SDMs esti-
mate the probability of species occurrence at a given 
location or some scalar of this probability (Rosner-
Katz et al. 2020). Projecting the spatial model visual-
izes the predicted locations of a species and allows 
for inferences of population distribution (Elith et al. 
2020). While SDMs have demonstrated high accu-
racy in predicting species occurrence, they may be 
poor in predicting abundance or more advanced eco-
logical parameters, such as population growth rate or 
diversity (Lee-Yaw et al. 2022). Furthermore, highly 
suitable habitats predicted by SDMs may not be 
occupied by a species due to other factors not cap-
tured in the SDM creation, usually biotic interactions 
such as predation and competition (Lee-Yaw et al. 
2022). Therefore, population distribution estimated 
from SDMs should be treated as inferences until val-
idated by ground surveys. Despite these limitations, 
SDMs remain valuable tools for predicting the popu-
lation distribution of rare species with limited data 
from known populations (Srivastava et al. 2019). 

The Jefferson salamander Ambystoma jeffer -
sonianum is an example of an endangered species 
with limited information on population distribution 
(COSEWIC 2010). Ranging across the northeastern 
USA from the New England region to Indiana, Jeffer-
son salamanders are primarily found in deciduous 
forest  containing fishless ponds suitable for breeding 
(Petranka 1998). The northern limit of their range 
extends into Ontario, Canada, where they are found 
primarily along the Niagara Escarpment in isolated 
populations, typically with less than 200 adult indi-
viduals (COSEWIC 2010). The density of human 
development in southern Ontario and abundance of 
roads along the Niagara Escarpment have heavily 
fragmented forests (Rosner-Katz et al. 2020), which 
are essential for Jefferson salamanders. As of 2010, of 
the 87 known historical population locations, only 33 
were confirmed to persist (COSEWIC 2010). This 
apparent decline, in combination with the species’ 
limited dispersal capacity and high fidelity to breed-
ing ponds, has led Jefferson salamanders to be listed 
as endangered at the provincial (Government of 
Ontario 2023) and federal (Government of Canada 
2023) levels. 

In Canada, Jefferson salamanders are included in a 
complex with blue-spotted salamanders A. laterale 
and unisexual dependents. Unisexuals with 1 A. lat-
erale genome and 2 or more Jefferson genomes (e.g. 
LJJ, LJJJ) require sperm from Jefferson salamanders 
for recruitment (COSEWIC 2016). These all-female 
unisexuals have a unique life strategy as obligate 

sexual parasites; they require the sperm of a male 
Ambystoma, yet their offspring are all-female clones 
and not hybrids. Like the sexual Jefferson salaman-
der, these unisexual dependents are also classified as 
endangered in Ontario (Government of Canada 
2023) and have a recommended status of endan-
gered in Canada (COSEWIC 2016). Although these 
unisexuals are dependent on Jefferson salamander 
populations to reproduce, they have been found to 
outnumber sexual Jefferson salamanders in shared 
breeding ponds and are even found in ponds without 
sexual Jefferson salamanders (Bogart & Klemens 
1997, Bogart et al. 2017). Because there is evidence 
of niche partitioning between sexual Jefferson sala-
manders and unisexual dependents (van Drunen et 
al. 2020), this study only models the ecological niche 
of sexual Jefferson salamanders. 

Although the northern extent of the Jefferson sala-
mander’s range has been established, there are lim-
ited data on the distribution of their populations 
within the range. As amphibians, Jefferson salaman-
ders spend most of their time hidden under leaf litter 
to avoid desiccation and escape freezing tempera-
tures by overwintering in underground burrows 
(Petranka 1998, Rothermel & Semlitsch 2006). This 
presents a challenge for population surveys, as it is 
time and resource intensive to observe or capture 
Jefferson salamanders (Rothermel & Semlitsch 2006, 
Environment Canada 2016). Surveying ponds used 
by Jefferson salamanders for breeding is the most 
feasible way to collect population distribution data. 
However, data on the true extent of these breeding 
pond locations are still scarce because the period for 
surveying is narrow (late March−late April, depend-
ing on latitude; Petranka 1998, Rothermel & Seml-
itsch 2006), and several permits and authorizations 
are required to conduct surveys. To minimize the risk 
of desiccation, Jefferson salamanders may only 
migrate from overwintering sites to breeding ponds 
on a few rainy nights in early spring and visit the 
pond for only a few days (COSEWIC 2010). In addi-
tion, many of these breeding ponds are seasonal ver-
nal pools that only contain water in the spring, and 
adults may not breed every year (Petranka 1998, 
Compton et al. 2007, COSEWIC 2010). Therefore, 
inferences from breeding pond surveys may under-
estimate or misrepresent the true population distri-
bution (Fourcade et al. 2014). Fortunately, using 
SDMs to combine locality data from ground surveys 
of rare species with data on environmental condi-
tions has been successful in improving population 
distribution inferences in other species (McCune 
2016, Rosner-Katz et al. 2020, Zhang et al. 2020). 
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To address the knowledge gap regarding the pop-
ulation distribution of Jefferson salamanders, the pri-
mary objective of this study was to create an SDM to 
predict the distribution of Jefferson salamander 
breeding ponds in southern Ontario. From this SDM, 
we created 2 maps for 2 distinct purposes: a habitat 
suitability map for informing conservation planning 
and a refined presence−absence map for directing 
survey efforts in identifying new breeding ponds. In 
doing so, the relative influence of environmental 
variables in predicting the habitat suitability of these 
breeding ponds was also assessed. Jefferson sala-
mander breeding pond distribution was modeled by 
combining known occurrence data of Jefferson sala-
mander breeding ponds from 1979 to 2019 with envi-
ronmental data hypothesized to be relevant to the 
ecological niche of Jefferson salamanders (Table 1). 
A continuous predictive surface of habitat suitability 
for breeding ponds was created using the maximum 
entropy (Maxent) modeling algorithm and validated 
using the area under the receiver-operator curve 
(AUC score). Binary maps of presence and absence 
were then created by thresholding the habitat suit-

