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INTRODUCTION

The use of accelerometers to remotely measure
animal behavior has increased in recent years (e.g.
Godfrey et al. 2008, Shepard et al. 2008, Sala et al.
2011). When attached to animals, these devices can
record acceleration due to animal orientation and
movement, so that animal behavior can be inferred
from the accelerometer data alone. Accelerometers
have been extremely useful in measuring behavior in
circumstances difficult for human observation, such
as in aquatic and aerial environments. Even in terres-

trial species, accelerometers can be used to record
animal behavior automatically without human pres-
ence. Such devices have been employed to remotely
measure animal walking distance (Rothwell et al.
2011), animal orientation (Lyons et al. 2005, Ringgen-
berg et al. 2010), and animal activity level and meta-
bolic rate (Wilson et al. 2006, 2008, Halsey et al. 2009,
Enstipp et al. 2011).

When animals engage in specific behaviors such as
walking, swimming, or flying, the associated move-
ments may result in signature patterns of acceleration
in the 3 physical dimensions. Thus, accelerometers
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placed onto the appropriate body parts of animal sub-
jects can be used to identify specific behaviors. For
example, accelerometers have been used to differen-
tiate between standing, sitting, floating, walking, fly-
ing, and diving in imperial cormorants (Gómez-Laich
et al. 2008), standing, lying down, ruminating, feed-
ing, normal walking, and lame walking in dairy cows
(Martiskainen et al. 2009), resting, walking, grazing,
and browsing in goats (Moreau et al. 2009), feeding
and breathing in loggerhead sea turtles (Okuyama et
al. 2009), and swimming and mating in nurse sharks
(Whitney et al. 2010).

The development of a system to collect and analyze
accelerometer data from elephants could be a power-
ful tool for monitoring elephant behavior in the wild
as well as for zoo management. In the wild, GPS and
accelerometer data could potentially be used to filter
and classify behavior patterns that in turn trigger
immediate wireless transmissions to appropriate per-
sonnel who could be guided to the location of the ele-
phant. For example, if accelerometer data indicated
signs of physical distress such as unusually high or
low activity or limping, then electronic alerts could
be sent to conservation biologists and wildlife veteri-
narians. Indeed, it has already been shown for dogs
and dairy cattle that accelerometers can distinguish
normal from impaired walking (Barthélémy et al.
2009, Chapinal et al. 2011). Additionally, if behavior
patterns associated with human−elephant conflict
could be characterized (e.g. head up, charging, flee-
ing), then electronic messages could be sent to wild -
life veterinarians and rapid-response anti-poach ing
units in real time. Such devices would greatly reduce
the lag time between the onset of elephant distress or
injury and the delivery of aid or deployment of law
enforcement personnel.

Accelerometer data may also become a useful tool
for the management of captive elephants. For example,
it is thought that lack of exercise in zoo elephants may
contribute to health problems such as osteo myelitis
(e.g. Gage 2001). Accelerometer data could be coded
into daily reports for animal managers and veterinari-
ans that include activity levels and rate of energy ex-
penditure (e.g. Wilson et al. 2008). Additionally, the
amount of time elephants engage in  specific behaviors
such as walking, feeding, playing, fighting, or swaying
could be documented for  caregivers.

The goal of this study was to determine whether
accelerometer data can effectively distinguish be -
tween several common elephant behaviors, expand-
ing on work by Rothwell et al. (2011) who placed
accelerometers in anklets that measured elephant
walking distance. Remote sensing devices such as

GPS units have traditionally been attached to ele-
phants by placing collars around their necks (e.g.
Wall et al. 2006). Similarly, at Disney’s Animal King-
dom®, we have developed GPS- and audio-record-
ing collars that elephants routinely wear around their
necks as tools in scientific studies (e.g. Soltis et al.
2005, 2011, Leighty et al. 2008). Collars are the chief
means of attaching recording devices to wild ele-
phants and thus provide the obvious means of
‘truthing’ the reliability and accuracy of accelerome-
ter data before any deployment in the wild. We
attached tri-axial accelerometers to the tops of collars
that elephants routinely wear around their necks at
Disney’s Animal Kingdom®. We sought to determine
whether data generated by the accelerometers could
distinguish between 4 behavior patterns: feeding,
bathing, walking, and swaying.

