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1.  INTRODUCTION 

Marine turtles spend most of their lives at sea but are 
tied to terrestrial habitats (i.e. nesting beaches) for re-

production. This life history strategy exposes these 
species to indirect (e.g. climate change and habitat 
loss) and direct (e.g. fishing, pollution and marine de-
bris, egg consumption, coastal development) anthro -
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ABSTRACT: The Eastern Pacific population of leatherback turtles Dermochelys coriacea is Criti-
cally Endangered, with incidental capture in coastal and pelagic fisheries as one of the major 
causes. Given the population’s broad geographic range, status, and extensive overlap with fisheries 
throughout the region, identifying areas of high importance is essential for effective conservation 
and management. In this study, we created a machine-learning species distribution model trained 
with remotely sensed environmental data and fishery-dependent leatherback presence (n = 1088) 
and absence data (>500 000 fishing sets with no turtle observations) from industrial and small-scale 
fisheries that operated in the eastern Pacific Ocean between 1995 and 2020. The data were obtained 
through a participatory collaboration between the Inter-American Convention for the Protection 
and Conservation of Sea Turtles and the Inter-American Tropical Tuna Commission as well as non-
governmental organizations to support the quantification of leatherback vulnerability to fisheries 
bycatch. A daily process was applied to predict the probability of leatherback occurrence as a func-
tion of dynamic and static environmental covariates. Coastal areas throughout the region were 
highlighted as important habitats, particularly highly productive feeding areas over the continen-
tal shelf of Ecuador, Peru, and offshore from Chile, and breeding areas off Mexico and Central 
America. Our model served as the basis to quantify leatherback vulnerability to fisheries bycatch 
and the potential efficacy of conservation and management measures (Griffiths & Wallace et al. 
2024; Endang Species Res 53:295–326). In addition, this approach can provide a modeling frame-
work for other data-limited vulnerable populations and species.  
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pogenic threats that have caused declines in many 
populations (Wallace et al. 2011, Northwest Atlantic 
Leatherback Working Group 2019, Wibbels & Bevan 
2019). Consequently, conservation efforts have in -
creased in many regions of the world to address these 
threats, with varying degrees of success (e.g. Chaloupka 
et al. 2008, Casale & Tucker 2017, Mazaris et al. 2017). 

Of particular conservation concern is the leather-
back turtle Dermochelys coriacea, the largest (typi-
cally >1.5 m curved carapace length) and most geo-
graphically widespread of all marine turtle species 
(Eckert et al. 2012). Distributed circumglobally from 
tropical to temperate regions and regularly occurring 
in coastal as well as high-seas areas, the species com-
prises 7 regional management units (RMUs) or sub-
populations (Wallace et al. 2023). Two RMUs — the 
East Pacific (EP) and West Pacific — exist in the Paci-
fic Ocean, both of which are currently classified as 
Critically Endangered on the IUCN Red List (Tiwari et 
al. 2013, Wallace et al. 2013). The EP leatherback 
RMU has declined by over 90% since the 1980s, 
largely due to unsustainable levels of incidental mor-
tality by industrialized and artisanal fisheries, which 
mainly affect sub-adults and adults, as well as egg 
consumption by humans (Laúd OPO Network 2020). 

Given that industrial and artisanal tuna (e.g. yel-
lowfin Thunnus albacares, albacore T. alalunga, big-
eye T. obesus, skipjack Katsuwonus pelamis) purse-
seine and longline fisheries cover a high proportion 
of the species’ distribution in the east Pacific Ocean 
(EPO) (Wallace et al. 2023), they unavoidably interact 
with leatherback turtles and other sea turtle species 
during their normal fishing operations as they target 
tunas, billfish, and other species that share similar 
epipelagic habitats (IATTC 2020). The Inter-American 
Tropical Tuna Commission (IATTC) is the Regional 
Fisheries Management Organization that is respon-
sible for the long-term conservation and sustainable 
management of fisheries that target tuna and tuna-
like species in the EPO. Since the Antigua Con -
vention entered into force in 2010, which required 
a  significantly broader ecosystem-based approach 
to  management by the IATTC, several resolutions 
pertaining to the conservation and management of 
various sensitive bycatch species have been imple-
mented, including sea turtles (IATTC Resolution C-
07-03). However, in light of the declining population 
of leatherback turtles in the EPO, the IATTC imple-
mented more stringent conservation measures in 2021 
to mitigate fishery impacts on sea turtles (IATTC Res-
olution C-19-04). 

Further, the Inter-American Convention for the Pro-
tection and Conservation of Sea Turtles (IAC) is a 

binding intergovernmental treaty that provides the 
legal framework for states of North, Central, and 
South America and the Caribbean Sea to take actions 
to benefit sea turtles, in both nesting beaches and the 
Parties’ territorial waters. Concerned with the critical 
status of leatherback turtles in the EPO, the IAC 
adopted Resolution CIT-COP7-2015-R2 in 2015, up -
dated in 2022 to Resolution CIT-COP10-2020-R6, 
which requests IAC Parties to implement or improve 
measures to reduce bycatch of leatherback sea turtles 
in the eastern Pacific fisheries based on the best sci-
entific information available and using recommen-
dations from IAC Resolution CIT-COP10-2022-R7 to 
exercise FAO guidelines to reduce sea turtle mortality 
in fishing operations (FAO Fisheries Department 2009). 

Assessing fisheries impacts on bycatch species is 
challenging due to the frequent lack of reliable bio-
logical and catch information, especially for species 
of little or no commercial value or in data-limited set-
tings. Therefore, assessing bycatch species using tra-
ditional stock assessment approaches is often both 
cost-prohibitive and impractical, thus requiring alter-
native approaches. To address this issue, Griffiths et 
al. (2019) developed a flexible, spatially explicit, 
quantitative ecological risk assessment approach —
Ecological Assessment of Sustainable Impacts of Fish-
eries (EASI-Fish) — to quantify the cumulative impacts 
of multiple fisheries on data-limited bycatch species, 
such as sea turtles. 

Because the extent of areal overlap between the 
species and each interacting fishery is of critical 
importance in the EASI-Fish approach, a reliable spe-
cies distribution model (SDM) is required. SDMs are 
built to describe the relationship between a species 
and environmental conditions and can predict how 
environmental variability may affect their distribu-
tion and habitat choice (Elith & Leathwick 2009). 
Although SDMs have been widely applied in predict-
ing suitable habitats for marine species over the past 
few decades (Melo-Merino et al. 2020), only a few 
studies have focused on bycatch species that are data-
poor and are of particularly high conservation impor-
tance (e.g. Sequeira et al. 2014, Abrahms et al. 2019, 
Lezama-Ochoa et al. 2020, Lopez et al. 2020). For 
example, a simple environmental envelope model 
was developed for NOAA’s TurtleWatch tool (Howell 
et al. 2008, 2015) to mitigate loggerhead Caretta 
caretta and leatherback turtle bycatch by longline 
fisheries in the central north Pacific Ocean. 

For rarely encountered bycatch species, whether 
their rarity is due to fishing gear selectivity issues, non-
reporting, or declining population size, there is often a 
small number of observations from which to develop 
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an SDM. Therefore, this limits the types of models 
available to develop an SDM that can make use of scant 
presence records. Machine-learning algorithms, includ-
ing boosted regression trees (BRT) (Elith et al. 2006), 
are a relatively new suite of powerful tools that can ac-
commodate non-linear relationships, high-dimensional 
large data sets, imbalanced classes, and limited species 
occurrences (Elith et al. 2008, Mi et al. 2017). 

The goal of this study was to generate a reliable 
high-resolution SDM that would support the eval-
uation of EP leatherback vulnerability to the impacts 
of fisheries as well as the potential efficacy of conser-
vation management measures (e.g. IATTC C-19-04) 
using the EASI-Fish approach. This study was part of 
a multi-year, collaborative effort between IATTC and 
IAC representatives, under a 2011 Memorandum of 
Understanding (MoU) between the 2 conventions to 
inform conservation and management of EP leather-
back turtles in the EPO. Previous research using 
satellite telemetry has estimated overlaps between 
Atlantic leatherbacks and the potential risk of acci-
dental interactions with fisheries (e.g. James et al. 
2005, Fossette et al. 2014). Similarly, for EP leather-
backs, previous studies have developed potential 
methods for producing SDMs using either individual-
based satellite telemetry data (Hoover et al. 2019), 
presence-only observation data (Degenford et al. 
2021), or both (Liang et al. 2023). Furthermore, there 
is clear value in a detailed investigation of inter- 
and intra-annual leatherback distributions in rela-
tion to large-scale environmental cycles (e.g. El Niño–
Southern Oscillation [ENSO] regimes, climate change) 
to inform adaptive management options that reflect 
these dynamics (e.g. Hazen et al. 2018, Willis-Norton 
et al. 2015, Pons et al. 2022). Leatherback movements, 
habitat use, and life history are known to be strongly 
influenced by environmental conditions, specifically 
how those conditions affect resource availability (Saba 
et al. 2007, 2008, Shillinger et al. 2008, 2010, Wallace 
& Saba 2009, Bailey et al. 2012, Hoover et al. 2019). 
Thus, predictions of leatherback occurrence in time 
and space at different scales would be highly infor-
mative and useful for fine-tuning conservation strat -
egies in the EPO. 