ability surface, with locations above the threshold 
classified as present and those below as absent. Sen-
sitivity, specificity, and the true skills statistic (TSS) 
were used to validate presence−absence maps. 

2.  METHODS 

2.1.  Occurrence data 

Occurrence data of Jefferson salamander breeding 
ponds in southern Ontario were obtained from field 
surveys of Jefferson salamander breeding ponds 
from 1979 to 2019 compiled by J. P. Bogart. The UTM 
coordinates of occurrences (n = 173) were plotted in 
ArcGIS Pro v.2.5 software (ESRI 2020) and cleaned to 
remove any inaccurate or duplicate points. Any 
occurrence points that could not be confirmed as a 
known breeding pond upon re-inspection by  J. P. 
Bogart and J. E. Linton were removed. To avoid 
duplicates, only the most recent occurrence point 
was retained for ponds that were surveyed multiple 
times, leaving a final sample size of 111 known 
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Variable           Hypothesized mechanism                                                                                          References 
 
Temperature    As ectotherms, Jefferson salamanders are temperature dependent.                    COSEWIC (2010),  
                         Jefferson salamanders are more active at the surface at higher temperatures,   Peterman & Semlitsch   
                         spending less time sheltering and more time foraging for prey. Alternatively,    (2013), Lunghi et al. (2018),   
                         lower temperatures may increase surface moisture by reducing evaporation,    Mills et al. (2020) 
                         allowing for increased surface activity without risk of desiccation. 

                         Additionally, temperature may affect the survival of Jefferson salamanders  
                         in early aquatic life stages. Egg and larval development may be affected  
                         by water temperature, specifically the length of the embryonic and larval  
                         periods. Large temperature fluctuations in spring may also cause breeding  
                         ponds to freeze or water levels to fall via evaporation, leading to freezing  
                         or desiccation of eggs.                                                                                                 

Precipitation    As amphibians, Jefferson salamanders are at risk of desiccation and anoxia.      Keeley & Zedler (1998),  
                         in dry environments. Therefore, moist habitats with high precipitation               COSEWIC (2010), Notting- 
                         levels may be favoured. Additionally, precipitation may be a source of               ham & Pelletier (2021) 
                         inundation for vernal ponds used for breeding. 

Topography     Topography, specifically the depth of depressions and the slope of the               McCune (2016), Mills et al. 
                         surrounding ground, may affect filling of vernal pools in spring and                   (2020) 
                         maintaining water levels into summer, thus affecting the ability of  
                         Jefferson salamanders to complete metamorphosis. 

Soil type           Soil type may affect water drainage and infiltration in vernal ponds,                  Keeley & Zedler (1998),  
                         thereby affecting their ability to maintain water levels long enough                    Rains et al. (2008) 
                         to complete metamorphosis. 

Land type         Forest canopy cover may affect surface moisture by blocking solar radiation      Guerry & Hunter (2002),  
                         and limiting evaporation, thereby influencing surface activity and foraging       Peterman & Semlitsch  
                         behaviour. Intact forested area may affect habitat suitability of breeding           (2013) 
                         ponds by minimizing movement barriers between ponds and over- 
                         wintering sites. 

Table 1. Hypothesized mechanism of environmental variables in predicting distribution of Jefferson salamander breeding ponds
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breeding pond occurrences (Fig. 1). Using historical 
occurrence records introduces a concern that some 
sites may no longer be actively used for breeding or 
that some ponds no longer exist. Many historical sites 
have been re-visited by Jefferson salamander re -
covery team members, and their findings have been 
included in the most recent COSEWIC update. We 
were careful to use the most recently updated occur-
rence records in constructing the SDM. 

We are confident that there was little to no spatial 
bias in the occurrence records we used to construct 
the SDM. Because the Jefferson salamander is part of 
a complex of sexual and unisexual salamanders, 
genetic testing is required to identify members of the 
complex found during surveys. Thus, genetic testing 
has been conducted on many salamander surveys 
across their Ontario range and would have docu-
mented Jefferson salamanders if they were present. 
Additionally, blue-spotted salamanders are part of 
this complex and have a much wider distribution in 
Canada than the Jefferson salamander. Therefore, 
surveys for the blue-spotted salamander would also 
identify Jefferson salamanders if they were present. 

