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INTRODUCTION

Cetaceans face a variety of challenges, such as cli-
mate change, noise pollution, fisheries bycatch and
collisions with ships. For reasons of conservation and
management, it is important to understand the habi-
tat requirements of cetaceans, and habitat models
play a critical role, as shown by the papers in this
special issue. When using the results of habitat mod-
els in management decisions, however, it is impor-
tant to consider the uncertainty inherent in esti -
mating model parameters from data. Insufficient
recognition of uncertainty has led to repeated fail-
ures in resource management and conservation
(Ludwig et al. 1993). The scientific issue is to estimate

uncertainty well and to report it in terms that can be
clearly understood. The management issue is to rec-
ognize that uncertainty exists and to account for it
when making decisions.

A basic principle of effective management of nat-
ural resources is that decisions should be more con-
servative when uncertainty is greater (Mangel et al.
1996). For marine mammals, an example of this pre-
cautionary principle in practice is the procedure for
setting bycatch limits under the US Marine Mammal
Protection Act. Bycatch limits are based on the lower
end of a confidence interval of an abundance esti-
mate (Wade 1998). Thus, the more uncertainty about
marine mammal population size, the larger the con -
fidence interval and the smaller the permitted
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bycatch. Uncertainty is explicitly taken into account
for conservative management (Taylor et al. 2000).

Here we apply the precautionary use of uncer-
tainty to the design of a marine protected area, when
the design is based on habitat modeling. To be effec-
tive for the conservation of a species, the design of a
protected area should consider, among other things:
(1) how many animals should be protected and (2)
where the boundaries of the area should be estab-
lished in order to protect that number.

In the present paper we deal with the second ques-
tion. We assume that the first question has already
been considered, and that either of 2 potential man-
agement targets has been established for a cetacean
population: (1) to protect at least 100 000 animals or
(2) to protect at least 60% of the population. Maintain-
ing a marine mammal population at ≥60% of carrying
capacity is a management goal called the ‘optimum
sustainable population’ level under the US Marine
Mammal Protection Act, and is based on the assumed
inflection point of a generalized production model of
large mammal population dynamics (Gerrodette &
DeMaster 1990). Data to estimate population size and
distribution may be limited, and there will often be
considerable uncertainty about whether any proposed
boundary actually contains 100 000 animals or 60% of
the population. A precautionary management ap-
proach recognizes the uncertainty, and specifies that
the management target be met with reasonably high
certainty. What constitutes ‘reasonably high certainty’
is a policy decision about how precautionary manage-
ment will be. In the present pa-
per, we assume that the level of
certainty has been chosen to be
0.9. Given this policy decision,
the scientific problem is to use
available data to estimate the lo-
cation of a boundary which con-
tains 100 000 animals with a
probability of 0.9 or 60% of the
population size with a probability
of 0.9.

As a case study, we use data
on the long-beaked common dol -
phin Delphinus capensis. This
species occurs from southern
California to the tip of Baja Cali-
fornia off the west coast of North
America, including the Gulf of
California (Rice 1998). We use
the long-beaked common dol-
phin simply as an illustrative
example; we are not suggesting

that the species is in danger of extinction or that it
requires any more protection than other cetaceans in
the area. D. capensis was described as distinct from
D. delphis in 1994 (Heyning & Perrin 1994, Rosel et
al. 1994). From the locations of sightings, it is clear
that the species occurs primarily in coastal waters.
Given the management targets specified above, we
need to estimate the location of the offshore bound-
ary of a potential protected area that will meet the
management objectives. This requires that we esti-
mate the density of dolphins at a relatively fine spa-
tial scale. Further, we need to convert the uncertainty
inherent in the estimation of density into a probabil-
ity that the true value is included. We use depth as a
predictor variable for the habitat model because
depth data are readily available on a fine scale, and
depth is more likely than distance from shore to be a
proxy for the actual processes that the dolphins are
responding to, such as food supply.

METHODS

Line-transect surveys were carried out in the range
of Delphinus capensis off the coast of Baja California,
Mexico, during 11 yr between 1986 and 2006
(Fig. 1A), as part of larger cetacean surveys in the
eastern tropical Pacific Ocean. Beaufort sea state was
recorded continuously during each survey. School
size and distance from the trackline were recorded
for each sighting. Further details on data collection
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Fig. 1. Delphinus capensis. (A) Tracklines (thin black lines) and long-beaked com-
mon dolphin sightings (squares) off the peninsula of Baja California, Mexico, 1986 to
2006. The rectangle outlines the area within which data were  considered for this 

analysis. (B) Grid of 992 cells within the study area, shaded by mean depth
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are given in Kinzey et al. (2000) and Gerrodette &
Forcada (2005).