In this study, we developed a hierarchical machine-
learning modeling approach that used a region-wide 
presence–absence data set for EP leatherback turtles 
and incorporated different predictive variables and 
modeling configurations to (1) understand the poten-
tial distribution of the species at different spatio-tem-
poral scales, (2) identify the environmental prefer-
ences of the species, and (3) develop a final prediction 
map describing the most plausible distribution for the 

species that will be used in a concurrent study to 
assess the species’ vulnerability to fishery interac-
tions. This paper describes the development of a 
novel SDM that was then used to quantify and miti-
gate the impacts of EPO fisheries on EP lea therback 
turtles, helps inform their vulnerability status, and 
guide the development of appropriate conservation 
and management decisions (Griffiths & Wallace et al. 
2024, this volume). It was also envisaged that if the 
model was successful for leatherback turtles, it could 
also be applied to other data-limited vulnerable taxa. 

2.  METHODS 

All data processing and analytical work was carried 
out using R version 3.4.3 (R Core Team 2017)). 

2.1.  Fisheries observer data 

We used 26 years (1995–2020) of observer and log-
book data collected from a variety of industrial and 
small-scale coastal (artisanal) fisheries (Table 1) oper-
ating in 6 countries and the high seas within the IATTC 
convention area — defined as the region from the 
Pacific coast of the Americas to 150° W between 50° S 
and 50° N. Our data set included observations of leath-
erback turtle presence as well as absence during fish-
ing operations compiled by a participatory collabo-
ration coordinated by the IATTC and IAC to undertake 
the EASI-Fish leatherback vulnerability assessment. 

Nearly 90% of high-seas presence–absence data 
were derived from large-scale tuna longline fishing 
vessels (≥24 m, hereafter called the ‘industrial long-
line fishery’; 484 active vessels in 2022; https://iattc.
org/en-US/management) and the industrial tropical 
tuna large purse-seine fishing fleet (Class 6 with a car-
rying capacity of >363 mt, 180 active vessels in 2022; 
https://iattc.org/en-US/management). The data in -
clude set-level information on leatherback turtle 
interactions along with location, date, and time of the 
observation. The distribution of industrial tuna fish-
ing effort was mostly concentrated (>75% of sets) 
between 20° N and 20° S during the study period. The 
data for these fleets were collected by IATTC on-
board scientific observers or submitted to the IATTC 
by its members under Resolution C-19-08. The ob -
server coverage rate was close to 100% for purse-
seine vessels of Class 6 and approximately 5% for the 
industrial longline fishery. 

In contrast to the industrial fisheries in the EPO, 
catch and effort by the numerous artisanal fleets that 
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operate within the exclusive economic zones (EEZs) 
of countries in the EPO generally have very low (if 
any) observer coverage and are poorly documented 
in general. However, based on available data (i.e. col-
lected by opportunistic or sporadic observations, and 
port-based interviews with fishermen), leatherback 
turtles have been shown to be heavily impacted by 
coastal artisanal gillnet and longline fisheries, par-
ticularly in foraging areas but also in migratory and 
reproduction areas (Frazier & Brito 1990, Alfaro-
Shigueto et al. 2011, 2018, Quiñones et al. 2021). Rea-
sonably detailed effort data for artisanal longline ves-
sels throughout Central America was available from 

IATTC’s long-term research program that examined 
the effects of different hook types on marine turtle 
bycatch rates, reported in part by Andraka et al. 
(2013). In addition, unpublished data pertaining to 
leatherback turtle interaction and fishing effort infor-
mation for several artisanal fisheries operating in ter-
ritorial waters of 6 countries in the EPO were opportu-
nistically compiled (Table 1). 

Duplicated records, data outside the EPO, and 
observations without reliable date and location infor-
mation were removed from the data set (n = 57 re -
cords, ~5% of the initial presences). The final data 
set  included 1088 leatherback records from nearly 
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Country              Gear             First       Last   Presence    Abundance     Effort        No. of       No. of     No. total        % of            Source 
                                                      year      year        only                                                     presences     ind.            sets       presences 
 
Chile            Purse-seine     2015     2019        No                 No                –               3                3             4396           0.07        Observers 
Chile              Industrial      2001     2018        No                 Yes              Yes           327           365         13828          2.36        Observers 
                         longline                                                                          (No. of hooks) 
Chile               Artisanal       2002     2018        No                 Yes              Yes            59             62           1831           3.22        Observers 
                         longline                                                                          (No. of hooks) 
Chile               Artisanal       2010     2019        No                 No)              Yes              2                2              564            0.35        Observers 
                         longline                                                                          (No. of hooks) 
                         (espinel) 
Chile               Artisanal  
                           gillnet          2007     2019        No                 Yes               No             22             24           1399           1.57        Observers 
Colombia        Gillnet         2017     2018        Yes                 No               No              3                3                3                –          Observers 
Colombia      Longline        2018     2018        Yes                 No               No              2                2                2                –          Observers 
IATTC         Purse-seine     1995     2020        No                 Yes               No            272           274        532857        0.05        Observers 
IATTC            Longline        2013     2020        No                 Yes               No             67             67          24005          0.28        Observers 
Panama      Purse seine /    2018     2020        Yes                 No               No             10             10              10               –          Observers 
                        longline /  
                           gillnet 
Peru                Longline        2001     2019        Yes                 No                –            186           186           186              –               Pro- 
                        (surface),                                                                                                                                                                           Delphinus 
                           gillnet 
Ecuador      Purse-seine     2019     2020        No                 No                –               3                3             2746           0.11        Observers 
Ecuador         Longline 
                         (bottom)        2017     2020        No                 No               No              0                0              766            0.00        Observers 
Ecuador         Longline        2019     2020        No                 No               No              2                2             1667           0.12        Observers 
                         (surface) 
Peru                Driftnet /       1997     2015        Yes                 No               No            141           141           141              –          IMARPE/ 
                           gillnet                                                                                                                                                                            ACOREMA 
Peru                Driftnet /       2013     2020        Yes                 Yes               No             21             21              21               –           IMARPE  
                           gillnet                                                                                                                                                                              (LAMBA- 
                                                                                                                                                                                                                       YEQUE) 
WWF              Longline        2004     2009        No                 Yes              Yes            20             20           7539           0.27           WWF- 
 (various)                                                                                                     (Various)                                                                               IATTC 
Costa Rica     Longline        2005     2012        No                 Yes              Yes             5                5             2602           0.19        Observers 
All                                                                                                              (No. of hooks) 
                                                  1995     2020                                                                     1145         1190       594563         0.19

Table 1. Data sources and period of coverage of data used to build the leatherback species distribution model for the East  
Pacific Ocean
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575 000 fishing sets (i.e. 0.19% of sets containing at 
least one leatherback observation) from all years with 
available data (Table 1, Fig. 1). 

2.2.  Predictive variables 

A total of 23 variables were included in SDMs, 
which included 3 spatio-temporal variables, 11 surface 
variables, 2 subsurface variables, and 2 static vari-
ables (Table 2). The 3 spatio-temporal variables in -
cluded location and date of set, as seasonality can 
affect catches. Spatio-temporal variables can  be 
confounded with environmental factors and reflect 
certain natural processes not captured by the envi-
ronmental (i.e. surface and subsurface) variables. The 
majority of environmental data was sourced from 
daily or weekly fields of global data assimilative 
models (i.e. assimilated data derived from satellites 
and in situ platforms) for the IATTC 
convention area at 0.25° (~25 km2) 
resolution (available at http://marine.
copernicus.eu/ and https://www.aviso.
altimetry.fr/). The 0.25° spatial resolu-
tion, combined with a fine temporal 
scale, is considered adequate for hab-
itat modeling (Scales et al. 2017a). 