2.2.  Environmental data 

To construct the SDM, a set of environmental vari-
ables hypothesized to be relevant to the ecological 
niche of Jefferson salamanders were selected as 
 predictor variables (Table S1 in the Supplement at 
www.int-res.com/articles/suppl/n052p081_supp.
pdf). To capture the fundamental niche of Jefferson 
salamanders, climatic data sourced from WorldClim 
at 1 km spatial resolution were selected (Trumbo et 
al. 2012, Pelletier et al. 2015, Nottingham & Pelletier 
2021). These data consisted of 19 variables repre-
senting annual trends of precipitation and tempera-
ture (BIO 1−19) derived from monthly temperature 
and rainfall records from 1970 to 2000. However, cli-
matic variables may show little variation at the scale 
of the Jefferson salamander range in southern 
Ontario, specifically the Niagara Escarpment. There-
fore, environmental variables capable of capturing 
habitat variation were also included to improve the 
ability of the SDM to predict breeding pond distribu-
tion at a local scale (Trumbo et al. 2012, Koma et al. 
2022). To model how environmental variables influ-
ence distribution at a local scale, topography, soil 
type, and land type were also included as predictor 
variables. To capture the effect of topography on fill-
ing and maintaining potential breeding ponds, topo-
graphic data at 30 m spatial resolution were obtained 

from the imagery-derived Ontario Provincial Digital 
Elevation Model (PDEM; geohub.lio.gov.on.ca). In 
addition to raw elevation, a second topographic vari-
able termed ‘probability of depression’ was calcu-
lated using WhiteBoxTools (Lindsay 2016), software 
that uses elevation, slope, and aspect from an input 
digital elevation model to calculate the probability of 
a location being in a terrain depression. To capture 
the influence of soil type on water drainage in poten-
tial breeding ponds, data on soil type were obtained 
from the Soil Survey Complex (v.4) dataset from 
Land Information Ontario (geohub.lio.gov.on.ca). 
From this dataset, categorical variables of soil texture 
class and soil drainage class were extracted at 30 m 
spatial resolution. To capture the effect of land type 
on the habitat suitability of breeding ponds, data on 
land type from the Southern Ontario Land Resource 
Information System (SOLRIS v.3) were obtained at 
15 m spatial resolution (geohub.lio.gov.on.ca).  

2.3.  Model building 

The Maxent algorithm was chosen to fit the SDM 
due to the algorithm’s popularity in ecological studies 
using presence-only data and its high performance 
even with small sample sizes (Fourcade et al. 2014, 
McCune 2016, Elith et al. 2020, Mills et al. 2020, Not-
tingham & Pelletier 2021). In a general sense, the 
Maxent algorithm predicts a geographic distribution 
at maximum entropy (closest to uniform) while being 
constrained by environmental conditions learned at 
the occurrence points (Phillips et al. 2017). To 
address the lack of true absence data, Maxent gener-
ates an array of randomly distributed background 
points (n = 10 000) and compares the environmental 
conditions at these points to those at occurrence 
points (Merow et al. 2013). The resultant model pre-
dicts habitat suitability on a scale of 0 to 1, which can 
be projected onto a map as a continuous predictive 
surface. A binary map of predicted presence and 
absence can then be produced by thresholding habi-
tat suitability. Values above the threshold are consid-
ered to indicate presence, while those below indicate 
absence. 

To build an SDM using Maxent, all input environ-
mental data are required to be in raster grids of the 
same spatial resolution, projection, and extent. As 
such, all environmental data were aligned in ArcGIS 
Pro prior to model training. It is recommended to 
train the Maxent model using background points 
from the same geographic distribution as the occur-
rence points to avoid including novel environmental 
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Fig. 1. Occurrences of Jefferson salamander breeding ponds (n = 111) in southern Ontario, categorized by most recent  
year recorded. Most recent points are along the Niagara Escarpment between Guelph and the Greater Toronto area. The 
study area was defined by a 50 km buffer around all occurrence points. Mapped using NAD83 UTM Zone 17N projection  

in ArcGIS Pro



Endang Species Res 52: 81–95, 2023

conditions never encountered by the species (Phillips 
2008, Jarnevich & Young 2015). Therefore, a study 
area was defined by buffering the occurrence points 
by 50 km and was used to restrict the geographic 
extent of the model (Fig. 1). All environmental raster 
grids were clipped to the study area, forcing Maxent 
to generate random background points from within 
the study area boundary. 

Maxent employs machine learning techniques to 
learn the environmental constraints that influence 
habitat suitability. Therefore, there can be variation 
between model runs even when using identical input 
data and parameter settings caused by the inherent 
stochasticity of machine learning (Merow et al. 2013, 
Jarnevich & Young 2015). To account for this random 
variation, the model was run with 10 replicates, and 
the results were averaged to create the final SDM. 
The same occurrence points, background points, and 
environmental variables were used for each repli-
cate. However, a random seed was used to ensure a 
different 80% of the occurrence points were used to 
train the model, with the remaining 20% used to test 
the model’s fit. The complementary log-log transfor-
mation was used as the model output instead of the 
more common logistic transformation, as recom-
mended by the developers of Maxent’s original 
(Phillips et al. 2006) and open-source (Phillips et al. 
2017) algorithms. 