MATERIALS AND METHODS

Subjects and housing

The social group under study was housed at Dis-
ney’s Animal Kingdom®, Florida, USA, in a 1.64 ha
outdoor exhibit (for details see Leighty et al. 2009).
The naturalistic outdoor enclosure contained a pool in
which multiple adult elephants can fully submerge, a
mud wallow, multiple scratching surfaces, and large
rock rings that provide areas for animals to move out
of the visual range of other animals. The social group
included 3 adult females (31, 27, and 25 yr old) and
their 3 female offspring (2.5 mo, 5 yr, and 6 yr). One
non-related male (7 yr) was rotated into the social
group on a regular basis for socialization purposes,
bringing the maximum group size to 7 individuals.
Data presented here were collected from the 3 adult
females between 10 June and 30 December 2011.

Accelerometer and behavioral data collection

Tri-axial accelerometers (X9-2mini, Gulf Coast
Data Concepts) were attached to the existing audio-
and GPS-recording collars that the elephants rou-
tinely wear around their necks. These collars are
described in detail in Leighty et al. (2009). Ac cel -
erometers (0.8 × 2.5 × 6.5 cm; 17.5 g) were housed on
top of the collar such that the devices rested on top of
the elephants’ neck (Fig. 1). The device was inserted
into a waterproof housing, consisting of an enclosed
PVC pipe braced inside a short length of fire hose.
The accelerometer housing was bolted to the existing
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collar such that the device could not move independ-
ently of the collar. The accelerometer and casing
materials added 350 g to the existing 4.0 to 4.5 kg
audio- and GPS-recording collars. The orientation of
the device was as follows: the x-axis registered sway
(lateral, i.e.  left−right acceleration), the y-axis regis-
tered surge (anterior− posterior, i.e. front−back accel-
eration), and the z-axis registered heave (dorsal−
ventral, i.e. up−down acceleration; see Fig. 1). The
accelerometer was programmed to collect data at a
320 Hz sample rate with a 16-bit resolution for 7 h (to
bracket filming times).

To validate the accelerometer data against actual
behavior, we videotaped elephants in their outdoor
habitat while accelerometers were recording (except
for swaying, which was filmed in the elephant barn
before release into the outdoor enclosure). Time from
a hand-held GPS device (Garmin Rino 530) was used
to set the timer on the accelerometer and to time-
stamp the video with an audio cue, so that the
accelerometer and video data were synchronized. In
these analyses, we chose 4 active behaviors that
were either common or important elephant behav-
iors, and that occurred in long bouts: walking (sub-
ject moves at any speed), feeding (subject collects
food from the ground with the trunk, delivers food to
the mouth with the trunk, and consumes the food,
while standing), bathing (subject collects mud or
water with the trunk, and uses trunk to apply the
mud or water to various parts of the body, while
standing), and swaying (subject swings head back
and forth laterally in a repetitive, stereotypical man-
ner, while standing).

Accelerometer data measurement

Total acceleration is traditionally divided into 2
components: static and dynamic acceleration (e.g.
Shepard et al. 2008). Static acceleration refers to the
g-forces due to the overall orientation of the device
with respect to the gravitational field. For example,
when the accelerometer device is flat and still, then
the x-axis (sway) and the y-axis (surge) will read 0,
while the z-axis (heave) will read −1.0, the latter
reflecting the force of gravity. When the device is ori-
ented at a different angle but remains still, the force
of gravity will act on a different axis or be distributed
across 2 or 3 axes, depending on the exact orientation
of the device. This orientation is the static accelera-
tion. Dynamic acceleration refers to the g-forces due
to movement of the device.

