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1. INTRODUCTION

Globally, North Atlantic right whales Eubalaena 
glacialis (henceforth, NARWs) rank among the most 
endangered baleen whale species. Although NARWs 

received international protection from hunting over 
80 yr ago, the species’ recovery has been limited 
(Pace et al. 2017); the population is now estimated 
at  372 individuals (New England Aquarium 2024). 
Ship strikes and entanglement in fishing gear are the 

© The authors 2025 

Publisher: Inter-Research · www.int-res.com

#These authors contributed equally to this paper
*Corresponding author: mg2377@cornell.edu

Acoustic abundance estimation for Critically  
Endangered North Atlantic right whales in  

Cape Cod Bay, Massachusetts, USA 

Marissa L. Garcia1,2,3,*,#, Irina Tolkova1,4,#, Shyam Madhusudhana1,5, Ashakur Rahaman1,
C. Scott Baker6, Charles A. Mayo7, Christine A. Hudak7, Holger Klinck1,6

1K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA  
2Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14853, USA 

3Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA 
4John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA 

5Centre for Marine Sciences and Technology, Curtin University, Perth, Western Australia 6102, Australia 
6Marine Mammal Institute, Hatfield Marine Science Center, Department of Fisheries, Wildlife, and Conservation Sciences,  

Oregon State University, Newport, OR 97365, USA 
7Center for Coastal Studies, Provincetown, MA 02657, USA

ABSTRACT: With an estimated 372 individuals remaining, Critically Endangered North Atlantic 
right whales Eubalaena glacialis (henceforth, NARWs) embody New England’s foremost marine 
conservation challenge. Every year, a large portion of the NARW population visits Cape Cod Bay 
(CCB), Massachusetts, USA, a critical foraging area. Traditionally, aerial surveys have documented 
the abundance and distribution of NARWs in CCB. In this work, we demonstrate abundance esti-
mation through passive acoustic monitoring, utilizing recordings from an array of 5 marine auton-
omous recording units (MARUs) deployed from February to June 2019. We first trained, validated, 
and applied a deep-learning-based detector for NARW upcall vocalizations, achieving a precision 
of 0.857 and recall of 0.896. Next, we matched duplicate detections across the MARU array through 
time-difference-of-arrival association. Lastly, after calibrating acoustic cue counts to concurrent 
aerial surveys conducted by the Center for Coastal Studies, we estimated daily NARW abundance 
in CCB across the foraging season. We demonstrated diel and seasonal patterns in acoustic phenol-
ogy consistent with prior studies. Upcall rates were higher at night, particularly just after sunset, 
than during daylight hours. We observed low presence of NARWs in late February, with presence 
rising in early March, peaking in late March and early April, and ultimately decreasing through 
mid-May. While many sources of uncertainty limit the precision of abundance estimates, PAM 
offers a cost-effective, generalizable, and largely automated approach for detecting NARW abun-
dance trends applicable to both conservation management and ecological studies.  
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primary causes of NARW mortality (Garrison et al. 
2022, Knowlton et al. 2022). Furthermore, anthro -
pogenic noise pollution and climate-driven changes 
in prey distribution further exacerbate the ability 
of NARWs to recover in a rapidly changing environ-
ment (Rolland et al. 2012, Meyer-Gutbrod et al. 2015, 
Corkeron et al. 2018). 

Passive acoustic monitoring (PAM) is a well-
established tool for detecting the presence and dis-
tribution of NARWs (e.g. Mellinger et al. 2007, 
Davis et al. 2017, Durette-Morin et al. 2022), a fed-
erally protected and Critically Endangered species 
(Cooke 2022). Upcalls — frequency-swept contact calls 
(50–350 Hz) typically 0.3 to 1.5 s in duration (Parks & 
Tyack 2005, Clark et al. 2007) — are regularly vocal-
ized by NARWs of all ages and sexes and thus have 
been applied successfully as an acoustic proxy for 
presence (e.g. Morano et al. 2012, Durette-Morin et 
al. 2019, Charif et al. 2020). Indeed, PAM has detected 
NARW upcall presence on days when aerial surveys, 
the traditional means of monitoring, have not (Clark 
et al. 2010). Furthermore, PAM offers logistical con-
venience, being both cost-effective and safer for field 
observers. In a study reviewing occupational fatalities 
in the wildlife profession, airplanes and helicopter 
flights — one mode by which visual surveys for ceta-
ceans are conducted — accounted for 66% of wildlife 
biologist mortalities (Sasse 2003). Additionally, since 
analyses of PAM data are often conducted in post-
processing stages rather than in the immediacy of a 
field environment, observer skill and attention span 
are less likely to affect species detection and identifi-
cation accuracy. Pertinently, acoustic recordings are 
opportune for analysis with rapidly advancing deep 
learning techniques. Since PAM creates an archival 
dataset, it can be re-analyzed in later work as more 
advanced signal processing tools emerge. 

However, PAM data can amount to several tera-
bytes in size, which can be cumbersome to analyze via 
manual annotations alone. To reduce the workload of 
human analysts and expedite analytical speed over-
all, deep learning can generalize the acoustic struc-
ture learned from manual annotations across large-
scale PAM datasets to create automatic detectors. 
In particular, convolutional neural networks (CNNs) 
are a class of deep learning architectures designed 
for  image analysis. CNNs can be effectively applied 
to PAM data by representing audio in spectrogram 
form, a visual representation of a signal in the time-
frequency domain that the model can then treat as an 
image (Kirsebom et al. 2020). Over the last few years, 
CNNs have successfully facilitated automatic detec-
tion and classification of marine mammal vocaliza-

tions (Shiu et al. 2020, Kirsebom et al. 2020, Ibrahim 
et  al. 2021). While achieving reliable performance 
of  deep learning systems in field conditions can be 
challenging, the highly stereotyped structure of the 
NARW’s upcall is especially well suited for auto-
mated classification. 