2.4.  Model calibration 

Statistical analyses were performed in ENMTools 
(Warren et al. 2010) and R software v.4.1.1 (R Core 
Team 2021). Although Maxent is generally robust to 
the collinearity of environmental predictor variables 
(Elith et al. 2011, Feng et al. 2019), reducing correla-
tion between variables creates a more parsimonious 
model with interpretable variable response curves 
(Merow et al. 2013). Given that one of the study 
objectives was to interpret the relative influence of 
environmental predictor variables, Pearson’s correla-
tion coefficient was calculated for all continuous vari-
ables in ENMTools (Warren et al. 2010; Fig. S1). Vari-
able pairs with a correlation coefficient greater than 
|0.7| (Feng et al. 2019) were identified, and the vari-
able with the lower percent contribution to the model 
was removed. 

To control for overfitting, Maxent’s beta regulariza-
tion multiplier can be calibrated to balance model 
complexity with model fit and prevent the model 
from describing random noise in the training data 
(Warren & Seifert 2011, Morales et al. 2017). The 

beta regularization multiplier penalizes model com-
plexity by only retaining coefficients that improve 
model fit above the beta value and removing all oth-
ers. Following a method adapted from Jarnevich & 
Young (2015), 10 models were run, each with 10 
replicates, while varying the beta value from 1 to 10. 
To allow for comparisons between the models, the 
same background points were used for all model 
runs. For the first model run, the coordinates of the 
automatically generated background points were 
recorded to create species with data (SWD) files con-
sisting of environmental data for each variable at 
each coordinate point. These SWD files provide 
another way to supply Maxent with input occurrence 
and environmental data and allow the user to specify 
the background points to be used in model training. 
After running all 10 models with varying beta values, 
the corrected Akaike’s information criterion (AICc) 
scores were calculated using ENMTools (Warren et 
al. 2010). The beta value corresponding to the small-
est AICc score for each replicate was then selected 
and averaged for an optimized beta value of 4.2. This 
value was used to run the final calibrated model. 

2.5.  Model validation 

The final calibrated model was validated using the 
mean AUC score on test data (Trumbo et al. 2012, 
Rosner-Katz et al. 2020). This curve plots model sen-
sitivity against 1 − specificity, which is calculated as 
the fractional predicted area in the case of a pres-
ence-only model such as this one (Phillips et al. 
2006). The mean curve for all 10 replicates was cal-
culated, along with the SD. A mean AUC score below 
0.5 indicates a model with a performance worse than 
random, while a score of 1 indicates perfect model 
prediction. SD reflects random stochasticity in 
machine learning because all replicates were run 
using identical input data and background points. 

A jackknife analysis was performed to measure 
environmental variable importance within the top 
model. The model was re-run using each variable in 
isolation while measuring the model gain com-
pared to the original model gain with all variables. 
To measure the decrease in gain from omitting each 
variable, this was repeated using all variables but 
one. Comparing the effect on model gain gives in -
sight on the amount of useful and unique information 
within each variable for the model (Phillips et al. 
2006, 2017). 

Sensitivity, specificity, and TSS were calculated for 
both presence−absence maps to validate their accu-
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racy and support their application to surveying for 
Jefferson salamander breeding ponds. TSS was cho-
sen because it mathematically outperforms kappa, 
another commonly used statistical measure of model 
performance, and is independent of species preva-
lence (Allouche et al. 2006, Liu et al. 2013). All 3 
measures were calculated for each replicate and 
averaged for final values. 

2.6.  Presence−absence thresholding 

To create a binary presence−absence map for 
directing survey efforts, a threshold value was used 
to classify the habitat suitability predicted by the 
SDM as presence or absence. Maxent automatically 
calculates multiple statistical thresholds that are 
commonly used to create binary maps from continu-
ous predictive surfaces (Merow et al. 2013). The 
maximized test sensitivity plus specificity (MaxSSS) 
threshold has been found to perform equally well 
using presence-only data or presence−absence data 
(Liu et al. 2013). This threshold is defined as the 
value that produces the largest summed value of sen-
sitivity and specificity on the model’s test data and 
therefore produces a higher TSS (sensitivity + speci-
ficity − 1) than other thresholding methods (Liu et al. 
2013). In this case, sensitivity describes the model’s 
ability to correctly predict true presences and is cal-
culated as 1 − omission error rate using the breeding 
pond occurrence points. Specificity describes the 
model’s ability to correctly predict true absences and 
is usually calculated as 1 − commission error rate. 
However, presence-only models like Maxent lack 
absence data and therefore cannot calculate the 
commission error rate (Liu et al. 2013). In such cases, 
the fraction of the total study area predicted as pres-
ent can be substituted for the commission error, and 
this is what Maxent uses to calculate specificity 
(Phillips et al. 2006). 