Dynamic acceleration can be obtained by subtract-
ing the static acceleration from the total acceleration,
and we performed these calculations in Origin soft-
ware (version 8.5.1, Originlab) following Shepard et
al. (2008). First, the total acceleration data stream was
smoothed using a 2 s window to obtain the static
 acceleration component. Next, the static acceleration
values were subtracted from the total acceleration
values to obtain the dynamic acceleration. The result-
ing data correct for orientation of the device on the
animal, and are centered on 0. Deviations from 0 indi-
cate the magnitude of acceleration due to movement
of the device. Measurement of dynamic acceleration
was computed by taking the mean of the absolute
 values of the dynamic acceleration data. Fig. 2 shows
examples of dynamic acceleration in the 3 axes for the
4 elephant behaviors.

Measures of dynamic acceleration are ideal for de-
termining the magnitude of movement, but they are
not as useful for quantifying the periodicity of move-
ment. For example, Fig. 2 shows that walking and
swaying behavior show periodic oscillations, while
feeding and bathing show little to no such periodicity.
Time-series data analyses are useful for examining
such periodicity, and have been previously employed
to examine accelerometer data (Watanabe et al. 2005,
Sakamoto et al. 2009). We have made extensive use of
such time-series analyses in our acoustics research on
elephants (e.g. Soltis et al. 2011) and employed those
techniques here to examine this aspect of the data.

Processing of accelerometer data for time-series
analysis proceeded as follows. First, the total acceler-
ation data were transformed into acoustic (.wav) files
in Adobe Audition (version 2.0, Adobe Systems),
after which analyses were conducted in PRAAT (ver-
sion 4.5.18; Boersma & Weenink 2007) using fully
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automated routines (see Soltis et al. 2011 for exam-
ples of these techniques used on acoustic data). First,
the signal was low-pass filtered at 5 Hz (Hanning
window, 2 Hz smoothing), down-sampled to a 10 Hz
sample rate, and a Fourier transform was performed.
Noisy elements in the low frequencies (<0.35 Hz)
were present in most signals, and periodicity was
observed in frequencies below 1.5 Hz, so data from
the Fourier spectrum between 0.35 and 1.50 Hz were
analyzed. The maximum amplitude and standard
deviation of the resulting spectrum were calculated,
with higher values indicating higher degrees of peri-
odicity. To determine the absolute period, the fre-
quency with the highest amplitude (peak frequency)
was calculated. Fig. 3 shows examples of the Fourier
transforms for the 4 behaviors examined here.

Data analysis

We attempted to obtain ten 20 s sequences of each
behavior from each of 3 females, for a total of 30
sequences for each behavior, which would give suffi-

cient power for our statistical tests
(see below). Sequences of behavior
that did not last a full 20 s were not
used. We obtained the target number
of sequences from each fe male for
feeding, bathing, and walking, but we
could only obtain swaying behavior
from 1 female. This female swayed at
predictable times on most days, but
the other 2 females were rarely or
never observed swaying (keeper ob -
servations), did not sway at pre-
dictable times of the day, and were not
ob served swaying during any of the
ob servation periods of the study.
Therefore, we obtained 30 swaying
sequences only from the one female.

The behavioral measures described
above were conducted on these 120
data sequences and analyzed using
SPSS software (version 15.0). We per-
formed discriminant function analysis
(DFA) in order to determine whether
these measures of accelerometer data
could be used to classify unlabeled
behaviors into the correct behavioral
state (Quinn & Keough 2002). Data
were transformed and processed be -
fore conducting the DFA so as not to
violate data assumptions. First, the dis-

tribution of many variables exhibited right-skewed
outliers, so all variables were log10 transformed, which
increased normality. Second, many of the measure-
ments were highly correlated so we performed princi-
pal components analysis (PCA) prior to DFA, to
reduce the number of original variables to a smaller
number of uncorrelated factors. Factors with eigen-
values >1 were retained and Varimax-rotated, and
these factors were entered into the DFA in place of the
original variables. Third, homogeneity of variance as -
sumptions were not violated, as the PCA factor scores
exhibited almost identical variances.