The 11 surface variables chosen in -
cluded sea surface temperature (SST) 
and its gradient (SST_grad; calculated 
as the change in temperature at the 
same pixel over a period of 7 d), salinity 
(Sal), sea surface height (SSH), current 
speed (Vel), current direction (Dir), eddy 
kinetic energy (EkE), finite size Lya -
punov exponents (FSLE), front in dex 
(FrontIndex; estimated as a count of the 
front pixels in the grid cell for the 7 d 
window), chlorophyll a (chl), and chl a 
gradient (chl_grad; computed as the 
difference in chl a concentration in the 
same pixel over a 7 d period). 

The 2 subsurface variables in cluded 
temperature at 100 m depth (SST100) 
and mixed layer depth (MLD). SST100 
and MLD have proven to be helpful 
to  improve SDMs for large pelagic 
species (Brodie et al. 2018) and help 
describe the 2-dimensional (i.e. verti-
cal and horizontal space) structure of 
the water column properties. 

The 2 static variables included 
bathymetry (Depth) and the distance 

to land (LandDistance). These variables were ex -
tracted from the Global Marine Environmental Data-
sets (Basher et al. preprint, doi:10.5194/essd-2018-64) 
and MARSPEC Ocean Climate Database (Sbrocco & 
Barber 2013), respectively, and have been shown to 
be im portant in defining leatherback turtle habitat 
(e.g. Hazen et al. 2018, Robinson et al. 2016, Willis-
Norton et al. 2015). 

2.3.  Model development 

In the interest of robustness and to inform compari-
sons, we took a hierarchical multi-model approach, 
building 6 presence–absence (catch vs. zero catch 
per set, binary response) model configurations with 
each set of variables, from the simplest to the most 
complex models. The following model configurations 
were established with all presence and absence data: 
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Fig. 1. Distribution of leatherback sea turtle presences (red points) and absences 
(black points) collected by on-board observers and logbooks for industrial 
longline and purse-seine fisheries and small-scale longline and surface gillnet  

fisheries in the Eastern Pacific Ocean between 1995 and 2020
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(1) spatio-temporal, (2) surface, (3) subsurface, (4) 
environmental (surface + subsurface), (5) static, and 
(6) full (environmental and static) (Fig. 2). Because 
the full model had the best performance metrics 
(see Table 3), subsequent models using different 
proportions of presence to absence data were only 
established with this set of variables (full; environ-
mental and static variables) (see Section 2.3.3 for 
details). 

2.3.1.  Model building 

BRTs are a flexible classification and regression 
algorithm based on machine-learning principles (Elith 
et al. 2006, De’ath 2007). Consequently, some of the 
caveats of more commonly used techniques, such as 
generalized linear models (GLMMs) or generalized 
additive mixed models (GAMM), are not applicable. 
BRTs have the particular advantage of being tolerant 
of missing values, outliers, correlation, collinearity, 
non-independence, and allowing for the inclusion of 
irrelevant predictors (Leathwick et al. 2006). BRTs are 
also designed to accommodate non-linear relation-
ships, large high-dimensional data sets, imbalanced 
classes, and limited species occurrences (Elith et al. 

2008, Mi et al. 2017). While GLMMs and GAMMs 
seek to fit the most parsimonious model to a data 
set,  BRTs combine stochastic predictions of many 
simple models (i.e. many shallow classification trees) 
to maximize robustness and predictive performance 
to reduce associated error (Scales et al. 2017b). Ac -
cordingly, we fitted BRTs with all available sets of 
covariates. In the past, authors also fitted GAMM and 
random forest (RF) models to presence–absence data 
for other species to compare and better understand 
consistency and interpretation between algorithms 
(e.g. Lopez et al. 2019). In these cases, BRTs performed 
better than GAMMs and had very similar performance 
to the RFs. As such, we decided to use BRTs to build 
all the models in this study, which were implemented 
using the R package ‘dismo’ (Hijmans et al. 2017). 

In fitting BRTs, we adapted the protocols outlined 
by Elith et al. (2008), Scales et al. (2017b), Brodie et al. 
(2018), and Hazen et al. (2018). Presence–absence 
models were built with a binomial (Bernoulli) distri-
bution. We used a tree complexity of 3, a bag fraction 
of 0.7, and conducted sensitivity analyses on learning 
rate (‘shrinkage’) for each model set, aiming for at 
least 1000 trees in final model configurations. The 
sensitivity runs determined 0.01 as the learning rate 
to be used in all the models, except for the model with 
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Variable                                                                         Unit                   Spatial resolution        Temporal resolution        Source 
 
Spatio-temporal                                                                                                                                                                                     
Latitude                                                              Decimal degree                     GPS                                      –                              – 
Longitude                                                          Decimal degree                     GPS                                      –                              – 
Day of the year                                                   Calendar day                         –                                        D                       Processed 
Environmental surface                                                                                                                                                                        
Sea surface temperature                                            °C                                  1/4°                                       D                        CMEMS 
Sea surface temperature gradient                           °C                                  1/4°                                       D                       Processed 
Salinity                                                                        g kg–1                              1/4°                                       D                        CMEMS 
Sea surface height                                                        m                                  1/4°                                       D                        CMEMS 
Current speed                                                            m s–1                               1/4°                                       D                       Processed 
Current direction                                                    Degrees                            1/4°                                       D                       Processed 
Eddy kinetic energy                                               cm2 s–2                             1/4°                                       D                       Processed 
Finite size Lyapunov exponents                             d–1                                1/25°                                     D                          AVISO 
Front index                                               Count of front pixels per            1/4°                                      W                      Processed 
                                                                       cell for the 7 d window 
Chlorophyll                                                              mg m–3                             1/4°                                      W                       CMEMS 
Chlorophyll gradient                                             mg m–3                             1/4°                                      W                      Processed 
Environmental subsurface                                                                                                                                                                 
Temperature at 100 m                                                 °C                                  1/4°                                       D                        CMEMS 
Mixed layer depth                                                                                             1/4°                                       D                        CMEMS 
Static                                                                                                                                                                                                          
Bathymetry                                                                                                          1/12°                                     –                         GMED 
Distance to coast                                                                                              1/120°                                    –                     MARSPEC 
                                                                                                                                                                                                           (Sbrocco & Barber 2013)

Table 2. Comparing data sources and spatio-temporal resolutions for variables used in species distribution models. D: daily;  
W: weekly
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the same number of presences and absences (i.e. 
50:50 presence–absence ratio; see Section 2.3.3), 
where a value of 0.005 was used. Tree complexity 
refers to the number of nodes in a tree, which con-
strains the maximum size of each of the regression 
trees that together make up a boosted regression tree 
model. By controlling the number of nodes or 
branches, tree complexity also sets the maximum 
number of interactions between predictor variables 
that are possible (i.e. 3 in this case, as 2- and perhaps 
3-way interactions among variables may be impor-
tant, but higher orders are unnecessary in fisheries 
contexts; Soykan et al. 2014). Bag fraction refers to 
the proportion of the data that is randomly used for 
model building at each step, which usually ranges 
between 0.6 and 0.75 (Elith et al. 2008). The stochas-
ticity that this step provides to the model-building 
process improves model performance (Soykan et al. 
2014). 

The potential for model simplification was eval-
uated with the function ‘gbm.simplify’. Simplified 
models were fitted by re-running models without 
those variables that gave no evidence of improving 
predictive performance. Deviance explained, variable 
importance, and interactions between variables were 
also estimated for all models using the function 
‘gbm.interactions’. Each of these configuration set-
tings and the performance procedures are described 
in detail by Elith & Leathwick (2017), Elith et al. 
(2008), Hazen et al. (2018), Scales et al. (2017b), and 
Soykan et al. (2014). 