The MaxSSS threshold was chosen to create the 
first presence−absence map because it produces a 
binary map with high overall accuracy by maximiz-
ing the TSS score (Allouche et al. 2006). However, 
this threshold weighs sensitivity and specificity the 
same in terms of importance. Because one of the 
research objectives of this study was to direct survey 
efforts in identifying new breeding ponds, the risk of 
spending resources to survey ponds incorrectly pre-
dicted as present may be more detrimental than the 
risk of missing ponds incorrectly predicted as absent. 
Therefore, a second user-defined threshold that pri-
oritizes specificity over sensitivity was selected to 

create a second, highly specific presence−absence 
map to be used to direct survey efforts. To select this 
threshold, the omission error rate and fractional pre-
dicted area were plotted against the threshold value 
to select a value that predicts a small area as present 
to direct survey efforts while maintaining an accept-
able omission rate. 

Although a single pixel (30 × 30 m) may be pre-
dicted by the model as highly suitable habitat for a 
breeding pond, Jefferson salamanders also require 
intact surrounding forest habitat to successfully 
migrate to and from breeding ponds (Porej et al. 
2004, Rothermel & Semlitsch 2006, van Drunen et al. 
2020). Therefore, the presence−absence map was 
further cleaned by removing areas predicted as pres-
ent that were not surrounded by appropriate habitat. 
Appropriate habitat was defined as any one of the 
top suitable land types defined by the model. Using 
the Focal Statistics tool in ArcGIS Pro, a moving win-
dow of 3 × 3 pixels (90 × 90 m) was used to calculate 
the number of pixels in each neighbourhood that 
were classified as one of these land types. Only pix-
els previously predicted as present by the model that 
also were located on, and surrounded by, appropri-
ate habitat remained classified as present. All other 
pixels were reclassified as absent. 

3.  RESULTS 

3.1.  Habitat suitability 

The SDM predicted a continuous surface of habitat 
suitability covering an extent of 29 206 km2, reaching 
from the southern tip of Ontario to Georgian Bay 
(Fig. 2a). Validated using the withheld 20% of occur-
rence points and averaged across all 10 model repli-
cates, the final calibrated SDM showed excellent 
performance, with a mean AUC score of 0.919 
(Fig. S2). The SDM predicted highly suitable habitat 
(>0.9) along the Niagara Escarpment, with hotspots 
in the Halton Falls Conservation Area, Crawford 
Lake Conservation Area, and Dundas Valley Conser-
vation Area and along a narrow stretch of forest east 
of Erin. Land surrounding the escarpment displayed 
a striped pattern, with suitable (>0.6) forest patches 
and hedge rows separated by unsuitable (<0.3) agri-
culture land. Most cities and urbanized areas were 
predicted as highly unsuitable (<0.1). However, 
urban areas such as Toronto, Mississauga, Oakville, 
Burlington, and Hamilton along the north shore of 
Lake Ontario showed moderate habitat suitability 
(0.2−0.7). 
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Fig. 2. (a) Species distribution model predicting the habitat suitability of breeding ponds created using the maximum entropy 
algorithm along occurrence data and environmental variables (climate, land type, soil type, and topography). Habitat suitabil-
ity increases with colour warmth (dark purple to bright yellow). Binary presence−absence maps were created by thresholding 
habitat suitability at (b) maximum sensitivity plus specificity and (c) a user-defined threshold of 0.626 for high specificity. Yel-
low areas indicate presence; purple areas indicate absence. In (d), the high-specificity map was refined by removing predicted 
presences not surrounded by appropriate forest habitat to create a map for directing survey efforts in identifying new breed- 

ing ponds. The Ontario Greenbelt designation (Scholars GeoPortal) is shown in green
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3.2.  Relative influence of environmental  
predictor variables 

The top 4 contributing variables to the model were 
land type (42%), mean temperature of the wettest 
quarter (23%), soil texture (16%), and temperature 
seasonality (11%) (Table 2). To evaluate the relation-
ships between the environmental variables and habi-
tat suitability, the response curves for each variable 
were plotted with all other variables held constant at 
their respective means. The land types associated 
with the highest habitat suitability (>0.9) were 
thicket swamp, deciduous forest, mixed forest, and 
treed swamp (Fig. 3a). The least suitable land types 
were roads (0.68), undifferentiated land (0.59), and 
agriculture fields (0.29). For soil textures, loam and 
sandy clay loam were associated with higher habitat 
suitability (>0.9) than other soil textures (Fig. 3b). All 
soil textures were associated with habitat suitability 
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Fig. 3. Response curves of top contributing environmental variables to the species distribution model of Jefferson salamander 
breeding ponds in southern Ontario. Responses averaged across 10 model replicates (dark blue lines and bars), with all other 
variables held constant at their respective means. (a,b) Black error bars and (c,d) light blue area represent ±1 SD between  

model replications. Note that the scale of the habitat suitability axis may differ between figures

Environmental variable                            Contribution to  
                                                                        SDM (%) 
 
Land type                                                            42.4 
Mean temperature of wettest quarter               22.8 
Soil texture                                                          15.6 
Temperature seasonality                                   10.5 
Isothermality                                                        4.0 
Soil drainage class                                               2.6 
Mean temperature of warmest quarter             1.0 
Precipitation of warmest quarter                        0.4 
Annual precipitation                                           0.4 
Mean temperature of driest quarter                  0.2 
Precipitation seasonality                                     0.1 
Probability of terrain depression                         0 