For classification in the DFA, we used the ‘leave-
one-out’ technique, in which 1 behavioral sequence
of the 120 sequences is left out of each analysis. The
left-out sequence is then classified into 1 of the 4
behavioral states based on the functions derived from
the other sequences, and is scored as either correctly
or incorrectly classified. This process is repeated for
every behavioral sequence, so that an overall classi-
fication success percentage can be calculated. In the
leave-one-out classification, training and test data
are from the same individuals. In a more conserva-

258

Time (s)

D
yn

am
ic

 a
cc

el
er

at
io

n 
(g

)

0

0 

–2 

2 

2 

–2 

0 0 20 20 

x

x

y

y

z

z

WalkingFeeding

Bathing Swaying

Fig. 2. Loxodonta africana. Dynamic acceleration for 4 behaviors from 1 adult
female. Data for all 3 axes are shown (x: sway; y: surge; z: heave). The x- and
z-axes are offset by +1 and −1, respectively, to simultaneously visualize data 

from all 3 axes



Soltis et al.: Accelerometer measurement of elephant behavior

tive cross-validation analysis, functions are derived
from a training dataset and tested on an independent
dataset. We ran 3 separate cross-validation classifica-
tions, in which functions were derived from 2 sub-
jects (training data) and classification success was
tested on the remaining subject.

In addition to the DFA classifications, we also em -
ployed a decision tree using simple rules to classify
accelerometer data into behavioral states (e.g.
Gómez-Laich et al. 2008, Wilson et al. 2008). We
chose a 1 h behavioral sequence consisting of 50 min
in the outdoor enclosure and 10 min in the barn (to
include swaying behavior). For this analysis, we in -
cluded resting behavior (standing still while not en -
gaged in any of the other 4 behaviors defined above),
because subjects in the continuous behavioral se -
quence sometimes stood still while not en gaged in
other defined behaviors. The rules for classification

were based on the range of variation observed across
variables used to measure ac cel ero meter data in the
initial analysis outlined above, and on 3 min of rest-
ing data from 1 subject. The 1 h accelerometer data
sequence was spliced into 20 s sequences, after
which each sequence was classified into a behavioral
state based on the decision tree rules. In this way, we
produced an activity budget (percent of time en -
gaged in each behavior), and compared that to an
activity budget based on direct observation of the
behavior from video.

RESULTS

Descriptive statistics on the untransformed ac cel -
ero meter data for each of the 4 behaviors are shown
in Table 1. The 12 variables were reduced to 3 factors
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in the PCA, explaining 78.5% of the variance. The
first factor related to periodicity in all 3 axes, dynamic
acceleration in the sway and surge axes, and the
absolute period of movement in the surge axis; the
second factor related to the absolute period of move-
ment in the sway axis; and the third factor related to
dynamic acceleration and the absolute period of
movement in the heave axis. These 3 factors were
entered into the DFA in place of the original 12 vari-
ables. The first through third functions of the DFA
were statistically significant (Wilks’ lambda = 0.045,
df = 9, p < 0.001).

In the leave-one-out classification, the DFA suc-
cessfully categorized behavior patterns using these
accelerometer measurements (Table 2). Overall, the
leave-one-out classification was 90.8% successful at
classifying unlabeled behavioral sequences into the
correct behavioral category. The expected classifica-
tion success based on chance was 25%. Not all be -
haviors were as easily classified as others. Feeding,
walking, and swaying behaviors were rarely misclas-
sified with each other. However, bathing behavior
was sometimes confused with feeding and walking
(Table 2).

In the leave-one-out classification, training and test
data were from the same individuals. In the more
conservative cross-validation tests, we derived func-
tions based on 2 subjects at a time, and in each case

tested classification success on the remaining subject
(3 tests: Wilks’ lambda = 0.086, 0.085, 0.064; all df = 6;
all p < 0.001). Since swaying was only observed in 1
individual, cross-validation tests only included feed-
ing, bathing, and walking behaviors. The average
classification success across the 3 tests was 87.8%.
The expected classification success based on chance
was 33.3%. As in the leave-one-out classification,
walking and feeding were easily distinguished from
each other (each with an average of 90% classifica-
tion success), while bathing showed a lower success
rate of 83.3%.