Moreover, while PAM has helped uncover species 
presence and occurrence trends, its applications to -
ward abundance and density estimation are still 
being advanced for multiple marine mammal species 
and have historically benefitted from supplementary 
visual techniques used to validate estimates (e.g. Bar-
low & Taylor 2005, Taylor et al. 2017, Roberts et al. 
2024). Acoustic abundance estimation re quires mea-
suring acoustic ‘cues’ (for NARW, upcalls), with an 
understanding of the cue rate of a species, as well as 
the number of cues in each instance. Studies face the 
ongoing obstacle of accurately converting these mea-
sured cues into counts of individual animals (Marques 
et al. 2009, 2011). While individual call rates, mea-
sured in situ or published, can facilitate this conver-
sion, these rates still vary across individuals (e.g. age, 
sex, behavioral state, social state), time scales (e.g. 
diel, seasonal, annual), and ecosystems. In recent 
years, acoustic abundance estimation techniques 
have been further developed for species for which cue 
rates are better understood, such as beaked whales, 
which continuously produce 2–3 echolocation pulses 
per second during deep foraging dives (Zimmer et 
al.  2005, Barlow et al. 2021, 2022). By comparison, 
NARW upcall rates are highly variable per individual 
(Franklin et al. 2022). Average call rates have been 
estimated to be 6 upcalls per hour, but can vary 
greatly based on social interactions (Parks et al. 2011). 
While a NARW is alone, call rates range from 0 to 200 
upcalls per hour, whereas while 2 or more NARWs are 
present, call rates range from 0 to 333 upcalls per hour 
(Parks et al. 2011). With this in mind, we therefore 
focused on population-level abundance calibration to 
circumvent the challenges of extrapolating individual 
cue rates across a population. 

In this work, we addressed each of these challenges 
to develop a passive acoustic pipeline for estimating 
the abundance of the NARW. First, we trained a CNN 
to detect upcalls (henceforth, detector) and evaluated 
its performance against manually annotated upcalls. 
Next, upcalls detected across multiple marine auto -
nomous recording units (MARUs) were associated 
based on their times-of-arrival to attain the number of 
unique upcalls and avoid double-counting. Finally, we 
fitted a quasi-Poisson model to relate the number of 
unique upcalls with corresponding aerial survey whale 
counts, and then used this model to estimate daily 
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abundance throughout the acoustic survey (Fig. 1). 
We tested the pipeline in Cape Cod Bay (CCB), Mas-
sachusetts (MA), USA, for 3 hallmark reasons: the 
site’s ecological significance for NARWs, peninsular 
landmass structure, and routine visual survey cover-
age. Every year, from late winter through spring, 
NARWs migrate to foraging and nursery areas, spe-
cifically the productive CCB waters fueled by 
nutrient-rich Gulf of Maine waters (Watkins & Sche-
vill 1976, Clark et al. 2010, Mayo et al. 2018, Hudak et 
al. 2023). Further, the bay is semi-enclosed by the 
Cape Cod peninsula. This restricts the bay to a total 
area of only 1560 km2, providing an opportunity for 
effective plot sampling. Additionally, the Center for 
Coastal Studies (CCS) has performed routine aerial 
surveys in CCB for over 25 yr. Each right whale 
observed during a survey flight is routinely photo-
graphed and matched to a NARW identification cata-
log, permitting analysts to refine the final count by 
eliminating duplicate sightings. Acoustic cue counts 
are later calibrated to these sightings to ultimately 
estimate abundance. 

In this study, by calculating a population-level call 
rate for a species with highly variable individual call 
rates, we provided evidence that an acoustic abun-
dance estimation can monitor NARW popu lations 
with reasonable accuracy, though we also identified 
the need for future work to improve precision of these 
estimates. Ultimately, this semi-automated pipeline, 
which reduces the labor burden of manual analysis, 
may facilitate greater adoption of PAM-derived abun-
dance estimates for the conservation and manage-

ment efforts of both NARWs on the US East Coast and 
other cetacean species globally. 

2.  MATERIALS AND METHODS 

2.1.  Data collection 

2.1.1.  Acoustic survey 

Acoustic sampling provides an index of relative 
NARW abundance in CCB. Passive acoustic data was 
collected via an array of 5 bottom-moored MARUs (Ca-
lupca et al. 2000, Clark et al. 2002). A MARU, or ‘pop-
up’, is composed of a spherical buoy and an attached 
hydro phone with a sensitivity of –168 dB re 1 V μPa–1. 
The MARUs recorded data continuously from 17 Feb -
ruary to 12 June 2019 for 116 d at a sampling rate of 
2000 Hz. Audio was post-processed with a band-pass 
filter between 10 and 800 Hz. Distances between each 
corner MARU spanned be tween 12 and 14 km, while 
distances between each corner MARU and the center 
MARU spanned be tween 6 and 11 km. The latitude and 
longitude coordinates for the units, and corresponding 
depths, are provided in Table 1, and the array is visu-
alized in Fig. 2A. To time-align the re corded passive 
acoustic data across the 5 MARUs, distinctive acoustic 
signals were recorded synchronously at the start and 
end of the survey period. Upon recovery, the record-
ings from the 5 MARUs were extracted, aligned, and 
concatenated to form 5-channel chronological sound 
files in audio interchange file format (AIFF). 
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Fig. 1. The analysis pipeline consisted of a series of modular components. First, a trained analyst manually annotated upcalls in a 
subset of the recordings across 5 marine autonomous recording units (MARUs). The annotations were then used to evaluate the 
performance of an automated upcall detection and classification system. Next, the detections were associated across units through 
an automated time-difference-of-arrival (TDoA) procedure. Finally, the number of distinct upcalls was combined with visual obser-
vations from aerial surveys to fit a quasi-Poisson model and predict daily NARW abundance throughout the acoustic survey  
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2.1.2.  Aerial surveys 

Aerial surveys provide a conservative count of 
NARWs in CCB for each survey period. Through-
out  the acoustic survey period, the CCS conducted 
21 aerial surveys over CCB using a Cessna Sky-
master survey plane. During these surveys, observers 
were tasked with locating, counting, and photograph-
ing observed NARWs. The E–W survey track lines, 
with 2.8 km separation, allowed for 100% visual cov-
erage of the sea surface to maximize the potential to 
detect NARWs (Fig. 2A). While the effective total 
swath of aerial surveys using Cessna airplanes was 
4.2 km (Kenney et al. 1995, Nichols et al. 2008), the 
photographic identification of individuals reduced 
the duplication of sightings, decreasing the margin of 
error for total counts (Brown & Marx 1998, Nichols et 
al. 2008, Mayo et al. 2018). 

When completed, aerial surveys covered approx-
imately 500 km of track line, at a speed of 100 knots 
and an altitude of approximately 300 m. Aerial surveys 
could be terminated early, how ever, due to in clement 
weather or poor sea conditions (i.e. when Beaufort 
sea state was equal to or larger than 5). Of the 21 aerial 
surveys conducted throughout the acoustic survey 
period, 13 were completed in full. Of the 8 partial 
surveys, 5 were removed from further analysis due to 
substantially incomplete coverage (i.e. 10 or fewer 
track lines completed). The remaining 3 partial surveys 
covered at least 12 track lines, missing only peripheral 
track lines along either the mouth (i.e. track lines 1–2) 
or the southern edge (i.e. track lines 13–15) of CCB, 
and were deemed to have sufficient coverage for a 
high-fidelity aerial abundance estimate. In total, 16 
aerial surveys were included in this study. 