Table 2. Relative contribution of environmental predictor 
variables to species distribution model (SDM) of Jefferson 
salamander breeding ponds in southern Ontario. Relative 
contribution was calculated as the increase or decrease in 
regularized gain per iteration of the Maxent training algo- 

rithm, averaged across 10 model replicates
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greater than 0.80, and all, except for loam, varied 
greatly between model replicates. Habitat suitability 
increased exponentially with mean temperature of 
the wettest quarter and plateaued above 15°C 
(Fig. 3c). For temperature seasonality, habitat suit-
ability decreased rapidly from highly suitable (>0.95) 
to highly unsuitable (<0.05) between 10 and 10.5°C 
(Fig. 3d). Isothermality and soil drainage class con-
tributed minimally to the model (4 and 2.6%, respec-
tively). Mean temperature of the warmest quarter, 
precipitation of the warmest quarter, annual precipi-
tation, mean temperature of the driest quarter, pre-
cipitation seasonality, and probability of terrain 
depression each contributed less than 1% to the 
model. 

A jackknife analysis was performed to measure the 
importance of each environmental variable to the 
SDM’s performance, averaged across model repli-
cates. Land type had the highest gain when used in 
isolation, suggesting that it had the most useful infor-
mation for the model on its own (Fig. 4). Land type 
also had the largest decrease in gain when omitted 
from the model, suggesting it also had unique infor-
mation that was not present in the other variables. 

3.3.  Presence−absence maps 

Binary maps of the predicted presence and 
absence of breeding ponds were produced by 
thresholding the habitat suitability values from the 

SDM. Two different thresholds were used to produce 
presence−absence maps: the MaxSSS threshold and 
our user-defined threshold. Averaged across all 10 
model replicates, the mean MaxSSS threshold for the 
SDM was 0.316. However, this value was highly vari-
able between model replicates, with an SD of 0.137 
(Table 3). Thresholding habitat suitability at 0.316 
produced a reasonably accurate presence−absence 
map (mean TSS = 0.773, mean specificity = 0.896, 
mean sensitivity = 0.877) that predicted 2331 km2 of 
possible breeding pond habitat (Fig. 2b). 

The second presence−absence map created with 
our user-defined threshold produced a highly spe-
cific map for directing survey efforts of breeding 
ponds (Fig. 2c). A threshold of 0.626 was selected by 
plotting the mean model commission and omission 
error rate against threshold values and selecting a 
threshold value with high specificity and acceptable 
sensitivity (Fig. S3). The resultant presence−absence 
map was highly specific, at the expense of sensitivity, 
but still maintained acceptable accuracy (mean 
specificity = 0.968, mean sensitivity = 0.677, TSS = 
0.644) and had smaller SDs between model repli-
cates than with the MaxSSS threshold (Table 3). This 
map originally predicted 735 km2 of possible breed-
ing pond habitat, less than a third of the area pre-
dicted using the MaxSSS threshold. 

Breeding ponds likely require appropriate sur-
rounding habitat to allow for Jefferson salamanders 
to migrate between ponds and overwintering sites in 
the forest (Rothermel & Semlitsch 2006). Thus, we 
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Fig. 4. Jackknife analysis of 
en vironmental variable impor-
tance for the species distribu-
tion model (SDM) of Jefferson 
salamander breeding ponds in 
southern Ontario. Green bars 
show model gain on test data 
while omitting each variable. 
Blue bars show model gain 
while using each variable in 
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total gain of the SDM using all 
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highest gain when used in iso-
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in gain when omitted from the 
model, suggesting it as the 
most important variable to the 
SDM. Probability of terrain de -
pression had negative gain 
when used in isolation, show-
ing that the model performed 
worse than random with only  

this variable
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refined the presence−absence map by removing suit-
able locations that were not also surrounded by 
deciduous forest, mixed forest, thicket swamp, 
and/or treed swamp. This decreased the total area 
predicted as present from 735 to 305 km2 (Fig. 2d). 

4.  DISCUSSION 

We created two informative SDMs of Jefferson 
salamander breeding ponds: a continuous map of 
habitat suitability for informing conservation plan-
ning (Fig. 2a), and a refined presence−absence map 
for directing survey efforts in identifying new breed-
ing ponds (Fig. 2d). The presence−absence map was 
designed to be highly specific by thresholding the 
SDM and was further refined by removing locations 
not surrounded by appropriate forest habitat to 
account for migration between ponds and overwin-
tering sites. This map showed patchy distribution of 
breeding ponds throughout southern Ontario, with 
high density along the Niagara Escarpment, which 
agrees with field reports (COSEWIC 2010). We 
emphasize that this refined presence−absence map 
was created for the primary purpose of directing sur-
vey efforts to identify new breeding ponds, meaning 
that specificity was prioritized over sensitivity as to 
minimize resources related to incorrectly predicting 
a location of a breeding pond in the field. However, 
as a result, some breeding ponds may have been 
omitted in this map due to the low sensitivity. There-
fore, this  presence−absence map is a conservative 
estimate of breeding pond distribution and may not 
be appropriate for decision making related to a con-

servation boundary or zoning without further valida-
tion. In stead, the continuous habitat suitability map 
(Fig. 2a) would be better suited for such applications. 