Descriptive statistics from the foregoing analyses
were used to construct a simpler decision tree that
may be used for practical purposes (Fig. 4). We
applied the decision tree rules to a 1-h continuous
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Axis and measure                                    Feeding                         Bathing                      Walking                        Swaying

x dynamic acceleration (g)                  0.028 ± 0.010                0.073 ± 0.042              0.091 ± 0.027               0.130 ± 0.012
y dynamic acceleration (g)                  0.023 ± 0.008                0.061 ± 0.027              0.084 ± 0.025               0.089 ± 0.008
z dynamic acceleration (g)                  0.018 ± 0.005                0.039 ± 0.022              0.053 ± 0.013               0.070 ± 0.008
x maximum amplitude (dB)                    58.2 ± 3.6                        69.0 ± 4.3                      72.5 ± 2.7                       69.5 ± 2.0
y maximum amplitude (dB)                    57.9 ± 4.1                        67.2 ± 3.5                      73.4 ± 3.4                       66.4 ± 1.3
z maximum amplitude (dB)                     54.9 ± 3.3                        61.3 ± 4.3                      68.1 ± 2.8                       64.5 ± 1.4
x amplitude SD (dB)                              2.78 ± 0.82                    3.39 ± 0.89                  5.24 ± 1.34                   6.65 ± 1.74
y amplitude SD (dB)                              4.07 ± 1.08                    4.07 ± 1.18                  6.39 ± 1.35                   7.44 ± 1.03
z amplitude SD (dB)                              3.22 ± 1.27                    2.78 ± 0.72                  5.65 ± 1.53                   7.26 ± 1.17
x peak frequency (Hz)                         0.981 ± 0.335                0.690 ± 0.224              0.661 ± 0.370               0.446 ± 0.014
y peak frequency (Hz)                         0.731 ± 0.166                0.662 ± 0.137              0.825 ± 0.076               0.884 ± 0.033
z peak frequency (Hz)                         1.02 ± 0.217                1.08 ± 0.260              0.827 ± 0.173               0.889 ± 0.028

Table 1. Loxodonta africana. Accelerometer data descriptive statistics (mean ± SD)

                   Feeding       Bathing       Walking      Swaying

Feeding       27 (90)          3 (10)               0                   0
Bathing         3 (10)          26 (87)           1 (3)                0
Walking           0               3 (10)          26 (87)           1 (3)
Swaying           0                  0                   0             30 (100)

Table 2. Loxodonta africana. Confusion matrix from the
leave-one-out classification. Number (%) of trials catego-

rized correctly are shown in the bold diagonal

Decision tree  

Periodicity? 
(amplitude SD, all axes)  

<15                            >15 
No Yes 

Dynamic acceleration 
(all axes) 

<0.025 0.025–0.1 >0.1 
None Low       Medium 

Resting Feeding Bathing Walking Swaying
% Tree: 9.5 51.4 13.4 12.8 12.8
% Visual: 15.6 49.4 3.7 16.8 14.4
% Match: 61 96 28 76 89

Dynamic acceleration 
(sway axis) 

<0.11 >0.11
Low          Medium 

Fig. 4. Loxodonta africana. Decision tree for classifying a 1 h
stream of accelerometer data into behavioral states. % Tree:
percentage of time spent in each behavioral state based on
the decision tree analysis; % Visual: percentage of time
spent in each behavioral state based on visual observation of
behavior from video; % Match: percent match between the 

2 methods ([lowest percent / highest percent] × 100)
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stream of accelerometer data, and compared the
activity budget produced by the decision tree to that
produced by visual observation of the video. Overall,
the decision tree matched the visual observation with
70% accuracy. As in the previous classification ana -
lyses, the accuracy was relatively high for feeding
(96%), swaying (89%), and walking (76%), but was
very low for bathing (28%).