2.2.  Data analysis 

2.2.1.  Upcall detection 

We utilized the challenge dataset from the 2013 
workshop on the Detection, Classification, Localiza-
tion, and Density Estimation of Marine Mammals 
(DCLDE 2013; Gillespie 2019) as the primary source 
of labeled NARW upcall data for training the detec-
tor. We implemented our machine learning work-
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MARU             Latitude              Longitude            Depth (m) 
 
Unit 1                41.9337                –70.2286                    33 
Unit 2                41.9466                –70.4002                    41 
Unit 3                41.8413                –70.4693                    20 
Unit 4                41.8397                –70.3148                    26 
Unit 5                41.8949                –70.3592                    33 

Table 1. Latitude and longitude coordinates for the 5 mar-
ine autonomous recording units (MARUs) deployed for this  

study
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Fig. 2. (A) Cape Cod Bay (CCB) is enclosed by the peninsular structure of Massachusetts, USA, with a mouth extending into the 
Atlantic Ocean along the US East Coast. An array of 5 marine autonomous recording units (MARUs), indicated by the black 
points, were deployed in CCB from February to June 2019. During these months, aerial surveys were conducted by the Center for 
Coastal Studies, following the 15 track lines shown and numbered in red. (B) Each row demonstrates a set of detections associated 
across all 5 channels. The left column exhibits the spectrogram of a first arrival, and the 4 following columns show corresponding 
spectrograms of associates across the other channels. The time axes vary within 1–2 s in duration, and the frequency axis spans  

from 0 to 400 Hz 
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flow  using a pre-release version of Koogu (www.
shyamblast.github.io/Koogu/) and TensorFlow v1.13 
(Abadi et al. 2016). We used a custom quasi-Dense-
Net architecture comprising 3 quasi-Dense blocks, 
each containing 2 convolutional layers with a growth 
rate of 2. The detector’s frontend featured a Laplacian 
of Gaussian (LoG) layer (Madhusudhana et al. 2021) 
with scales set at 4, 8, and 16, followed by a 3×3 convo-
lutional layer with 16 filters. A LoG operator highlights 
regions of rapid intensity changes in image-like inputs 
(Marr & Hildreth 1980). The multi-scale ap proach 
employed here was aimed at highlighting intensity 
ridges (corresponding to narrowband tonal signals) of 
different widths within input spectrograms. The clas-
sification head was preceded by a fully connected 
layer comprising 16 nodes. To im prove robustness, we 
considered a dropout rate of 0.05. We trained the 
detector for 100 epochs, starting with an initial learn-
ing rate of 0.01 and successively diminishing it by a 
factor of 1/10 at epochs 30, 60, 80, and 90. 

The detector’s inputs comprised fixed-dimension 
spectrograms generated from 2.2-s-long audio seg-
ments. The DCLDE 2013 audio, which was sampled at 
2000 Hz just as the data collected for this study, was 
first bandpass filtered using a 9th-order Butterworth 
filter with a passband of 43–395 Hz. This study’s 
acoustic data (see Section 2.2) was also subject to sim-
ilar bandpass filtering to ensure similarity in down-
stream processing between training, testing, and 
inferencing. The resulting waveforms were split into 
2.2 s segments with a 0.4 s segment advance. These 
segments were then transformed into spectrograms 
using a 256-point discrete Fourier transform with a 
75% frame overlap (resulting in time and frequency 
resolution of 32 ms and 7.8125 Hz, respectively). To 
focus on relevant frequency components, the result-
ing spectrograms were trimmed to encompass the 
bandwidth of 46–391 Hz. This preprocessing resulted 
in detector inputs (band-limited spectrograms) of 
dimensions 45×65. Binary class (positive, negative) 
association to each input was performed similarly to 
the approach described in Miller et al. (2023) and 
Madhusudhana et al. (2021) — segments that fully 
contained the temporal extents of one or more upcall 
annotations were considered as positive class (upcall) 
inputs. For further reference, the Koogu documenta-
tion details similar steps for data preparation, training, 
and performance assessment as employed in this work. 

A 20 d subset from this study’s acoustic survey, 
amounting to 480 h of audio, constituted our test set 
for assessing the model’s recognition performance. A 
trained analyst visually/aurally reviewed spectro-
grams throughout the acoustic recordings concurrent 

with aerial surveys and manually annotated upcalls 
using Raven Pro 1.6.2 (K. Lisa Yang Center for Con-
servation Bioacoustics at the Cornell Lab of Ornithol-
ogy 2024). We processed the test set using the trained 
detector and analyzed its precision-recall characteris-
tics by comparing the manual annotations to reported 
detections. 

2.2.2.  Upcall association 

The geometry of the 5-unit MARU array was 
designed to provide acoustic survey coverage across 
the interior of the CCB, based on previously reported 
estimates of the reliable upcall detection range (9 km; 
Clark et al. 2010). In consequence, as this distance 
is  comparable to the spacing between MARUs (6–
14 km), it was likely that a single call would be heard 
on multiple recorders. For instance, a call closer to the 
center of the array may be heard on all 5 units, while a 
call closer to the edge may be detected on just one. 
Consequently, if all upcall detections are included 
in  the acoustic cue count, the resulting cue counts 
would be spatially biased towards vocal activity in the 
center of the array. To produce an acoustic cue count 
more representative of the true number of unique 
upcall vocalizations produced in CCB, we applied 
an  association procedure to match these duplicates 
(henceforth, associates). If the MARUs maintained 
high-precision time synchronization across channels, 
association of calls detected at 3 or more units could 
be performed through acoustic localization (Helble et 
al. 2015). However, though the units were synchro-
nized at the start and end of the survey, relative clock 
drift due to temperature variation likely rendered 
localization infeasible (Marchetto 2015, Estabrook et 
al. 2022). Instead, to leverage time-difference-based 
association while allowing for some temporal impre-
cision, and to in clude calls detected on just 1 or 2 
units, we adapted a common localization algorithm 
(Nosal 2007) into a flexible combinatorial association 
procedure. 