Using variable response curves and jackknife 
analysis, our results suggest that land type was the 
strongest determinant of breeding pond suitability. 
As hypothesized, deciduous forest and forested 
swamp land types that provided appropriate over-
wintering habitat were associated with high habitat 
suitability. Due to the limited dispersal range of Jef-
ferson salamanders (van Drunen et al. 2020) and the 
risk in crossing roads to migrate between breeding 
ponds to overwintering sites (Guerry & Hunter 2002, 
Compton et al. 2007, COSEWIC 2010, Environment 
Canada 2016), it is crucial to identify and protect 
breeding ponds within forests appropriate for over-
wintering. Soil texture was another contributing vari-
able to habitat suitability, with loamy soils associated 
with higher habitat suitability than other soil tex-
tures. Although soil texture was the third most 
important variable contributing to the SDM, all soil 
types were associated with high habitat suitability 
(>0.8). This suggests that soil type may be more 
important in describing habitat quality rather than 
differentiating between suitable and unsuitable 
habitat. There is limited research on the effects of soil 
on Jefferson salamanders, with some studies focus-
ing on soil pH (Horne & Dunson 1994a,b). Studies 
investigating the effect of other soil characteristics 
have focused on the red-backed salamander Pletho-
don cinereus, a species from a different family than 
the Jefferson salamander (Taub 1961, Jaeger 1980, 
Frisbie & Wyman 1992, Sugalski & Claussen 1997). 
Therefore, our findings highlight the need for further 
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Model                                    MaxSSS threshold                                              User-defined threshold for high specificity 
replicate       Threshold      Specificity     Sensitivity          TSS                   Threshold      Specificity     Sensitivity        TSS 
 
0                        0.246              0.884              0.864             0.748                      0.626              0.970             0.682            0.652 
1                        0.419              0.929              0.909             0.838                      0.627              0.964             0.818            0.782 
2                        0.263              0.892              0.864             0.756                      0.625              0.969             0.727            0.696 
3                        0.292              0.898              0.909             0.807                      0.624              0.965             0.682            0.647 
4                        0.257              0.885              0.909             0.794                      0.626              0.967             0.682            0.648 
5                        0.208              0.871              0.864             0.735                      0.624              0.970             0.500            0.470 
6                        0.207              0.868              0.864             0.732                      0.628              0.971             0.545            0.517 
7                        0.159              0.814              1.000             0.814                      0.627              0.966             0.727            0.693 
8                        0.582              0.962              0.773             0.735                      0.629              0.967             0.682            0.649 
9                        0.530              0.958              0.818             0.776                      0.629              0.967             0.727            0.695 
Mean                0.316              0.896              0.877             0.773                      0.626              0.968             0.677            0.645 
SD                     0.137              0.042              0.058             0.036                      0.002              0.002             0.087            0.085 

Table 3. Performance of binary presence−absence maps derived from habitat suitability as predicted by the species distribu-
tion model using the maximum sensitivity plus specificity (MaxSSS) threshold and our user-defined threshold. Values are 
shown for all 10 model replicates, along with the means and SDs used to create the maps. True skill statistic (TSS) calculated  

as sensitivity + specificity − 1
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research regarding the importance of soil texture in 
determining Jefferson salamander distribution. 

Climate was also important in determining habitat 
suitability, with temperature variables contributing 
more to the SDM than precipitation. Habitat suitabil-
ity increased with mean temperature of the wettest 
quarter and decreased with seasonality, demonstrat-
ing a preference for warm springs and mild seasons. 
These results agreed with the hypothesis that large 
temperature fluctuations in spring would decrease 
habitat suitability by causing breeding ponds to 
freeze or evaporate, leading to freezing or desicca-
tion of Jefferson salamander adults, egg masses, or 
larvae. Our results also suggested that habitat suit-
ability increased with spring temperature, which was 
contrary to previous studies suggesting salamanders 
are more active at the surface in lower temperatures 
with less solar exposure (Peterman & Semlitsch 2013, 
Lunghi et al. 2018). However, as this study modeled 
breeding ponds and not Jefferson salamanders 
directly, these results may indicate that warmer 
spring temperatures thaw breeding ponds faster and 
allow Jefferson salamanders to migrate earlier in the 
breeding season. 

Contrary to our predictions, the probability of ter-
rain depression did not contribute to the SDM. The 
probability of terrain depression would be expected 
to be high at occurrence points because they are 
known breeding ponds that must be in a terrain 
depression. Upon further inspection, values for this 
variable at occurrence points were skewed left, 
explaining its lack of contribution to the SDM. This 
may be due to the spatial resolution of the PDEM 
source data not being fine enough to detect the small 
shallow depressions for vernal pools. Although eleva-
tion data were available at finer resolution, up to 1 m 
resolution for the LiDAR-derived High Resolution 
Digital Elevation Model (geogratis.gc.ca), the pro-
cessing power required to handle such large data 
sizes was not feasible for this study. Further investi-
gation is needed into the effects of terrain depression 
on breeding pond distribution by studies with access 
to greater processing power or by creating higher-
resolution SDMs at smaller geographical extents. 