2.3.2.  Model validation 

Patterns derived from SDMs — particularly those 
produced by machine-learning techniques — are sus-
ceptible to bias if the original data is biased (see Lee-
Yaw et al. 2022), which may be the case with our 
highly imbalanced data set from different sources 
(note that the leatherback turtle is not a target species 
but a bycatch species for all fisheries included in this 
study; hence, the data is expected to be less in -
fluenced by fishing strategies or other variables that 
can affect data collection and bias). In an attempt to 
address this issue, we conducted extensive model val-
idation exercises. Independent data sets such as 
leatherback turtle space use derived from satellite 
tracking data (e.g. Shillinger et al. 2008, Bailey et al. 
2012) were not made available for our analysis; such 
tests of how well SDM predictions agree with inde-
pendent estimates of distributions are rare (Lee-Yaw 
et al. 2022). However, we employed multiple valida-
tion approaches as well as an examination of un -
certainty or confidence around predictions by using 
subsets of our data set. We acknowledge that such 
internal validation approaches do not explicitly ad -
dress biased predictions resulting from biased under-
lying data sets. Two cross-validation methods were 
used to evaluate the reliability and the predictive per-
formance of the final models: k-fold cross-validation 
(main method) and a hold-out cross-validation (ad -
ditional complementary method). These methods 
consist of using independent data sets for model 
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Fig. 2. Infographic description of the methods (sequential from left to right) used to develop the species distribution models.  
See Section 2.3 for details
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building (i.e. the training data) and model validation 
(i.e. the test data), where data are partitioned into 
k  equally sized segments or folds through random 
resampling (k-fold cross-validation) or are inten-
tionally partitioned into different segments based on 
spatial-temporal properties (hold-out cross-valida-
tion). Model performance is assessed by successively 
removing each subset, rebuilding the model on the 
retained data, and predicting on the omitted data 
(Elith & Leathwick 2009). In this study, a k = 4 par-
titioning method was used, meaning that 75% of the 
observations were used for model building, and the 
other 25% were used for model cross-validation. In 
the hold-out cross-validation, there is no random 
shuffling of observations. Instead, data is partitioned 
into blocks of interest for model training, and testing 
is done with the remaining contrasting block of data 
(e.g. Becker et al. 2020). As such, data from neutral 
years was used to train the model and test on El 
Niño–La Niña data. Similarly, data was also par-
titioned into inshore and offshore blocks, where 
inshore data was used to train the model and testing 
offshore, and vice versa (2 different limits were 
explored to separate inshore and offshore data; 
90° W and 100° W). Both k-fold and hold-out cross-
validations avoid the overlap between training data 
and test data, yielding a more accurate estimate of the 
generalization performance of the algorithm (Villar-
ino et al. 2015). 

The predictive power and the stability (i.e. uncer-
tainty or confidence) of the model were assessed by 
computing a set of diagnostic metrics. The mean area 
under the receiver-operating curve (AUC) (Hanley & 
McNeil 1982) and the mean true skill statistic (TSS) 
(Allouche et al. 2006) were calculated for each itera-
tion from each confusion matrix to evaluate the pre-
dictive performance of the models, and the coeffi-
cient of variation (CV) of the predictions was used 
to  evaluate their stability (e.g. Wang et al. 2019, 
Montoya-Jiménez et al. 2022, Borokini et al. 2023, 
Roberts et al. 2023). The AUC provides a single mea-
sure of overall model accuracy that is threshold-inde-
pendent, with an AUC value of 0.5 indicating that the 
prediction is as good as random, whereas AUC = 1 
indicates perfect prediction (Fielding & Bell 1997). 
AUC has been extensively used in SDMs and mea-
sures the ability of the model to correctly predict 
where a species is present or absent (Elith et al. 2006). 
An AUC value of >0.75 is considered to have good 
predictive power and is acceptable for conservation 
planning (Pearce & Ferrier 2000). TSS is an alternative 
measure of model accuracy that is threshold-depen-
dent and not affected by the size of the validation set, 

and it is an appropriate evaluative tool in cases where 
model predictions are formulated as presence–
absence maps (Allouche et al. 2006). TSS is on a scale 
from –1 to +1, with 0 representing no predictive skill, 
and is calculated from the confusion matrix outputs 
as sensitivity plus specificity minus 1 (i.e. TSS = sen-
sitivity + specificity – 1). Threshold independent and 
dependent statistics, such as AUC and TSS, respec-
tively, should be used in combination when evaluat-
ing the predictive power of an SDM (Pearson et al. 
2006). The model uncertainty or confidence in the 
resulting probability estimates was quantified using 
the CV, which measures the percentage of variation 
around the arithmetic mean of a series (i.e. the ratio of 
the standard error to the predicted value per observa-
tion) and was mapped to describe uncertainty along-
side the predictions. 

2.3.3.  Sensitivity analyses 

The model utilizing all data (hereafter called the 
‘original model’) contained 573 883 observations (1088 
presences; 0.19%). To determine the effect of using 
different proportions of presence on model perform-
ance, the relationship between the response variable 
and the covariates (i.e. environmental and static), as 
well as the generated predictions, a multi-model ap -
proach was conducted using 10 data sets, each having 
a different presence–absence ratio. The presence–
absence ratio in the data used to build the final 
models was incrementally decreased from 50 to 0.5%. 
In each case, all presence observations were included 
with a variable number of randomly selected ab -
sences. For example, the 50:50 model included 1088 
presences and 1088 absences while the 0.5:99.5 model 
included 1088 presences and 216 512 absences (see 
Table 4). All models (hereafter called ‘final models’) 
were run using all environmental and static vari-
ables, as per the full model, and followed the same 
model building and validation procedures mentioned 
above. 

2.4.  Predictions 

2.4.1.  Daily predictions 

Daily predictions of the probability of occurrence of 
leatherback turtles across the IATTC convention area 
were conducted for 2002–2020 (i.e. 6935 daily predic-
tions). A series of time-matched environmental data 
fields (both surface and subsurface as well as static 
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variables) were used to generate daily predictions 
based on the 11 final models and their best number of 
trees using function ‘predict’ in the R package ‘raster’ 
(Hijmans & van Etten 2015). Therefore, 11 different 
predictions were computed for each day of the time 
series to inform consistency and interpretation, and 
to visualize the effect of accounting for different 
proportions of presences on the predictions. The 
spatial resolution of the predictive surface was set 
to  the lowest common resolution of environmental 
data fields (0.25°). 

2.4.2.  Prediction averaging and ensemble 

Daily predictions (n = 6935) were averaged for 
2002–2020 for each of the 11 final models, at the 
full  regional scale averaged across the study period 
(Figs. S1 & S2 in the Supplement at www.int-res.com/
articles/suppl/n053p271_supp.pdf), quarterly (Fig. S3 
in the Supplement), and by ENSO phase (i.e. neutral, 
La Niña, El Niño; Figs. S4 & S5 in the Supple-
ment). Different ENSO regimes were defined follow-
ing NOAA’s Earth System Research Laboratories  
Oceanic Niño Index, where index values of +0.5 or 
higher indicate El Niño and values of –0.5 or lower 
indicate La Niña phases (https://www.ncei.noaa.gov/
access/monitoring/enso/sst#oni). Visual inspection 
of predictions and exploration of performance met-
rics and the relationships between the response vari-
able and covariates suggested 2 groups of similar 
models: (1) 6 models with a presence–absence ratio 
ranging from 50 to 10% and (2) 5 models with a pres-
ence–absence ratio ranging from 5 to 0.19%. We con-
cluded that the models of the first group best 
reflected the full suite of existing leatherback turtle 
distribution data (e.g. Shillinger et al. 2008, Qui-
ñones et al. 2021) and SDMs (Hoover et al. 2019, 
Degenford et al. 2021, Liang et al. 2023) in the region. 
Therefore, an ensemble model was created using 
the  average predictions from all models having a 
presence–absence ratio of 50 to 10%. Similarly, the 
model with a  25% presence–absence ratio was also 
identified by  both expert opinion and performance 
metrics as a plausible model (hereafter called the ‘ref-
erence model’). Therefore, an ensemble model was 
developed using the average predictions from the 
upper (33:66), lower (20:80), and intermediate (i.e. ref-
erence) (25:75) models. Generating the 2 ensemble 
predictions allowed comparisons between candi-
dates and the exploration of the potential effects of 
model selection on the final prediction (Fig. S6 in the 
Supplement). 

2.4.3.  Probability-of-occupancy threshold 

The first stage of EASI-Fish in estimating the vul-
nerability of a species to fisheries impacts is to deter-
mine the number of grid cells in which the species is 
considered to be present and which also contain fish-
ing effort. Because SDMs estimate the probability of a 
species to occur in each grid cell, a probability-of-
occupancy threshold value (ψ) must be used to define 
whether the species is present or absent in each cell. 
However, the spatial extent of the species’ distribu-
tion increases and decreases with lower and higher ψ 
values, respectively, and thus influences the propor-
tion of the species’ population that is exposed to fish-
ing. To account for this uncertainty, 3 ψ values (0.1, 
0.2, and 0.3) were applied to each 0.25° cell, based on 
statistically determined thresholds and expert eval-
uation of prediction maps. This range was statistically 
determined by overlaying the distribution of pre-
dicted probability of presence with that of predicted 
probability of absence. The ψ value where these 2 dis-
tributions intersected was selected to define the most 
probable species distribution, and upper and lower 
bounds were selected by visual inspection of the 2 
distributions on either side of the intersection point 
(Lopez et al. 2020). 