DISCUSSION

Summary of results

Data from tri-axial accelerometers placed on the
top of elephants’ necks successfully identified ele-
phant behaviors, when combining measures of over -
all dynamic acceleration with measures of periodicity
(for similar examples in cats and birds, see Watanabe
et al. 2005 and Sakamoto et al. 2009). When training
and test data were from the same individuals (leave-
one-out classification), a high overall success rate was
achieved (91%). This result suggests that accelero -
meters can in principle be highly effective behavioral
monitoring devices whenever validation tests can be
run on individual elephants, such as in zoos. Even in
the more conservative cross-validation tests, in which
training data came from 2 subjects and were tested
on the remaining subject, the overall classification
success was high (88%). Although further work will
be needed (see ‘Caveats and future directions’ be-
low), this result suggests that ac cel ero meter meas-
urements on a subset of elephants may be used to
measure behavior of individuals that have not been
tested previously; this finding makes the application
rather promising for wild elephants. Even a simple
decision tree showed modest overall success (70%) at
identifying behaviors from a continuous stream of ac-
celerometer data, compared to direct observation of
the behavior from video. Thus, accelero meters may
be a useful tool for remotely measuring behavior of
elephants wherever they are found.

Interpretation of results

Taken together, the validation tests showed that
elephant behaviors are detectable using accelero -
meters, but some behaviors were more readily distin-
guished than others. In general, swaying, walking,
and feeding were the most easily differentiated,
while bathing was often confused with feeding and
walking. Examination of the dynamic acceleration

and periodicity recorded for each of the behaviors
will shed light on the variable classification success
observed.

Feeding behavior exhibited very low dynamic
acceleration in all 3 axes, and little evidence of peri-
odicity of movement in any axis (Figs. 2 & 3). Search-
ing for food from the ground with the trunk and lift-
ing of the trunk to the mouth at irregular intervals did
not result in large movements of the neck and this
activity was not cyclic in nature. As such, feeding
was easily distinguished from the other behaviors
(Table 2), which exhibited either relatively high lev-
els of dynamic acceleration (bathing, walking, and
swaying) or greater periodicity of movement (walk-
ing and swaying).

Bathing behavior exhibited intermediate levels of
dynamic acceleration and little evidence of periodic-
ity of movement (Figs. 2 & 3). This reflected the low
levels of neck movement while the elephant was
using the trunk to acquire mud or water from ground
level, and the greater levels of acceleration when the
trunk was used to propel the water or mud onto vari-
ous parts of the body (i.e. under the body, over the
top of the body, and to the sides of the body). This
resulted in irregularly spaced spikes in dynamic
acceleration in all 3 axes, but little periodicity of
movement. Bathing behavior was sometimes con-
fused with other behaviors, in particular with feeding
and walking (Table 2). Bathing was confused with
feeding because of the structural similarity of using
the trunk to acquire food from the ground and using
it to acquire water or mud at ground level, at which
times the 2 behaviors would resemble each other.
Bathing was confused with walking when the walk-
ing gait was not rhythmic enough to detect periodic-
ity (for example, when the elephant was beginning to
walk or slowing to stop), at which times the lack of
periodicity and the relatively high acceleration
resembled bathing.

Walking behavior was characterized by variable,
but generally high dynamic acceleration and by vari-
able, but generally high periodicity of movement
(Figs. 2 & 3). The observed variation was probably
due to varying speeds of walking, in which slower
walking speeds resulted in less dynamic acceleration
and less periodicity of movement. Periodicity of
movement was apparent in all 3 axes, but was great-
est in terms of surge (front−back movement) and
heave (up−down movement), as the head moved
mainly up and down and backward and forward dur-
ing locomotion. The cycle frequency in the surge and
heave axes was about 1 cycle per 1.22 s, reflecting
the gait of the elephants in these observations.
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Swaying behavior was characterized by consistently
high dynamic acceleration and high periodicity of
movement (Figs. 2 & 3). This consistency was due to
the highly stereotypical nature of this behavior. In the
one individual for which we obtained swaying data,
the dominant motion was lateral swaying. This motion
produced relatively high dynamic acceleration and
periodic acceleration in the sway axis, with a cycle
frequency of about 1 cycle per 2.2 s. Swaying simulta-
neously produced high levels of dynamic and periodic
acceleration in the surge axis (front−back movement),
as the head moved in an arc during each swing, exert-
ing outward forces, and in the heave axis (up−down
movement), as the elephant dipped her head at the
beginning and end of each lateral swing. The period
of movement in the surge and heave axis was about
1.1 cycles s−1, about half of the period of the sway axis,
as the surge arcs and heave dips occurred twice per
lateral swing. Swaying was distinguished from walk-
ing mainly in the sway axis, the former exhibiting
greater dynamic acceleration and a longer cycle fre-
quency (Figs. 2 & 3).