The MARU closest to a vocalizing whale would 
record the first instance of the upcall, or its ‘first arri-
val’, at the ‘time-of-arrival’ (ToA). MARUs slightly 
farther from the vocalizing whale but still within the 
detection range would record that same upcall at 
time delays commensurate with the distance from 
the whale, or ‘time-difference-of-arrival’ (TDoA). The 
maximum TDoA of a vocalization detected at 2 units 
would be equal to the distance between the units 
divided by the sound speed (at most equal to 15.3 s 
between MARUs 1 and 3). We performed association 
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by iterating through the classifier output and deter-
mining sets of upcall detections with physically plau-
sible TDoAs. For each upcall under consideration, we 
restricted the search for associates to neighboring 
detections within a 15.3-s window and iterated through 
all unique combinations of sets of 5 detections, look-
ing for a set for which the relative times could corre-
spond to a source location within CCB. If  a  set was 
found, it was saved and removed from further consid-
eration; if not, it was retained for further matching. 
Once a full iteration over the dataset was completed 
with sets of 5 detections, we repeated this associa-
tion process with sets of 4, 3, and 2. This combinatorial 
procedure therefore prioritized larger matches across 
all units before attempting matches across fewer units. 

To verify whether a set of detections could be dupli-
cates of the same upcall, we first pre-computed the 
ToAs and TDoAs across the region of interest. Specif-
ically, the CCB interior was discretized into a grid, 
with a resolution of 0.005° in latitude and longitude 
(approximately 0.56 and 0.42 km, respectively). For 
each grid location , we calculated the travel 
time to each hydrophone position , with k in {1, 2, 
3, 4, 5}, yielding ToA grids Tk: 

                                                                 (1) 

where c is the speed of sound. Next, pairwise differ-
ences of the 5 ToA grids yielded 25 TDoA grids repre-
senting the difference in arrival times for each geo-
graphic location and each pair of hydrophones: 

                                                                 (2) 

Note that  is identically 0 for all k, and 
 for all pairs l and k. 

If a call was detected on MARU k and MARU l with 
a measured time difference of Δt, we could isolate the 
geographic locations consistent with the calculated 
theoretical TDoA grids. In particular, we computed a 
mask indicating where the measured TDoA differed 
from the theoretical TDoA by no more than a chosen 
parameter τ, representing the acceptable temporal 
error: 

                                                                 (3) 

If a call was detected on MARU k but not MARU l, 
we inferred that the source was positioned closer to hk 
than to hl. This yielded a different geographic mask: 

                                                                 (4) 

Altogether, feasible locations for the sound source 
would be defined by an intersection of the geographic 
masks across all hydrophone pairs: 

                                                                 (5) 

Lastly, we multiplied the output L[i,j] by a final mask 
W [i,j ] indicating which of the elements in the grid are 
ad missible source locations. Specifically, as the rec-
tangular grid comprised of locations  covers CCB 
along with part of the shoreline, we set  
is in the water and  is on land. Al -
together, we calculated the final output G [i,j] = 
L [i,j]W [i,j ] for each set of possible associated de -
tections. If G [i,j ] contained nonzero values, we con-
cluded that the selected set has a feasible source loca-
tion and, therefore, may be associated with one 
distinct upcall. We recorded this association and re-
moved the detections from further consideration. If 
not, we concluded that the set cannot be associated, 
and continued association with alternative combina-
tions of detections. Lastly, we visualized associated 
detections from the acoustic survey to verify this 
procedure. 

At a latitude of 41.89, a depth of 30 m, salinity 
of  35  ppt, and water temperature between 2°C and 
8°C, we estimated sound speeds between 1458 and 
1482  m  s–1 via the National Physical Laboratory’s 
online calculator for speed of sound in sea water; we 
proceeded to use an average value of 1470 m s–1 for 
this work. In considering anticipated temporal errors, 
we estimated the difference in sound travel time asso-
ciated with water temperature variation to remain 
within ±0.1 s, and the temporal error of the auto-
mated bounding box returned by the detector to 
remain within ±0.2 s. Despite synchronization at 
the  beginning and end of the survey, relative clock 
drift due to temperature variation could introduce 
additional temporal error of unknown magnitude. Al -
together, we chose a parameter of τ = 0.5 s to repre-
sent admissible temporal errors, with the expectation 
that the association procedure would be conserva-
tive. Following detection and association, we cal -
culated the number of upcalls within every hour 
throughout the acoustic survey to quantify and visu-
alize seasonal and diel patterns in NARW vocal activ-
ity within CCB. 

2.2.3.  Abundance estimation 

To estimate daily NARW abundance in CCB, we 
calibrated acoustic cue counts, an index of relative 
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abundance, to sightings observed during the 16 d of 
concurrent aerial surveys. First, we applied ad -
ditional processing to match the acoustic and aerial 
survey data as closely as possible in both space and 
time. Spatially, the MARU array was designed to 
detect upcalls from across the interior of CCB, in 
agreement with the aerial surveys. While we did not 
evaluate the acoustic detection range of upcalls in 
this work, the statistics of call association (discussed 
in Section 3.2) supported the assumption that the 
acoustic survey covers the majority of the bay. To 
account for increased uncertainty of partial aerial sur-
veys in the regression, each data point was weighted 
by the number of completed track lines: 13 points had 
a weight of 1, 2 points had a weight of 13/15 = 0.87, 
and one point had a weight of 12/15 = 0.8. Tempo-
rally, it is clear from aerial surveys that the number of 
observed individuals could vary significantly on con-
secutive days; for instance, 11 individuals were 
observed on 8 May and only 2 on 9 May. This sug-
gests that NARWs may migrate into and out of CCB 
over the course of the day, motivating the analysis of 
upcalls occurring specifically within the time frame 
of the aerial surveys. Consequently, we included up -
calls occurring between the median start time and 
median end time of the aerial surveys: from 09:12 
to 15:09 h EST (henceforth, ‘median flight interval’). 
Note that while using the actual flight intervals rather 
than the median would provide the closest match, 
such analysis would impede extrapolation to days 
without co-occurring flights. 