Given the Critically Endangered status of EP leath-
erbacks, we selected relatively low ψ values to con-
servatively include areas where experts considered 
leatherbacks likely to occur, even if in relatively low 
numbers and for limited periods of time, based on 
documented patterns of spatio-temporal habitat use 
(Shillinger et al. 2008, 2011, Donoso & Dutton 2010, 
Bailey et al. 2012, Quiñones et al. 2021) and pre-
viously published SDM maps (Hoover et al. 2019, 
Degenford et al. 2021). This was important to ensure 
that EASI-Fish would be precautionary in its calcula-
tions of fishery impacts on leatherbacks throughout 
their distribution and across industrial and small-
scale fisheries known to interact with the species (see 
Griffiths & Wallace et al. 2024). 

3.  RESULTS 

3.1.  Model performance 

Models that included all data and environmental 
and static variables (e.g. Model 6–full) performed 
better according to the diagnostic measures we used 
(deviance explained, AUC, and TSS) (Table 3). In 
general, complex models (e.g. Models 4 and 6) had 
better performance than simpler models including 
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sets of variables individually (e.g. 
Models 1, 2, 3, and 5). These models 
explained between 19.71 and 40.57% 
of  the deviance in the data, had AUC 
values between 0.79 and 0.94, and had 
TSS values that ranged be tween 0.51 
and 0.76 (Table 3). The number of trees 
created by these models ranged 
between 3600 and 7000. The com -
parison in model performance led us 
to recommend the use of the full 
model configuration (Model 6–full, 
environmental and static variables) for 
further exploration on the sensitivity 
analysis. 

Models including different pro -
portions of presence ratios with en -
vironmental and static variables (i.e. 
Model 6–full) showed similar but 
also different performance under the 
diagnostic measures that we used 
(Tables  4 & S1 in the Supplement). In 
general, models with balanced or 
slightly imbalanced data sets (i.e. 
models 50:50, 33:66, 25:75, 20:80, 15:85, 
and 10:90) had better performance 
than models that used highly im -
balanced data sets (i.e. models 5:95, 
2.5:97.5, 1:99, 0.5:99.5, and original–
0.19 %). These models ex plained be -
tween 40.57 and 61.54% of the devi-
ance in the data, had AUC values 
between 0.92 and 0.96, and had  TSS 
values that ranged be tween  0.76 and 
0.81 (Table 4). Models built for the 
hold-out additional complementary 
cross-validation also performed well 
(Table S1). In particular, models trained 
without data pertaining to specific 
periods and then tested against them 
(e.g. El Niño, La Niña) showed high 
AUC, TSS, and deviance  explained 
values (AUC ~0.9–0.85, TSS ~0.8–
0.60, 50–60 % de viance explained) 
(Table S1). Similarly, models trained 
with in shore or offshore data (i.e. 
limits at  90W and 100W ex plored) 
and tested against the re maining data showed rea-
sonable performance  metrics (AUC ~0.7–0.6, TSS 
~0.3–0.2, ~30–60% de viance ex plained) (Table S1). 
Based on these diagnostic measures, the model 
using a 25 % presence–absence ratio was identified 
as the reference model. 

3.2.  Drivers of leatherback  
turtle presence 

An examination of the relationships between spe-
cies and the environmental and static variables 
showed a range of interesting patterns for each of the 
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                                       lr           n.trees         Dev          AUC         TSS          Drop 
 
1                 Fit            0.01          4500          38.64          0.89          0.66                
ST            Simp           –              –               –              –             –         No drop 
2                 Fit            0.01          5150          32.28            –             –                  
SUR         Simp                            5150          32.40          0.92          0.71           EkE 
3                 Fit            0.01          3600          23.62          0.88          0.65                
SUB         Simp           –              –               –              –             –         No drop 
4                 Fit            0.01          5600          38.14          0.94          0.74                
ENV        Simp           –              –               –              –             –         No drop 
5                 Fit            0.01          4400          19.71          0.79          0.51                
STA         Simp           –              –               –              –             –         No drop 
6                 Fit            0.01          7000          40.57          0.94          0.76                
FULL      Simp           –              –               –              –             –         No drop

Table 3. Hierarchical model performance metrics with all data (n = 573 889). 
Fit: fitted model; Simp: simplified model; ST: spatio-temporal variables; SUR: 
environmental surface variables; SUB: environmental subsurface variables; 
ENV: environmental surface and subsurface variables; STA: static variables; 
FULL: all environmental variables and static variables. lr: learning rate; n.trees: 
number of trees generated by model; Dev: deviance; AUC: area under the curve; 
TSS: true skill statistics; Drop: Dropped variables after model simplification;  

EkE: eddy kinetic energy

                                          lr        n.trees        Dev         AUC         TSS          Drop 
 
50:50                Fit       0.005       2900        58.10           –              –                  
n = 2176       Simp     0.005       3650        59.37         0.92          0.71     7 variables 
33:66                Fit         0.01        2050        59.16           –              –                  
n = 3264       Simp      0.01        2650        61.54         0.94          0.76     5 variables 
25:75                Fit         0.01        2700        59.70           –              –                  
n = 4352       Simp      0.01        3250        60.42         0.96          0.81     7 variables 
20:80                Fit         0.01        3200        60.29           –              –                  
n = 5440       Simp      0.01        3350        59.14         0.94          0.77     6 variables 
15:85                Fit         0.01        3950        60.21           –              –                  
n = 7250       Simp      0.01        3650        58.96         0.94          0.76     3 variables 
10:90                Fit         0.01        5050        60.93           –              –                  
n = 10880    Simp      0.01        4800        60.16         0.95          0.78     2 variables 
5:95                  Fit         0.01        5300        56.36         0.95          0.78                
n = 21760    Simp        –            –             –              –              –         No drop 
2.5:97.5           Fit         0.01        6400        54.67           –              –                  
n = 43520    Simp      0.01        5650        52.08         0.95          0.77     7 variables 
1:99                  Fit         0.01        6650        49.24         0.94          0.78                
n = 108800  Simp        –            –             –              –              –         No drop 
0.5:99.5           Fit         0.01        6100        45.23         0.94          0.76                
n = 217600  Simp        –            –             –              –              –         No drop 
0.19:99.81       Fit         0.01        7000        40.57         0.94          0.76                
n = 573889  Simp        –            –             –              –              –         No drop

Table 4. Performance metrics of the models conducted during the sensitivity 
analyses for full models (all environmental and static variables) with different 
presence–absence ratios (e.g. 50:50 presence to absence ratio = 50% presence 
data and 50% absence data in the model). Fit: fitted model; Simp: simplified  

model; Drop: Dropped variables after model simplification
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11 final models, based on variable importance analy-
sis (Fig. 3) and partial dependence plots (Fig. S7). 
These indicators suggested 2 groups of similar models: 
(1) models with a presence–absence ratio ranging 
from 50 to 10% and (2) models with a presence–
absence ratio ranging from 5 to 0.19%. The first group 
showed higher variable im portance with SST, SST100, 
chl, MLD, FrontIndex, chl_grad and Dir, whereas 
the second group showed higher values for Depth, 
Sal, LandDistance, FSLE and SSH. 

After simplification of the reference model, 8 vari-
ables were included in the final model, for which 
relative variable importance was 3.3–49.9%. EkE, 
FSLE, LandDistance, SSH, Vel, SST_grad, and Fron-
tIndex were dropped from the final model as they did 
not improve predictive performance. With the excep-
tion of chl_grad (3.3%), all variables contributed 
more than 5%: SST (49.9%), Depth (12.5%), MLD (9%), 
SST100 (7.5%), Dir (6.7%), chl (6.2%), and Sal (5%) 
(Fig. S7). 