For this analysis, we selected data within a rectan-
gular area approximately 300 km from the coast
(Fig. 1A). Approximately 87 000 depths within this
area were extracted from the NOAA database (www.
ngdc.noaa.gov/mgg/gdas/gd_designagrid.html) on a
1 min (~1 nautical mile) scale. We divided the study
area into smaller subareas within which depth was
reasonably uniform and could be represented by a
single value. Subareas could be of arbitrary size and
shape, but for convenience we used a grid of 992 rec-
tangular cells, each 1/6 of a degree (~18 km) per side.
The areas of the rectangular cells decreased slightly
with latitude, but the mean area of non-boundary
cells was 306 km2. There were about 90 depth values
in each cell, with mean cell depths ranging up to
nearly 5000 m (Fig. 1B).

Our analytical framework was a hierarchical
Bayesian line-transect model, an extension of the
basic model of Eguchi & Gerrodette (2009). If n
objects are encountered in survey distance L, the
density of objects d is:

(1)

Line-transect analysis estimates the ‘effective’ strip
width w on each side of the trackline, on the basis of
the distribution of distances of detected objects from
the trackline. For long-beaked common dolphins, the
number of dolphin schools ni detected in each cell i
with non-zero effort depended on the actual density di

and the observation process summarized by wi and Li.
We assumed that the ni followed a Poisson distribution:

(2)

where survey distances Li were known but wi and di

were estimated. For wi we assumed that Beaufort sea
state could affect the probability of detecting a school
of dolphins, and modeled strip width as (Marques &
Buckland 2004, Gerrodette & Forcada 2005):

(3)

where ci was Beaufort sea state in cell i during the
survey. Parameters α0 and α1 were estimated from
the perpendicular distance yj and sea state bj for each
sighting j with a normal likelihood, with mean zero
and variance (σ2), such that:

(4)

that is, a half-normal detection function with a sea-
state covariate (�: normal distribution). We modeled
the density of dolphin schools di as a function of depth

with linear, half-normal and hazard-rate functions, but
report results only for the latter, which has the most
flexible form of the three. The hazard-rate model was:

(5)

where zi was the mean depth in cell i as a positive
value, and β0, β1 and β2 were parameters to be esti-
mated. To compute the density of animals, group size
s was estimated with a normal likelihood from the n =
Σnj observed dolphin school sizes g,

(6)

assuming a known variance σs
2 = var(g)/n.

The number of dolphins in each cell was sdiAi,
where Ai was the water area of cell i. The cumulative
abundance of dolphins occurring within an area shal-
lower than depth k was:

(7)

and the cumulative percentage of abundance occur-
ring within an area shallower than depth k was:

(8)

where Ntot was the sum of the number of animals in
all cells in the study area.

We used Markov Chain Monte Carlo methods,
specifically the Gibbs sampler implemented in the
BRugs package in R (R Development Core Team
2009), to estimate basic parameters α0, α1, β0, β1, β2

and s, as well as derived parameters N(k) and P(k).
We assumed flat prior distributions for all basic para-
meters. BUGS code (Lunn et al. 2000) for the model
is given in the supplement at www.int-res.com/
articles/suppl/n015p159_supp/. After a burn-in phase
of 20 000 samples, we ran 1 000 000 steps, retaining
every tenth value, for a posterior sample of 100 000
values for inference. Convergence was checked by
obtaining similar posterior distributions with differ-
ent initial values. We further checked our results by
obtaining similar posterior distributions with non-
Markov Chain Monte Carlo methods (uniform sam-
pling across a 6-dimensional array), and by obtaining
point estimates for the detection function and total
abundance with Distance software (Thomas et al.
2010); these estimates were similar to the medians of
the posterior distributions.

RESULTS

There was a total of 8545 km of survey effort within
the study area, with non-zero effort in 531 of the 992
cells. Survey effort distances in individual cells
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ranged from 0 to 65 km, with a predominance of
lower values (Fig. 2A). Effort-weighted mean Beau-
fort sea state conditions in each cell ranged from 0 to
5, with a predominance of higher values (Fig. 2B).