In a more realistic analysis, we also processed a
continuous 1-h accelerometer data stream. For this
analysis, we used a simple decision tree (Fig. 4)
based on descriptive statistics in the original analyses
(Table 1). The activity budget based on the decision
tree generally matched the activity budget based on
direct observation of behavior (Fig. 4), but not all
behaviors were equally distinguishable. As the pre-
vious analyses showed, accelerometer data most
effectively distinguished feeding, walking, and sway -
ing behaviors, but not bathing behavior.

Caveats and future directions

The combination of standard measures of dynamic
acceleration and of periodicity successfully distin-
guished between elephant behavior patterns. Further
experimentation will determine which specific data
analysis methods are best for distinguishing elephant
behaviors, both in terms of complex statistical analyses
and the simpler decision tree rules. For example, hid-
den Markov models achieved a higher classification
success rate compared to methods similar to those
employed here, when categorizing elephant vocaliza-
tions by individual identity (see Clemins et al. 2005,
Soltis et al. 2005). For many practical applications,
however, such intensive statistical analyses will not be
possible. Thus, refinement of simple rules of thumb,
such as those described in Fig. 4, will be needed if
accelerometers are to prove useful in applied settings.

Moving forward, analyses will have to be con -
ducted on more individuals and ideally also across the
2 elephant species. In our cross-validation analysis,
we showed that accelerometer data associated with
feeding, bathing, and walking behavior in 1 elephant
could be used to successfully identify the same behav-
ioral states in another elephant, in di cating that those
specific behavioral patterns did not vary too greatly
across individuals. However, sample sizes will have to
be increased to determine the precise measurements
that are robust enough to generalize across a larger
number of individuals. This is also true of swaying,
which as noted was measured in only 1 animal, be-
cause even ‘stereotypical’ behaviors like swaying are
likely to differ in detail across individual elephants.
For example, swaying behavior may be predomi-
nantly side-to-side, as in this case, but can also occur
in a front-to-back motion (e.g. Gruber et al. 2000). It
should also be emphasized that this work was con-
ducted on adult females, so this process should be
 repeated for other age and sex classes as well.

Only 5 behavior patterns were examined in the
analyses reported here (including resting), so other
behaviors will need to be added in future analyses.
As other behaviors are added to such analyses, how-
ever, behaviors may become less distinguishable
from one another using accelerometers (e.g. see Mar-
tiskainen et al. 2009). Also, the 5 behaviors were cho-
sen because they occur in relatively long bouts so
that many 20 s sequences could be obtained for
analysis. Many other elephant behaviors are short-
lived, however, such as head-shaking and rubbing
the body against substrates. It is unclear whether
such short-lived behaviors will be amenable to time-
series analyses in the same way that more long-lived
behaviors are.

Finally, to be of use to many professionals working
with elephants, the process of measurement and
classification will have to be made robust, as noted
above, and then automated. At that point, the analy-
sis of behavior could be made in real time (with wire-
less download) or at least immediately upon retrieval
of the accelerometer (without wireless download). If
the technique is taken this far, it could have wide-
spread use for elephants worldwide. In zoos, accel -
ero meters could be used to compile daily reports of
elephant activity levels and behavioral profiles for
staff veterinarians and elephant managers. In the
wild, accelerometers combined with GPS units could
detect when elephants are in various types of distress
or danger, and send electronic messages to appropri-
ate personnel, such as wildlife veterinarians and anti-
poaching units (see ‘Introduction’ for more details).
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The preliminary results presented here indicate that
accelerometers attached to existing and widely used
elephant collars can distinguish between elephant
behaviors, and with further development can be
deployed as powerful tools for elephant care in both
wild and captive contexts.
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