The model identified higher probabilities of leather-
back turtle presence around SST values of 16–20°C 
and in waters shallower than 1000 m. MLD values of 
<100 m were associated with higher probabilities of 
leatherback turtle presence, whereas SST100 showed a 
positive relationship. Currents with southwest direc-
tion showed an evident negative relationship with 
leatherback turtle presence. A positive relationship 
was also observed between the leatherback turtle 
presence probability and CHL, while the opposite re -
lationship was observed for Sal (i.e. salinities higher 
than 30 PSU). Similarly, the model showed higher 
probabilities of leatherback turtle presence at posi-
tive chl_grad values. 

3.3.  Predictions 

Final models were used to predict species habitat 
suitability in the convention area for 2002–2020 
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Fig. 3. Relative variable importance in the series of species distribution models generated using different proportions of pres-
ence versus absence data; i.e. the ratio of presences to absences used to build the final model (e.g. 50 refers to a 50:50 presence 
to absence ratio; 33 refers to a 33:66 presence to absence ratio, etc.). Variables included (see Section 2.3 for more details): sea 
surface temperature (SST) and its gradient within the same pixel over a 7 d period (SST_grad), salinity (Sal), sea surface height 
(SSH), current speed (Vel), current direction (Dir), eddy kinetic energy (EkE), finite size Lyapunov exponents (FSLE), front 
index (FrontIndex), chlorophyll a (chl), chlorophyll a gradient (chl_grad), temperature at 100 m depth (SST100), mixed layer  

depth (MLD), bathymetry (Depth), and the distance to land (LandDistance)
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(Figs. S1 & S2), as well as by quarter (Fig. S3), and 
ENSO phase (Figs. S4 & S5). Predictions revealed 
spatial differences among models, with, in general, 
higher probabilities and lower CV of leatherback tur-
tles predicted by models with presence–absence 
ratios ranging from 50 to 10%. The predictions of this 
group of models highlighted several areas expected 
to support higher residence or occurrence by leather-
back turtles (Fig. 4). These include coastal areas near 
nesting beaches in Mexico and Central America, 
nearshore foraging areas in southern latitudes (Qui-
ñones et al. 2021), and some high-seas areas through 
which leatherbacks transit and in which they are pre-
sumed to forage (e.g. Bailey et al. 2012). These areas 
also showed relatively low CV values (Figs. 5 & S2). In 
particular, the continental shelf and adjacent high-
seas areas within South American EEZs (specifically 
from southern Ecuador to northern Chile) as well as 
the higher latitude subtropical convergence zone 
extending from south-central Chile clearly and con-
sistently supported higher probabilities of leather-
back turtle presence, with relatively low associated 
CV values (Figs. 5 & S2). These patterns were also 
reflected in maps of the ensemble predictions and 
after applying the probability of occupancy thres-
holds mentioned above (Fig. 4). 

While these spatial patterns were generally con -
sistent by quarter (Figs. 6 & S3) and ENSO phase 
(Figs. 7 & S4), the relative area and distribution of pre-
dicted habitat varied at these scales. Predicted leath-
erback habitat in the Northern Hemisphere, particu-
larly off Mexico and Central America, was most 
available during Q1 and reduced in other quarters, 
roughly opposite the trends for predicted habitat off 
South America (Fig. 6). In addition, predicted leather-
back habitat generally increased during the La Niña 
phase relative to neutral and El Niño phases, particu-
larly along the equator and in the Humboldt Current 
region (Figs. 7, 8, S4 & S5). However, there were some 
areas where predicted habitat increased during the El 
Niño phase, such as the high-latitude region between 
25° and 40° S (Figs. 7, 8, S4 & S5). 

4.  DISCUSSION 

Understanding the spatial distributions of marine 
species is becoming increasingly important as interna-
tional and regional oceans and fisheries management 
instruments evolve further toward ecosystem-based 
approaches to conservation and management of mar-
ine resources (Aburto et al. 2012, Kirkfeldt 2019). In a 
fisheries context, having a reliable prediction of a spe-

cies’ distribution that can be compared with that of fish-
ing effort can allow managers to determine the extent 
of overlap and implement conservation and manage-
ment measures (CMMs), such as spatial closures, that 
can reduce fishery interactions and fishing mortality 
and thus ensure long-term population sustainability. 

4.1.  Model performance and relevant features 

SDMs have traditionally required a large number of 
species presence locations at a fine resolution to be 
useful for fisheries management in jurisdictions that 
typically span spatial scales of hundreds or thousands 
of kilometers. Furthermore, because the largest quan-
tity of data is usually collected for species of high 
commercial importance (i.e. target species), the ap -
plication of SDMs has primarily been constrained to 
these species (Melo-Merino et al. 2020). Unfortu-
nately, reliable catch or even simple occurrence data 
is often lacking for bycatch species for a variety of 
reasons, such as being of lower economic importance, 
the absence of observer programs and policies man-
dating fishers to record all species interactions in 
catch logbooks, policies requiring rapid release and 
no-retention of species, the typically low frequency of 
interactions of these non-target species, and issues per-
taining to species identification. As the present study 
showed, the incidence of observations of the Criti-
cally Endangered EP leatherback turtle population in 
EPO fisheries was extremely low—1088 occurrences in 
over half a million observations. Regardless of whether 
the low frequency of interactions is due to a naturally 
low density of leatherback turtles in the EPO, rarity of 
the species following its documented population de -
cline (Laúd OPO Network 2020), or low gear selectiv-
ity by EPO fisheries, the data available are insufficient 
to undertake conventional stock as sessments. There-
fore, simpler ecological risk assessment approaches 
that are designed to assess the vulnerability of data-
limited species (e.g. EASI-Fish) are highly reliant on 
estimating the 3-dimensional overlap between the 
species and fisheries, and thus reliable SDMs. 

Although BRTs have been applied to several marine 
species, they are typically used with larger numbers of 
occurrences than we had available for this study. Fur-
thermore, validation of our model predictions using a 
truly ‘independent’ data set (e.g. satellite telemetry 
data) was not possible because such data were not 
made available for our project. This required a deep 
exploration of specific model diagnostics and sensitiv-
ity analyses to determine the utility of BRTs in such 
data-limited settings. The present study showed the im-
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Fig. 4. (a) Average predictions from an ensemble of species distribution models (SDMs) where the ratio of presence to absences 
were 33–25–20 for 2002–2020; warmer colors: higher probabilities. (b) The final appearance of the SDM predictions using 
3 threshold values (minimum = 0.3, blue; most probable = 0.2, red; maximum = 0.1, green) upon which the predicted probabil-
ity of presence is used to create binary values of species presence. For example, at a threshold of 0.2, predicted probabilities of  

presence above and below 0.2 are predicted to be absence and presence records, respectively
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proved capability of BRTs to characterize the habitat 
preferences of a critically endangered species for which 
very few occurrence records existed in industrial purse-
seine and longline fisheries in the EPO (Hall & Roman 
2013, Griffiths & Duffy 2017, Lezama-Ochoa et al. 2017). 
Our SDM is spatially comprehensive with respect to 
the full distribution of the EP leatherback population 
and to the distributions of various fisheries that are 
known to interact with the species in the EPO. Perform-
ance metrics for the BRTs (i.e. AUC, TSS, deviance ex-
plained) as well as the uncertainty estimates via CV 
showed that the models were somewhat robust to the 
extreme imbalance between leatherback presences 
(~1000) and absences (>570 000). The performance met-
rics of our BRTs are in line with, or even surpass, the 
values shown in other BRT models developed for sev-
eral large pelagic species, including sharks, tuna, sword-
fish, and leatherback turtles, among others (Scales et 
al. 2017b, Brodie et al. 2018, Hazen et al. 2018). Thus, we 
suggest that our modeling approach has the potential 
to be applied to other such data-limited species and 
populations. However, we recognize that for many spe-
cies, researchers might not have access to absence data 
when generating SDMs (Liang et al. 2023) and will have 
to rely on presence-only approaches (e.g. MaxEnt). 

In the present case, although our model relied on 
fisheries-dependent observation data to produce the 
SDM, it used presences and absences from several 
different fisheries (industrial and small-scale), each of 
which use different gear types (e.g. longlines, purse 
seines, and nets) in different regions (i.e. from Mexico 
to Chile, and international waters to 150° W), differ-
ent depths (i.e. surface to ~300 m), and in different 
habitat types (i.e. temperate to tropical, coastal to 
high seas). Therefore, our EPO leatherback distribu-
tion data set was derived from a diverse and extensive 
suite of sampling platforms. In particular, the fact that 
we were able to include presences as well as absences 
from the same sampling platforms (i.e. fisheries) im -
proved the strength of our inferences about the mag-
nitude and direction of environmental covariate in -
fluence on predicted leatherback occurrence. 