We acknowledge that our results are somewhat 
limited by the spatial resolution of available environ-
mental data. Maxent requires all environmental data 
to be at the same spatial resolution, which may have 
introduced errors when the data were resampled to 
the same resolution. Land type, soil texture, and soil 
drainage data were resampled from finer resolutions 
to match elevation data at 30 m resolution. In doing 
so, some information that may have helped describe 

fine-scale patterns of breeding pond distribution was 
lost (Zhou & Zhang 2014). The finest-resolution cli-
mate data available were 1 km, which would pro-
duce too coarse an SDM for the purpose of identify-
ing new breeding ponds. Interpolating the climate 
data to a finer resolution using a bilinear technique 
undoubtedly introduced errors (Olivero et al. 2016); 
however, these were thought to be outweighed by 
the benefit of producing a detailed SDM with the 
other finer-resolution variables. 

A further limitation is that possible biotic interac-
tions were not accounted for in the SDM. Carnivo-
rous fish prey on Jefferson salamanders at all life 
stages, which may influence the suitability of ponds 
for breeding (Petranka 1998, Porej et al. 2004, Envi-
ronment Canada 2016). Similarly, competition with 
other salamander species and unisexual dependents 
may affect breeding success for Jefferson salaman-
ders (Bogart et al. 2017, Mills et al. 2020). As data on 
the distribution of fish and salamander species were 
not included in building this SDM, the predicted 
habitat suitability of breeding ponds does not reflect 
the presence of predatory fish or other salamander 
species. Further studies that incorporate the biotic 
interactions between Jefferson salamanders and 
other species are needed to produce more accurate 
SDMs of Jefferson salamanders. 

Finally, the nature of our data being presence only 
may underestimate species occurrences and over -
estimate species absences in our SDM. Occupancy 
modelling can improve the predictive capabilities of 
SDMs (Jha et al. 2022). However, this would require 
a large data size and repeated visits to locations, 
which was not feasible for this study. Since the pro-
tection of the Jefferson salamander in southern 
Ontario will require ongoing monitoring, future stud-
ies should utilize the growing database to incorpo-
rate occupancy modelling into SDMs. 

Despite limitations involving spatial resolution and 
the lack of biotic interactions captured by this SDM, 
our work highlights the importance of protecting Jef-
ferson salamanders in southern Ontario. On the con-
tinuous map of habitat suitability, hotspots of highly 
suitable habitat for breeding ponds were shown in 
conservation areas surrounded by unsuitable urban 
and agricultural land (Fig. 2a). The refined presence−
absence map predicted roughly 60% of the area to be 
suitable for breeding ponds (183 of 305 km2; Fig. 2d) 
as a conservative estimate. Additionally, this map 
showed that 78% of known breeding ponds (87 of 
111) were within Ontario’s Greenbelt, mostly in the 
Niagara Escarpment Plan designation (100 km2), fol-
lowed by the Protected Countryside designation 
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(81 km2; Fig. 2d). This highlights that the Greenbelt is 
of high conservation value for this species. However, 
this conservation value is threatened by recent poli-
cies by the provincial government that will allow 
 further development in the Greenbelt (Jones 2022), 
potentially destroying breeding ponds or, at the very 
least, isolating them from other ponds and overwin-
tering sites (Porej et al. 2004, Rothermel & Semlitsch 
2006, Environment Canada 2016, Stevens & Conway 
2020, van Drunen et al. 2020). Both our habitat suit-
ability map and refined presence−absence map pro-
vide important tools for predicting the suitable 
habitat of an endangered species and directing fur-
ther survey efforts in the face of future development 
in the region. Although statistical metrics suggested 
our SDM performed well, future studies should en-
deavour to test its accuracy via ground-truthing 
 surveys at the locations predicted as present for Jef-
ferson salamander breeding ponds. 

SDMs are valuable tools that support decision mak-
ing in the conservation and management of endan-
gered species, such as the Jefferson salamander. Par-
ticularly for cryptic species that are not easily 
detected by surveying, SDMs can provide estimates 
of the spatial distribution of rare species (McCune 
2016, Rosner-Katz et al. 2020). By predicting areas of 
highly suitable habitat, limited resources can be tar-
geted towards protecting critical habitat for these 
species. Specifically, SDMs can help determine 
where to limit urban and agricultural development 
and where to increase habitat protection, improving 
conservation efficiency (Guisan et al. 2013). This 
study created a high-performing SDM of Jefferson 
salamander breeding ponds, from which two maps 
were produced to inform conservation planning and 
direct survey efforts in identifying new ponds. In ad-
dition to identifying critical habitat in the present, 
SDMs can also inform how environmental variables 
may have influenced species distribution in the past 
and in the future. By projecting SDMs onto historical 
or future climate models, SDMs provide an opportu-
nity to examine a species’ evolutionary history or 
phylogeny (Pelletier et al. 2015) and predict their po-
tential range shift in response to future environmental 
changes (Nottingham & Pelletier 2021). Overall, the 
ability of SDMs to predict a species’ spatial distribu-
tion and ecological niche in the past, present, and fu-
ture makes these models invaluable tools for inform-
ing conservation strategies for endangered species. 
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