Next, we statistically modeled the number of indi-
vidual NARWs in CCB on a particular day based on 
the number of associated upcalls detected during the 
median flight interval of that day. Count-based data 
is  typically modeled with Poisson regression, which 
represents the response variable (the number of 
whales) as a Poisson distribution around an expected 
value that grows as the natural exponent of a linear 
function of the independent variable (the number of 
upcalls). By design, Poisson regression enforces non-
negativity of predictions and of corresponding un -
certainty intervals. However, Poisson regression as -
sumes that the variance of the response variable is 
equal to the mean, an assumption that is commonly 
violated in ecological data (‘overdispersion’; Ver Hoef 
& Boveng 2007). Instead, quasi-Poisson regression 
can be applied, which adjusts the uncertainty of the 
model to account for higher variance in the data. 
Additionally, monotonic data transformation is a 
common technique in statistical modeling to repre-
sent more diverse relationships between the depen-
dent and independent variables, and is particularly 

relevant in our case, as the exponential relationship in 
the standard (linear) model may not be representative 
of upcall production. Accordingly, after verifying that 
our data exhibited overdispersion, we applied quasi-
Poisson regression, with a comparison of 3 transfor-
mations of the data — a linear model, a square-root 
model, and a logarithmic model: 

Linear: log(E[whales]) = α + β [upcalls] 
Square-root: log(E[whales]) = α + β sqrt[upcalls] 
Logarithmic: log(E[whales]) = α + β log[upcalls] 

We applied these 3 models with several variations 
for the values of [upcalls]: the number of associated 
upcalls during the median flight interval, the number 
of detections across all units during the median flight 
interval, and the number of detections on the central 
unit (MARU 5) over the median flight interval. By 
comparing the models, we aimed to assess the effects 
of both association and the usage of a 5-unit array 
on  abundance estimation. After fitting the models, 
we  evaluated and compared quality-of-fit. Though 
Akaike’s information criterion (AIC) is not well de -
fined for quasi-distributions, we evaluated the AIC 
of  the corresponding Poisson model, as the model 
comparison remains within the same distributional 
family. We additionally reported the root-mean-
square error (RMSE) weighted by the proportion of 
track lines surveyed. Lastly, to evaluate generaliz-
ability, we performed leave-one-out cross-validation 
with each model and report root-mean-square error, 
also weighted by the proportion of track lines sur-
veyed (indicated by CV RMSE). Once the best model 
was identified, we reported and interpreted the model 
parameters and overall fit. 

Next, we estimated abundance throughout the acous-
tic survey by calculating the counts of associated up-
calls within the median flight interval, passing these 
values through the model, and calculating the antici-
pated number of NARWs as well as the corresponding 
95% prediction intervals. Uncertainty intervals were 
calculated through bootstrapping, as there is no an -
alytic representation for prediction intervals for a 
quasi-Poisson distribution. These steps concluded the 
analysis pipeline and yielded daily estimates of NARW 
abundance within CCB from February to June 2019. 
We also calculated mean estimates of NARW abun-
dance over half-month intervals. All pre-processing, 
analysis, and visualization, including the detection 
and association procedures, were implemented in Py-
thon (3.11), relying primarily on the numpy, scipy, pan-
das, geopandas, matplotlib, and suntime packages. 
The quasi-Poisson regression and predictions were 
calculated in R using the stats and ci_tools packages. 
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3.  RESULTS 

3.1.  Upcall detection 

To select a threshold score for the classifier, we 
manually validated a subset of 104 021 detections 
across all 5 recorders throughout the acoustic survey. 
An evaluation of precision (i.e. the percentage of 
detected upcalls that are truly upcalls), recall (i.e. 
the  percentage of upcalls that were successfully 
detected), and false positive rate (i.e. the number 
of  incorrect detections per hour) across confidence 
thresholds is provided in the Supplement at www.int-
res.com/articles/suppl/n056p101_supp.pdf. To jointly 
optimize precision and recall, we selected a threshold 
of 0.75, corresponding to a precision of 0.857, a recall 
of 0.896, and an average of 4.8 false positives per hour. 
A total of 485 880 upcalls scoring at or above the con-
fidence threshold were detected by the classifier 
across the 5 recorders throughout the acoustic sur-
vey. NARWs are acoustically detected in CCB as 
early as mid-February (17 February) and vacate CCB 
by mid-May (15 May). Fig. 2B shows examples of 
upcalls detected by the automated classifier. Note 
that while all upcalls are characterized by an upsweep 
structure in the 50–350 Hz range, there is variability 
in shape and signal-to-noise ratio across different 
samples. 

3.2.  Upcall association 

After association, we obtained 249 539 unique 
upcall instances between 17 February and 1 June 
2019 (inclusive); all subsequent calculations consider 
this duration due to near-zero upcall detections in 
June. Of these, 10 913 (4%) were associated across 
all 5 channels, 15 360 (6%) across 4 channels, 41 822 
(18%) across 3 channels, 60 811 (24%) across 2 chan-
nels, and the remaining 120 633 (48%) were unassoci-
ated. To visually verify the association procedure, 
Fig. 2B demonstrates detections associated across all 
5 channels. As expected, the first arrival is higher in 
amplitude than its associates on different channels, 
though the relative differences in amplitude may vary 
depending on the location of the vocalizing whale. 
Additionally, some signal distortion due to propaga-
tion is visible across the examples. While relative 
clock drift between MARUs could affect association, 
we verified that association across all 5 units could be 
performed accurately throughout the acoustic sur-
vey. As an example, the 4 upcall instances shown 
were recorded on 20 February, 5 March, 7 April, and 

9 May (in order from top to bottom). Overall, the total 
number of daily associated calls is highly correlated 
with the total number of daily detections, with a Pear-
son’s correlation coefficient of 0.992 between these 
metrics across the duration of the acoustic survey. 
Additionally, the daily number of detections on a sin-
gle unit was also highly correlated with the daily 
number of overall detections and with the number of 
daily associated calls; for MARU 5, the Pearson corre-
lation coefficients were 0.988 and 0.977, respectively. 

After completing the association step, we assessed 
vocal activity patterns. Fig. 3 displays hourly upcall 
occurrence throughout the acoustic survey. We ob -
served diel variability in NARW vocal activity in 
CCB, with upcall rates higher at night (between sun-
set and sunrise) than during the day (between sunrise 
and sunset), consistent with prior studies (Mellinger 
et al. 2007, Mussoline et al. 2012) reporting on upcall 
rates measured in foraging grounds. Notably, through-
out the acoustic survey, 62% of first arrivals occur at 
night, and consequently only 38% during daylight 
hours; furthermore, only 14% of the upcalls occur 
during the median flight interval. 

3.3.  Abundance estimation 

Table 2 displays the calculated parameters (α and β) 
and quality-of-fit metrics (Poisson AIC, RMSE, and 
CV RMSE) for the 9 fitted models. Lower AIC and 
RMSE values indicate a better fit. Overall, using asso-
ciated upcalls yielded an improvement over using 
total detections across the array, and a greater im -
provement over using detections from a single unit. 
The monotonically transformed models gave a signif-
icantly better fit than the standard linear models. 
While we observed a slightly lower CV RMSE for 
the  square-root-transformed model with associated 
calls, the log-transformed models exhibited higher 
performance based on AIC and RMSE, and more real-
istic estimates at high upcall counts. Altogether, we 
applied the log-transformed model with associated 
calls for further inference and analysis, which implied 
the relationship: 

log([whales]) = –1.78 + 0.972 log([upcalls]) 

Equivalently: 

[whales] = 0.169 [upcalls]0.972. 