There was a total of 44 sightings of long-beaked
common dolphin Delphinus capensis schools in 36
cells, with group sizes ranging from 1 to 6393. Mean
group size was 512 (SE = 154). The frequency of per-
pendicular distances from the trackline of the sight-
ings declined with distance (Fig. 3A). Depths within
the study area were bimodally distributed between 0
and 5000 m (Fig. 3B, dashed lines), and tracklines
sampled all depths (Fig. 3B, solid lines). Sightings
occurred in a restricted fraction of these depths,
mainly <250 m (Fig. 3B, gray bars). Of the 44 sight-
ings, 6 occurred deeper than 500 m, and only one
occurred deeper than 1000 m.

Long-beaked common dolphins
were estimated to occur at a mean
density of about 2 animals km−2 in
shallow water (Fig. 4A). The 0.1
and 0.9 quantiles (i.e. a central 80%
credibility interval) of the posterior
distribution at this depth were 1.6
and 2.8 km−2, respectively. The haz-
ard-rate model predicted that den-
sity was constant from about 0 to
200 m, and then decreased with
depth, falling to a mean density of
0.3 km−2 by 1000 m, and <0.03 km−2

by 1500 m. Based on this function,
the highest densities of animals
occurred on the continental shelf
(Fig. 4B). A posterior distribution of
density was calculated at each of
the ~87 000 depths in the study
area; the median value of each dis-
tribution is plotted in Fig. 4B.

Cumulative abundance N(k) and
percentage of abundance P(k) both
rose rapidly at depths <200 m and
then approached an asymptote
(Fig. 5). There was less uncertainty
about the percentage of a popula-
tion included at a given depth
than about the absolute number
(shaded areas in Fig. 5).

Setting the boundary of a pro-
tected area at 360 m would meet
the first management goal of
including 100 000 animals with a
probability of 0.9 (Fig. 5A, dashed
lines). Setting the boundary at

160 m could also include 100 000 animals, but only
with a probability of 0.5 (the median, Fig. 5A, vertical
dotted line).

Setting the boundary at 210 m would meet the sec-
ond management goal of including 60% of the popu-
lation within the area with a probability of 0.9
(Fig. 5B, dashed lines). Setting the boundary at 170 m
would include 60% of the population with a proba-
bility of 0.5 (Fig. 5B, vertical dotted line).

Because these depth boundaries are on or near the
continental slope, the areas within the depths are not
very different along much of the Baja California
Pacific coast (Fig. 6). The areas between the coastline
and the 160, 170, 210 and 360 m isobaths within the
study area were 46.7 × 103, 47.7 × 103, 51.4 × 103 and
61.3 × 103 km2, respectively.
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DISCUSSION

A frequent goal of a protected area,
such as a reserve, park or sanctuary, is
to protect the critical habitat of a spe-
cies. If ‘critical’ is defined in suffi-
ciently quantitative terms, data can be
used to determine whether a proposed
area will meet or has met the manage-
ment goal. For effective management,
uncertainty should also be recognized
and considered. If policy makers spec-
ify the level of precaution, scientists
can estimate parameters consistent
with those policy goals. Here we
assumed that a quantitative manage-
ment goal, and a desired probability of
meeting that goal, had been articu-
lated for a potential protected area of a
coastal cetacean, the long-beaked
common dolphin Delphinus capensis.

A hierarchical Bayesian line-tran-
sect habitat model estimated dolphin
density as a hazard-rate function of
depth (Fig. 4A). The depth which
would represent a management goal
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Fig. 4. Delphinus capensis. (A) Animal density as a hazard-rate function of depth. The line connects the medians; dark gray,
central 50% and light gray, central 90% of the posterior distributions at each depth. (B) Spatial distribution of animal density 

based on depth at a 1 min scale, shaded by median posterior animal density
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of including 100 000 dolphins in the protected area
with a probability of 0.5 was 160 m (Fig. 5A). For
many purposes this is a reasonable estimate, but it is
not a precautionary estimate. There is a 50% proba-
bility that there are fewer than 100 000 dolphins in
waters shallower than 160 m. In other words, there is
only a 50:50 chance that the management goal would
be met. The ‘best’ estimate does not lead to the best
management with respect to conserving the species
(Taylor & Wade 2000).

A precautionary approach achieves the manage-
ment goal with a high probability. We postulated that
the level of precaution had been set, as a matter of
policy, at 0.9. For the management goal of including
100 000 dolphins to be met with this higher probabil-
ity, the boundary of the protected area would have to
be 360 m, on the basis of the habitat model (Fig. 5A).
In this case, there was a considerable difference in
depth (160 vs. 360 m) between the non-precaution-
ary and precautionary boundary of the protected
area.