4.2.  Predicted patterns of leatherback occurrence 
in the EPO 

Our model successfully highlighted several areas 
known or expected to support high residence or 
occurrence by leatherback turtles (Figs. 4–8), many 

Fig. 5. Reference model (i.e. 33–25–20 ensemble) coefficient of variation (CV) in predictions (averages for daily predictions for  
the period 2002–2020). See the CV of the rest of the model-specific predictions in Fig. S3
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of which are relatively close to shore (Quiñones et 
al.  2021, Liang et al. 2023) (Figs. 3, S1 & S6). These 
include coastal areas near nesting beaches in Mexico 
and Central America (e.g. Shillinger et al. 2011, Laúd 
OPO Network 2020), high-seas areas through which 
leatherbacks transit and in which they are presumed 
to forage (Shillinger et al. 2008, Donoso & Dutton 
2010, Bailey et al. 2012, Hoover et al. 2019), and near-
shore foraging areas in southern latitudes (Alfaro-
Shigueto et al. 2007, Degenford et al. 2021, Quiñones 
et al. 2021). 

Patterns of leatherback occurrence also appeared 
to be driven by SST and bathymetry (Figs. 3 & S7), 
particularly when models included near parity be -
tween numbers of presences and absences (Fig. S1). 
The influence of SST on leatherback occurrence has 
been described by telemetry (e.g. Jonsen et al. 2007, 
Sherrill-Mix et al. 2008, Shillinger et al. 2008, 2011) 
and modeling studies (e.g. Hoover et al. 2019), which 
suggest seasonal movements that track preferred 
SST ranges, particularly in foraging areas. In the EPO, 
for example, leatherbacks are thought to exploit 
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Fig. 6. Average mean quarterly predictions (Q1–Q4) from an ensemble of species distribution models where the ratio of presence  
to absences were 33–25–20 for 2002–2020
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high-latitude foraging areas in the South Pacific 
Subtropical Convergence during the austral summer 
(December–April) when SST is higher in this region, 
later moving northward toward tropical and subtropi-
cal latitudes in austral winter (May–November) 
(Saba et al. 2008, Hoover et al. 2019). Leatherbacks 
in  the Northwest Atlantic Ocean follow a similar 
general pattern of high-latitude occurrence in summer 
followed by movement to lower latitudes in winter, 
tracking SSTs above approximately 18–20°C (Sherrill-
Mix et al. 2008). In apparent support for this pattern, 
our results appear to show higher probabilities of 
leatherback occurrence in the South Pacific Subtrop-
ical Convergence zone during Q1 and Q2 (January–
June) than in Q3 and Q4 (July–December) (Figs. 6 
& S3). 

The seasonal patterns displayed in our model re -
sults support inferences from satellite telemetry data 
and other published studies about how leatherbacks 
may purposefully depart from certain areas to arrive 
in other areas when conditions are becoming more 
favorable for resource availability. For example, leath-
erbacks might depart high-latitude areas when prey 
abundance declines (perhaps related to temperature 
changes), rather than specifically because of de -
creased water temperatures, considering their capac-
ity for effective thermoregulation (Sherrill-Mix et al. 
2008, Wallace & Jones 2008). Similarly, seasonal vari-
ations in predicted habitat might imply differential 
foraging habitat use by leatherbacks; for instance, 
from oceanic, high-latitude areas in Q1 to more coas-
tal, lower-latitude areas in other times of year (Figs. 6 
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Fig. 7. Predicted leatherback habitat for neutral, La Niña, and El Niño conditions using the ensemble of species distribution  
models where the ratio of presence to absences were 33–25–20 during 2002–2020

Fig. 8. Relative differences in predicted leatherback habitat between El Niño and La Niña conditions compared to neutral years 
(left and central panels, respectively), and El Niño compared to La Niña using the ensemble of species distribution models 
where the ratio of presence to absences were 33–25–20 for 2002–2020. Red pixels represent net gain of predicted habitat while  

blue pixels represent net loss of predicted habitat of one phase relative to the other
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& S3). Furthermore, predicted leatherback habitat 
offshore from Mexico and Central America is greatest 
in Q1, when predicted habitat off Peru and northern 
Chile is lowest (Figs. 6 & S3), which coincides with the 
southward migration of leatherbacks from reproduc-
tion areas in the Northern Hemisphere toward forag-
ing areas south of the equator (Shillinger et al. 2008). 
This suggests that adult leatherbacks depart breeding 
areas in Q1 to arrive in feeding areas off South Amer-
ica later in the year when conditions are more suitable 
for the species (Figs. 6 & S3), a notion supported by 
observations of correlated increases in leatherback 
abundance and the abundance of their preferred prey 
(i.e. gelatinous zooplankton) during Q2 (Quiñones 
et  al. 2021). However, sub-adult or large immature 
leatherbacks are observed during Q1 as well as Q2 in 
nearshore Peruvian waters, demonstrating potentially 
important ontogenetic differences in spatio-temporal 
habitat use that are generalized in our model predic-
tions (Quiñones et al. 2021). Overall, our seasonal 
predictions of leatherback occurrence — interpreted 
together with results of telemetry studies — provide 
useful heuristics for understanding the timing and pat-
terns of leatherback migrations throughout the EPO. 

ENSO strongly influences resource availability and 
thus energy budgets and reproduction in leather-
backs (Saba et al. 2007, 2008, Wallace & Saba 2009) 
and other organisms in the EPO (Suryan et al. 2009). 
Our model results showed variations in predicted 
leatherback habitat based on ENSO phases (Figs. 7 & 
S4), with generally more habitat available during La 
Niña phases (Figs. 8 & S5). In particular, predicted 
leatherback habitat increased in the northern Hum-
boldt Current region off Peru—a well-documented 
foraging area for EP leatherbacks—as well as along the 
Equatorial Counter-Current during La Niña phases, 
in comparison to neutral and El Niño phases. Al -
though predicted habitat in these areas was generally 
reduced during El Niño, some areas showed increases 
in predicted leatherback habitat. For example, pre-
dicted leatherback habitat increased during El Niño 
phases near the South Equatorial Current between 
100° and 140° W and between 25° and 35° S across the 
southeastern Pacific. These patterns illustrate the 
phenomenon described in previous studies in which 
stochastic oceanographic conditions related to ENSO 
drive variations in EP leatherback habitat availability 
and quality, with consequences for leatherback life 
history (Saba et al. 2007, 2008, Wallace & Saba 2009). 
Similar to the seasonal patterns described above 
(Figs. 6 & S3), our results provide hypothetical habitat 
use patterns by leatherbacks during different ENSO 
phases that, if further investigated and ground-truthed, 

could provide guidance to managers about relative 
risk of overlaps between fishing operations and leath-
erbacks based on long-term oceanographic condi-
tions. Examples of similar applications include the 
ENSO-related closure of Pacific Loggerhead Conser-
vation Area (US National Marine Fisheries Service, 
Federal Register 72 FR 31756) and the seasonal clo-
sure of the Pacific Leatherback Conservation Area 
(NMFS 2001; Federal Register 66 FR 44549) of the 
California (USA) driftnet fisheries to avoid logger-
head turtle Caretta caretta and leatherback bycatch, 
respectively. However, it is  worth noting that our 
model can also predict at daily scale; short-term pre-
dictions are the basis for dynamic ocean management 
(Hazen et al. 2018, Abrahms et al. 2019), an adaptive 
and flexible management mechanism to reduce inci-
dental catch, which has proven to be useful for other 
vulnerable species and fisheries (see Section 4.4). 

Our SDMs predicted similar areas of relatively high 
probability of occurrence to those highlighted in pre-
vious modeling efforts using satellite telemetry data 
(Hoover et al. 2019), presence-only observation data 
in national fisheries, mainly from Peru and Chile 
(Degenford et al. 2021), and both telemetry and fish-
eries observer data (Liang et al. 2023). For example, 
the continental shelf and adjacent high-seas areas 
within South American EEZs, as well as the higher-
latitude subtropical convergence zone extending 
from south-central Chile clearly and consistently sup-
ported high probabilities of occurrence in our SDM. 
This result is generally supported by long-term mon-
itoring observations (Donoso & Dutton 2010, Quiñones 
et al. 2021), telemetry data (Shillinger et al. 2008), and 
presence-only distribution models (Hoover et al. 2019, 
Degenford et al. 2021, Liang et al. 2023). These com-
parable patterns are encouraging, particularly when 
considering the distinctly different analytical methods, 
data, and spatial and temporal scales used in each 
study, which were each constrained by the amount 
and types of information available. 