Notably, this model suggests that the expected 
value of NARW individuals varies nearly linearly with 
the number of upcalls. Fig. 4 displays the expected 
values of the model along with the 95% confidence 
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interval for the parameters and the 95% prediction 
interval for new data points. For reference, at the 
median upcall count for the model (212), the 95% 
confidence interval width is 24–39 individuals, and 
the prediction interval width is 11–59 individuals. 
We discuss the contributing sources of uncertainty, 
as well as implications for ecological inference, in 
Section 4.3. Finally, Fig. 5 presents daily abundance 
estimates of NARWs in CCB throughout the acoustic 
survey. For each day, the figure shows the predicted 
number of individuals, the 95% prediction interval, 
and — on days with aerial surveys — the actual number 
of sightings. Days on which we extrapolate to upcall 
counts higher than observed in the 16 samples are 

indicated with transparent bars, and consequently 
have very high uncertainty. Considering half-month 
intervals, the average predicted NARW abundance 
is  20 whales over 17–28 February, 46 whales over 
1–15 March, 89 whales over 16–31 March, 92 whales 
over 1–15 April, 52 whales over 16–30 April, 15 whales 
over 1–15 May, and 6 whales over 16–31 May. 

Despite the high degree of correlation in detections 
across a single unit, detections across the array, and 
associated calls throughout the acoustic survey, there 
were notable differences in the models, with substan-
tially lower quality-of-fit for models incorporating only 
MARU 5. To more clearly quantify these differences, 
we calculated the change in predicted daily abun-
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Fig. 3. After completing automated detection and association, we examined the number of distinct upcalls at hourly and daily 
scales throughout the acoustic survey. The color indicates the number of upcalls (varying from 0 in dark blue to 800 in dark 
red), horizontal solid white lines indicate daily sunrise and sunset, horizontal dashed white lines indicate the median start/end 
times of the aerial surveys, and vertical dotted white lines indicate aerial survey days. Days after 1 June are not shown due to 
very low upcall counts. The observed diel and seasonal patterns in vocalization activity are consistent with prior studies

                                                    Model formulation                                   α                      β              AIC (Poisson)     RMSE      CV RMSE 
 
Associated upcalls                Quasi-Poisson (linear)                        2.69***       0.00275***              209                 13.1              16.4 
 during median                      Quasi-Poisson (square-root)             1.71***             0.111***                   175                 11.7              13.4 
 flight interval                        Quasi-Poisson (logarithmic)               –1.78*                0.972***                  149                 11.5              14.3 
Detections during                 Quasi-Poisson (linear)                        2.77***       0.00156***              222                 14.9              17.9 
 median flight                        Quasi-Poisson (square-root)             1.90***           0.0794***                184                 13.4              17.0 
 interval                                   Quasi-Poisson (logarithmic)                  –1.52                   0.861***                   156                 12.9              16.8 
Detections on                         Quasi-Poisson (linear)                        2.83***       0.00691***              244                 18.8              30.8 
 central unit during              Quasi-Poisson (square-root)             2.01***             0.163***                   197                 16.5              25.6 
 median flight interval        Quasi-Poisson (logarithmic)                0.110                0.801***                   160                 14.8              20.3 

Table 2. We considered different variations of models relating acoustic cue counts (upcalls) to abundance (the number of iden-
tified NARWs during aerial surveys). Three processing pathways of varying complexity were considered: using a 5-unit array 
and associating calls through time-difference-of-arrival (top 3 rows), counting all calls on the 5-unit array without association 
(central 3 rows), and counting only calls on the central recording unit (bottom 3 rows). For each of these variations, we com-
pared quasi-Poisson models with 3 different monotonic transformations (linear, square-root, and logarithmic), with and 
without the association procedure. For each model, we report the regression parameters α and β along with statistical signifi-
cance (*p < 0.05, **p < 0.01, ***p < 0.001). Quality-of-fit was evaluated with Akaike’s information criterion (AIC) of the corre-
sponding Poisson model, weighted root-mean-square-error (RMSE), and weighted root-mean-square-error of leave-one-out  

cross-validation (CV RMSE). Ultimately, we selected the logarithmic model with associated upcalls (in bold)
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dance between models as a percentage of the best-fit-
ting model’s prediction. In absolute value, the predic-
tions resulting from the logarithmic model with 
associated calls differ from the predictions of the 
logarithmic model with detections by 11 ± 12 % d–1 

(mean ± SD), with a maximum difference of 24 indi-
viduals. Similarly, the predictions resulting from the 
logarithmic model with associated calls differ from 
the predictions of the logarithmic model with detec-
tions on the central unit by 20 ± 8% d–1, with a maxi-

Fig. 4. To perform acoustic abundance estimation, we related the number of distinct upcalls to the number of sightings 
of  North Atlantic right whales (NARWs) with quasi-Poisson regression with a logarithmic transformation. Each of the 
16 points represents a day with concurrent acoustic and aerial surveys. The solid black line indicates the resulting fit, the 
dashed black line indicates the 95% confidence interval for the sample mean, and the dotted black line indicates the 95%  

prediction interval

Fig. 5. Using quasi-Poisson regression to model whale observations as a function of the number of upcalls, we estimated NARW 
abundance in CCB throughout the acoustic survey. For each day, the red stars indicate aerial counts that were used to fit 
the model, the black points indicate the abundance prediction, and the blue bars indicate the 95% prediction interval. Days 
on which the model extrapolates to higher values than present in the calibration dataset are indicated with transparent points  

and bars
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mum difference of 27 individuals. Lastly, the predic-
tions resulting from the logarithmic model with 
detections across the array differ from the predictions 
of the logarithmic model with detections on the cen-
tral unit by 16 ± 13% d–1, with a maximum difference 
of 23 individuals. 