For a second management goal of including at least
60% of the population, there was a smaller differ-
ence between the depth of the precautionary bound-

ary (210 m) and the non-precautionary one (170 m;
Fig. 5B). The difference was smaller because there
was less uncertainty about the cumulative percent-
age of the population contained within a given depth
than about the absolute number of animals within the
same depth.

We emphasize that the design of a protected area
for long-beaked common dolphins was a hypotheti-
cal case study. Delphinus capensis is not endan-
gered, nor has it been shown that the species is
declining or in need of special protection. We chose
the species for the case study because transect data
were available and the distribution of D. capensis
could be reasonably modeled by depth alone. Fur-
thermore, the design of an actual re serve would
 consider social, political, economic and logistical
 factors, as well as biological data. Several programs
are available to help optimize reserve design, such
as Marxan (www.uq.edu. au/marxan), MarineMap
(http://marinemap.org/) and Zonation (www.helsinki.
fi/science/metapop/ Research/Project_spatial4.htm).

To infer cetacean habitat use from line-transect
data, the separate components of a density estimator,
such as sighting rate, group density, group size and
effective strip width, may be modeled as functions of
environmental variables, then combined to estimate
density at small spatial scales (Cañadas & Hammond
2006, Ferguson et al. 2006, Gómez de Segura et al.
2007, Cañadas & Hammond 2008, Becker et al. in
press, Forney et al. in press). Estimation of density
and habitat relationships may also be combined in a
single analysis (Hedley et al. 2004, Royle et al. 2004,
Johnson et al. 2010, Niemi & Fernández 2010). Infer-
ence about population processes is improved when
combined with an observation model into a single
likelihood framework (Goodman 2004, Buckland et
al. 2007, Royle & Dorazio 2008).

Fortunately for cetaceans, factors which are related
to abundance, such as temperature, primary produc-
tivity, or depth in this case, can often be separated
from factors that affect detection probability, such as
number of observers, height of observation, or sea
state in this case. We assumed that depth had little or
no effect on the probability of detection of dolphins
and that sea state at the time of the survey had little
or no effect on the abundance of dolphins. The analy-
sis attempted to account for the imperfect detection
of animals in order to relate the true, but unobserved,
number of animals to habitat factors. Bayesian
 methods provide a coherent framework for quan -
tifying uncertainty (Clark 2005, Royle & Dorazio
2006, Cressie et al. 2009). Furthermore, because a
Bayesian analysis expresses uncertainty in terms of

Endang Species Res 15: 159–166, 2011164
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probabilities, results can be used directly in decision-
making (Punt & Hilborn 1997, Goodman 2009), such
as setting the boundary of a protected area.

The habitat model in the present study, while ade-
quate to illustrate the importance of accounting for
uncertainty in the design of a protected area, was rel-
atively simple. More flexible models with additional
habitat predictor variables should be considered for
comprehensive estimation of Delphinus capensis
habitat. Cañadas & Hammond (2008), for example,
found that abundance of D. delphis in the Mediter-
ranean Sea off southern Spain tended to be bimodal
with depth, a pattern that would not be modeled by
the hazard-rate function used here. The probability
of detecting dolphin schools may depend on addi-
tional variables, particularly group size (Gerrodette
& Forcada 2005). The Poisson distribution assumed
that the numbers of dolphin schools detected per cell
were independent after adjusting for survey effort,
sea state and depth. If the density of schools de -
pended on other factors — patches of prey across sev-
eral cells, for example — the numbers of sightings
could be spatially correlated.

Spatial management based on sea-surface tem-
perature or other dynamic habitat variables without
fixed geographic boundaries is natural and ecologi-
cally sensible in the ocean (Norse & Crowder 2005).
Habitat variables which are not geographically
fixed can be modeled, but pose challenges for
implementation and enforcement of protected areas
based on such variables. Nevertheless, fishing
restrictions based on dynamic habitat conditions
have been implemented to reduce bycatch of log-
gerhead sea turtles Caretta caretta. Along the coast
of southern California, USA, fishing with drift gill-
nets is prohibited from June 1 to August 31 if El
Niño conditions exist or are predicted (Federal
Register 2002, 2007). Around the waters of Hawaii,
fishers are warned of higher risk of interaction with
turtles in areas within a certain sea-surface temper-
ature range (Howell et al. 2008). As more knowl-
edge about the interactions between protected spe-
cies and environment accumulates, habitat-based
management rules based on dynamic variables
may become more prevalent, but it is important to
take the uncertainty about the estimated habitat
relationship into account.
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