4.3.  Enhanced data collection and reporting 

The scarcity of leatherback observation data, and 
their Critically Endangered status, motivated our 
conservative selection of relatively low bounds as 
threshold values for defining ‘high’ probabilities of 
occurrence to parameterize the EASI-Fish model 
to  assess vulnerability (Griffiths & Wallace et al. 
2024). While noting other potential factors, low ob -
server coverage in IATTC tuna longline fisheries and 
small-scale fisheries throughout the region is an 
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obvious reason for the lack of available data. Thus, 
occurrence probabilities in areas with low observer 
coverage (e.g. >20° S and >90° W) should be inter-
preted with caution. Because sea turtle interactions 
are not generally required to be recorded in catch 
logbooks in any IATTC tuna fishery or fishery within 
national jurisdictions of EPO coastal states, their 
occurrence is generally only recorded by onboard 
observers when they interact with the gear or are 
sighted in the vicinity of the vessel. Although the 
AIDCP/IATTC observer program covers 100% of sets 
of all large (Class 6; >363 mt) purse-seine vessels in 
the EPO, very few sea turtles — especially leather-
backs — are taken by this fleet (Hall & Roman 2013, 
Lezama-Ochoa et al. 2017). By contrast, observer cov-
erage is very low for most other fleets, especially 
longline, where sea turtles are frequently hooked or 
entangled (Swimmer et al. 2017). For example, IATTC 
Resolution C-19-08 requires only 5% of the fishing 
effort of vessels greater than 20 m length overall to be 
observed, but even this low level of coverage is 
frequently not met by some nations, or the extent of 
coverage is unknown because countries do not pro-
vide the information in annual reports to the IATTC 
(e.g. IATTC 2021a). Although the quality of species-
specific reporting by the industrial fleet has improved 
in recent years with IATTC Resolution C-19-08 man-
dating reporting of operational-level data, the re -
ported information is not considered representative 
of the fleets in space and time (Griffiths et al. 2021), 
and therefore there may be some important habitats 
for leatherback turtles where data is not currently col-
lected. Given that IATTC scientists have proposed to 
the Commission Members an increase in observer 
coverage to at least 20% for several years (e.g. IATTC 
2021b), and the recently approved IAC Resolutions 
CIT-COP10-2022-R7 and CIT-COP10-2002-R6 that 
urge countries to strengthen existing fisheries mon-
itoring programs to ensure systematic collection of 
statistically reliable bycatch data, it is hoped that 
longline observer data will further improve in the near 
future, which would be particularly important for 
data-limited species. 

Improving data collection programs, both fisheries-
dependent and fisheries-independent, is one of the 
most important considerations for improving SDMs, 
not only to better characterize a species’ distribution 
with an increased number of occurrence points but 
also to disentangle some of the aforementioned issues 
pertaining to interpretation of increasing or decreas-
ing incidences of the capture of vulnerable species 
that can guide the subsequent development of appro-
priate management action. To optimize the utility of 

data collection programs — for SDM development in 
particular — they need to be carefully designed to 
cover the widest possible spatial extent of the species 
of interest that cover the full gradient of environmen-
tal variables in which the species is naturally exposed 
(Araújo & Guisan 2006, Grenouillet et al. 2011). This 
maximizes the performance of SDMs since strong and 
contrasted species–environmental relationships allow 
the model to better learn from these relationships and 
interpolate into unsampled areas or environmental 
conditions (Miller 2010). However, data collection pro-
grams can be a costly and logistically difficult proposi-
tion for highly migratory wide-ranging pelagic species, 
such as the leatherback turtle, and for fisheries that 
cover thousands of square kilometers of ocean. Con-
sequently, fishery-dependent data is often the primary 
source of information from which species occurrence 
locations can be derived. Although with cooperation 
and proper coordination with fishers and their national 
management organizations, these programs can be run 
cost-effectively, such data may not cover the breadth 
of habitats occupied by the species of interest. 

4.4.  Future directions for SDMs 

Though we are confident that our EPO-wide SDM 
provides robust results to evaluate CMM efficacy 
within the EASI-Fish framework as well as other con-
servation applications (see below), we recognize 
additional potential directions for this SDM work. In 
particular, considering that the development of EP 
leatherback SDMs has received notable attention to 
date (Hoover et al. 2019, Degenford et al. 2021, this 
study), integration of fisheries-independent data with 
fisheries-dependent data to validate observation-
based models and generate a single SDM for the spe-
cies would be beneficial (Liang et al. 2023). Our 
model expanded on the fishery-based observation 
data used by Degenford et al. (2021) to also include 
the high-seas and higher latitudes, among others, but 
EP leatherback satellite telemetry data (Shillinger et 
al. 2008, Hoover et al. 2019) were not made available 
for this study. Given the similarities in estimated res-
idence times and occurrence probabilities among the 
existing studies, it is unclear whether one SDM that 
included all available fishery-dependent and fishery-
independent data would produce significantly differ-
ent, region-wide results than those presented here. 
Nonetheless, a single, integrated SDM would avoid 
confusion among users about which SDM to use in 
their own work, and thus ensure consistency in re -
search and conservation applications. 
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On that note, we encourage applications of the EP 
leatherback SDM presented here beyond the current 
specific application to the EASI-Fish vulnerability as -
sessment and evaluation of CMM efficacy. Improved 
SDMs can inform dynamic ocean management ap -
proaches to identify and manage spatio-temporal 
overlaps between high-use areas and potential threats, 
including fisheries activities. For example, Turtle-
Watch identifies potential turtle ‘hotspots’ based on 
environmental characteristics, such as favorable SSTs 
and the presence of current fronts (Howell et al. 2008, 
2015). However, this model relies heavily upon data 
collected by observers who have observed 100% of 
shallow sets in the Hawaiian longline fishery since 
2004 (Sippel et al. 2015), providing turtle catch counts 
as well as information on turtle absences. A concep-
tually comparable tool is being developed for EP 
leatherback turtles, but it relies heavily on habitat use 
data from >15 yr ago that was limited to post-nesting 
females from a single nesting population (Hoover et 
al. 2019, Liang et al. 2023). Furthermore, moving from 
SDMs for individual species to integrated, multi-
species predictions could inform the development of 
ocean planning conservation tools to highlight areas 
in which effective management of fisheries and other 
activities (e.g. ship traffic) would be most beneficial 
(Hazen et al. 2018, Abrahms et al. 2019). In addition, 
simply making SDM outputs publicly available to 
researchers and conservation practitioners could 
unlock several potential and yet unforeseen applica-
tions of these important resources to various issues at 
different scales. To this end, we have made the pro-
ducts of this model (e.g. maps, feature classes) publicly 
available (https://seamap.env.duke.edu) to facilitate 
other conservation and management applications. In 
this vein, we see value in implementing participatory-
inclusive approaches with stakeholders, and fishers in 
particular, to discuss results and bycatch mitigation 
ideas, define or propose practical management plans, 
as well as reinforce capacity development with re -
gards to sensitive species, and the leatherback turtle 
in particular. 

5.  CONCLUSIONS 

This study highlighted several ways in which a flex-
ible machine-learning SDM framework may be used 
to improve our understanding of the spatio-temporal 
distributional dynamics of marine species and how 
this knowledge may translate into improved assess-
ment and management of vulnerable and data-lim-
ited species at multiple spatial and temporal scales. 

Furthermore, this effort was the product of an interna-
tional collaboration under an MoU between 2 inter-
governmental conventions—one established to pro-
tect and conserve marine turtles (IAC) and the other 
to sustainably manage commercially valuable tuna 
and tuna-like stocks (IATTC). Because this collabo-
rative effort brought together several individual rep-
resentatives of member countries as well as experts in 
turtle biology and fisheries operating at multiple 
scales, the resulting product was able to integrate 
proprietary data sets whose combined value far 
exceeds their individual value to understanding 
 comprehensive patterns of leatherback distribution 
throughout the EPO region. Our results are encour-
aging, as they suggest that ample suitable habitat 
exists in the EPO for leatherback turtles to occupy, 
which theoretically could support improved popula-
tion growth if con servation efforts can successfully 
reduce fisheries bycatch — the primary remaining 
source of mortality affecting this population (Laúd 
OPO Network 2020). 
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