4.  DISCUSSION 

4.1.  NARW phenology 

Broadly, our analysis of acoustic activity and abun-
dance agrees with previous studies reporting diel pat-
terns of upcall production in foraging grounds as well 
as seasonal presence in CCB. Throughout the season, 
NARWs exhibited a consistent diel pattern of upcall 
production, with higher call rates during light-limited 
hours than during daylight hours. Our results are con-
sistent with previous PAM studies that document a 
rise in upcall rates at night in multiple other foraging 
grounds: from north to south, Roseway West (Nova 
Scotia, Canada), Jeffreys Ledge (MA, USA), and Stell -
wagen Bank National Marine Sanctuary (MA, USA; 
Mellinger et al. 2007, Mussoline et al. 2012). Ad -
ditionally, Mayo et al. (2018) found that NARW sea-
sonal occurrence in CCB varied minimally across 
16 yr of aerial survey data, with consistent presence 
between January and mid-May. Our results uphold 
this trend for the months of this period for which we 
have data (early February through mid-May). Fur-
thermore, assessing nearly 6 yr of PAM data, Charif et 
al. (2020) showed that NARW presence in Massachu-
setts Bay (MA, USA) is highest in late winter to spring, 
occurring as early as the first weeks of March and as 
late as the final week of April. Since Massachusetts 
Bay and CCB are adjacent habitats, NARW peak 
presence in CCB could be expected to correspond to 
peaks observed in Massachusetts Bay. Our results 
show that peak presence in CCB occurs in mid-March 
to mid-April, in agreement with those documented in 
Charif et al. (2020). 

4.2.  Analysis of findings 

4.2.1.  Detection 

Passive acoustic data has the potential to estimate 
abundance at a higher time resolution than can be 
achieved through aerial surveys alone, but the man-
ual tasks of the analytical workflow can delay these 
outputs significantly. While aerial surveys can pro-

vide abundance estimates on the same day as collec-
tion, PAM requires that the recording units are recov-
ered and the data is pre-processed, analyzed, and 
summarized before abundance estimates are attained. 
Manually logging and even validating detector out-
put can be unwieldy for long-term datasets. Con-
sequently, using passive acoustic data to estimate 
abundance could take, at earliest, several months 
after initial data collection, a pace not always compat-
ible with management timelines for NARWs or other 
threatened species. In this work, training a CNN was 
vital for rapid automated detection of hundreds of 
thousands of upcalls and the subsequent analysis of 
NARW phenology and abundance. 

4.2.2.  Association 

The TDoA-based association procedure was effec-
tive at matching duplicate detections of the same 
upcall, and improved downstream abundance estima-
tion based on model performance metrics. However, 
the algorithm may over- or under-associate under 
certain conditions. In particular, this approach associ-
ates opportunistically, and therefore may group 
together separate upcalls if they happen to occur at 
compatible times. In consequence, it may over-asso-
ciate when calling density is high, and therefore may 
have caused a slight underestimation of the total 
number of upcalls in late March and April. In contrast, 
the algorithm assumes that a detection at a farther 
unit must imply detection at a closer unit, which may 
not always occur due to differing noise levels at dif-
ferent units and may therefore cause under-associa-
tion. Incorporating signal similarity metrics within the 
association algorithm could help to improve the per-
formance of this method in future work. The associa-
tion statistics carry some implications for the upcall 
detection range and for the spatial distribution of 
vocalizing whales. Notably, as MARUs 1 and 3 are on 
the eastern and western corners of the array and are 
separated by a distance of 22 km, the repeated associ-
ation of upcalls across 4 or 5 MARUs suggests that 
upcalls are frequently detected at distances further 
than the 9 km estimate from Clark et al. (2010). Fur-
thermore, we find that association statistics for a par-
ticular day imply spatial distributions of upcalls that 
agree closely with the spatial distribution of aerial 
survey sightings. For instance, on 7 April, the visual 
survey revealed a large number of individuals clus-
tered in the northeast corner, while the acoustic asso-
ciations during the median flight interval indicated 
that out of 811 upcalls, the greatest contributions 
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were from unassociated calls on MARU 1 (136), unas-
sociated calls on MARU 4 (131), and calls heard 
across MARUs 1, 4, and 5 (104). Similarly, on 1 May, 
sightings were concentrated in the southeast corner 
of CCB, and about 12% of all upcalls during the 
median flight interval were calls associated across 
MARUs 3, 4, and 5, compared to only 4% associated 
between MARUs 1 and 2. In future work, this associa-
tion procedure could thereby permit a natural exten-
sion to acoustic spatially explicit capture–recapture 
(aSECR), an emerging abundance estimation tech-
nique (Marques et al. 2013, Franklin et al. 2022). 

4.2.3.  Abundance estimation 

NARWs have been a historically difficult species 
for which to conduct acoustic abundance estimation 
because of the high individual-level variance in 
upcall rate. However, in contrast to abundance esti-
mation using individual call rates, calibration with 
daily sightings data focuses on population-level call 
rate and allows for the representation of nonlinearity 
in upcall production. Overall, this study was fortu-
nate to have access to independent abundance esti-
mates within the same site and time frame as the 
acoustic survey, minimizing error and uncertainty 
associated with transferring call rates across popula-
tions and environments, as is often unavoidable in 
abundance estimation studies. Based on quality-of-fit 
metrics, association slightly improved the perform-
ance of models for abundance estimation, as did the 
usage of a 5-unit array over a single unit. Notably, on 
average, the differences in abundance estimates were 
smaller in magnitude than the uncertainty intervals; 
however, on individual days, these differences could 
be substantial. The small sample size available for this 
study limited our evaluation of abundance estimation 
accuracy and was insufficient for characterizing the 
effects of environmental factors, such as seasonality 
or temperature, on the calculated call rates. Further 
acoustic data collection would improve our under-
standing of these factors on abundance estimation 
and assess the variability of NARW vocal behavior 
across multiple years. 

4.3.  Limitations and sources of uncertainty 

The abundance estimates themselves still bear a 
high degree of uncertainty that can complicate how 
to interpret these values for endangered species. Our 
estimates are concordant with well-understood NARW 

phenological patterns, yet we acknowledge that these 
estimates are not yet precise. On an average day, a 
95% prediction interval can span approximately 50 
whales. Equivalent to about 15% of the remaining 
population, this variance may be too great for con -
fident integration within management planning at 
this time. 

Multiple sources of uncertainty may be contrib-
uting to this variance. One source of uncertainty is 
the contrasting attributes of the 2 survey modalities, 
which impart differing observation and availability 
biases onto the visual and acoustic measurements. An 
aerial survey may cover a greater spatial extent across 
CCB overall, but each stretch of track line is observed 
briefly, with only whales near or at the surface being 
counted. On the other hand, acoustic methods are 
constrained by vocal activity and upcall detection 
range. Consequently, acoustic surveys may have 
smaller spatial coverage but can record NARWs at 
various depths and maintain simultaneous monitor-
ing of the detectable area for each aerial survey. To 
temporally match the aerial and acoustic data, we 
only consider upcalls detected during the median 
flight interval, which is logistically limited to daylight 
hours. Per the diel variation patterns we observed in 
Fig. 3, NARWs are less vocally active during the day, 
which means we calibrated the acoustic–visual mea-
surements at a time of day when the call rate is lower. 
While this should not affect the fidelity of our analy-
sis, as the population-level call rates never fell silent 
when whales were present in CCB, the abundance 
relationship calculated in this work should not be 
extrapolated to nighttime hours. Furthermore, vessel 
traffic is highest during the day, causing heightened 
background noise levels that may reduce the quality 
of some recorded upcalls. A lower-quality upcall may 
fall below our selected threshold (as determined via 
the precision–recall curve) and thus would be ex -
cluded from the upcall count during its respective 
survey, possibly contributing more uncertainty to the 
model. Accumulation of error throughout the analysis 
pipeline, including false positive detections and 
incorrect associations, also can contribute to uncer-
tainty. Both false positive detections and incorrect 
associations can arise from variance in environmental 
conditions, which we did not characterize in this study. 
Finally, the model’s goodness-of-fit is ultimately lim-
ited by the availability and quality of ‘ground-truth’ 
abundance measurements. In this study, we bene-
fitted from ground-truth aerial survey data that re -
moved duplicate sightings, a level of accuracy that 
can only be attained for well-studied populations 
(such as NARWs) with identifiable individuals and 
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thus is a rarity at scale. In future applications of such 
a pipeline, a practitioner would likely only have 
access to raw sightings data, which would further 
exacerbate the uncertainty in final abundance esti-
mates. While we see a statistically significant rela-
tionship in the model with 16 survey samples, if 
resources allow in future studies, a larger number of 
ground-truth abundance measurements would help 
to further characterize sources of uncertainty. 

Previous studies have reached mixed conclusions 
about the efficacy of PAM for NARW abundance esti-
mation due to the uncertainty introduced by behavior 
(i.e. group size, individual call rate). For instance, 
NARW foraging behavior may subject sightings 
reported by the aerial surveys to seasonal observation 
bias. Ganley et al. (2019) suggested that seasonal 
shifts in prey could influence the time that NARWs 
are observable at the surface and thus detectable by 
an aerial survey. Winter prey Pseudocalanus spp. 
aggregate in layers on the basin floor, driving down 
surface time to 34% in February (Ganley et al. 2019). 
In the spring, NARWs transition to surface-dwelling 
prey (e.g. Calanus finmarchicus), raising surface time 
to 55% by April (Ganley et al. 2019). Prey species 
availability and composition also undergo inter -
annual variation, making seasonal observation bias 
difficult to predetermine for any one season. We 
acknowledge that the seasonal observation bias may 
affect the aerial survey sightings used in this study 
and thus may contribute uncertainty to the abun-
dance estimates. Furthermore, NARW behavior may 
also introduce uncertainty via the acoustic measure-
ments. NARW average call rates, particularly during 
the day, are very low: the calculated model implies an 
average call rate of about 6–8 associated upcalls per 
whale per day. Consequently, relative to an equiv-
alent study conducted for a species with a higher call 
rate, these abundance estimates are more sensitive 
to  a single upcall, yielding higher uncertainty. Ad -
ditionally, while Durette-Morin et al. (2019) found a 
significant relationship between upcall production 
and abundance, Clark et al. (2010) and Franklin et al. 
(2022) did not. Of the latter, Franklin et al. (2022) sug-
gested that this discrepancy may be attributable in 
part to higher variability in upcall rates observed in 
social aggregations. When group size increases, 
NARWs integrate upcalls within acoustic displays 
associated with surface active groups, groups of 2 
or more NARWs engaging in close physical contact 
at  the surface for putative reproductive purpose 
(Kraus & Hatch 2001, Parks & Tyack 2005). The quasi-
Poisson regression we used to fit acoustic and aerial 
measurements reflects this ecological pattern, as 

the  variance grows with the mean over time; con-
sequently, as upcall counts and NARW sightings 
increase, the confidence interval widens and uncer-
tainty compounds. This aligns with the growing un -
certainty associated with the acoustic–visual calibra-
tion (Fig. 4) when NARW group size grows. Therefore, 
we posit that our acoustic–visual model may only 
hold up in smaller group sizes, which is consistent 
with previous work. The majority of observations 
within the aerial surveys included in our study was of 
individuals, with occasional groups of 2–3 whales, 
aligned with the smaller group focus reported in 
Durette-Morin et al. (2019) that also found a signifi-
cant relationship between upcall production and 
abundance. In circumstances where group size is 
higher, all 3 NARW call types (upcalls, gunshots, 
tonal calls) may yield improved abundance estimates, 
as suggested in Franklin et al. (2022). 

In line with similar studies (e.g. Franklin et al. 
2022), we did not quantify the error and uncertainty 
associated with ground-truth aerial surveys. For 
instance, while the 3 partial aerial surveys only 
excluded 2 or 3 track lines, it is possible that a 
group of NARW was missed on those days, biasing 
the overall model towards underestimation. Ulti-
mately, both acoustic and aerial surveys have lim-
ited detectability. Schliep et al. (2024) considered 
both aerial and acoustic surveys as providing only 
partial information on marine mammal abundance, 
and proposed a probabilistic methodology for fusing 
these 2 data sources, demonstrating its application 
for estimating NARW abundance in CCB. Without 
ground-truth abundance measurements, evaluation 
of acoustic abundance estimation is limited to sim-
ulation and consequently constrained by modeling 
assumptions. By integrating both aerial and acoustic 
surveys, we can get closer to demystifying what a 
detected upcall means in the context of overall spe-
cies abundance. 

5.  CONCLUSION 

Ultimately, expediting abundance estimation an -
alysis via passive acoustic data could be a valuable 
ad dition to the suite of tools necessary for effective 
conservation. However, the trade-off between method-
ological limitations and precision remains a challenge. 
In combining very different survey modalities — aerial 
and acoustic — our abundance estimates have high 
uncertainty, which is especially consequential for a 
Critically Endangered species. Future studies should 
consider what degree of precision is realistic to 

113



Endang Species Res 56: 101–115, 2025

achieve with passive acoustic data alone, as well as 
how much uncertainty is acceptable for conservation 
applications. Further tests of this pipeline could 
reveal its adaptability for other endangered cetacean 
species, altogether increasing our collective capacity 
for monitoring in the service of conservation. 
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