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INTRODUCTION

Significant loss of marine biodiversity due to a vari-
ety of threats (pollution, resource extraction, climate
change, etc.) has led to a call for better conservation
and management planning in the marine environment
(Hughes 1994, Jackson et al. 2001, POC 2003, USCOP
2004). This has been reflected in a steady increase in
the number of spatially explicit marine planning efforts
undertaken over the last 2 decades (Leslie 2005).
Although conservation planning must be done at a
variety of scales (Lourie & Vincent 2004), mesoscale
planning efforts have garnered more attention recently,
as regional managers attempt to prioritize their conser-
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be predicted at regional scales by modeling of remotely
sensed bathymetric data.
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vation efforts and dollars. Such systematic conserva-
tion planning is based on explicit goals, and is most
commonly directed at the representation and protec-
tion of marine biodiversity (Margules & Pressey 2000,
Beck 2003, Leslie 2005). However, direct observation
and sampling of marine biodiversity is extremely time
consuming and expensive. Due to these constraints,
marine conservation planners have sought out proxies
for marine biodiversity to use in their models (Ward et
al. 1999, Margules & Pressey 2000).

Hard-bottom habitats (i.e. live coral, rock/coral rubble,
exposed low-profile carbonate and phosphorite sub-
strates, thinly covered hard substrate with emergent
growth, or artificial structures; SEAMAP-SA 2001)
support some of the highest levels of biodiversity in the
world (Connell 1978, Knowlton 2001). Hard-bottom
habitats are also vital to the life history of many endan-
gered species, including the napoleon wrasse Cheili-
nus undulatus, the banggai cardinalfish Pterapogon
kauderni, the hawksbill sea turtle Eretmochelys im-
bricata (IUCN 2004), and important commercial and
recreational fisheries (e.g. snapper/grouper and rock-
fish complexes; see www.safmc.net). Due to the high
correlation between hard-bottom habitat and high bio-
diversity, maps of hard-bottom are often used as prox-
ies for marine biodiversity in regional conservation
planning and in siting marine reserves (DeBlieu et al.
2005, Ferdaña et al. 2006). Thus, the identification of
hard-bottom habitat is a priority for marine conserva-
tion planners.

The most common methods employed to map hard-
bottom habitats are the use of fixed towed video cam-
eras, single or multibeam acoustic sonar, aerial photo-
graphy, and satellite imagery (e.g. Landsat, SPOT,
IKONOS, Quickbird). Although video cameras and
sonar are quite accurate, they are labor intensive and
have very small swaths or sampling extents. These
methodologies can also be expensive due to techno-
logy costs for sonar and fuel and labor costs for both
sonar and video. Towed cameras are further limited in
their ability to collect data by the turbidity of the water.
These types of high-resolution data are also typically
not available for the vast majority of marine environ-
ments in the developing world and much of the devel-
oped world. Aerial photography and satellite images
offer a much greater extent, but are also limited by
water depth (≤ 25 m) and turbidity, as well as cloud
cover, surface reflectance, and water turbulence. Due
to these problems, few mesoscale datasets have been
produced of hard-bottom habitat to assist regional con-
servation planning. One alternative gaining attention
is the integration of these techniques into regional
datasets (Todd & Greene 2007). Another option may be
the use of regional bathymetry datasets to create a
rugosity model to predict hard-bottom habitat.

Rugosity may be defined as the roughness of the
physical structure of the seafloor, and is a key element
and indicator of benthic habitat complexity (S. K.
Wilson et al. 2007)1. Numerous studies have shown a
strong correlation between either rugosity or benthic
complexity and reef fish assemblages (Luckhurst &
Luckhurst 1978, Roberts & Ormond 1987, McCormick
1994, Friedlander & Parrish 1998, Gratwicke & Speight
2005, S. K. Wilson et al. 2007), reviewed by Knudby et
al. (2007), rockfish assemblages (Yoklavich et al. 2000,
Williams & Ralston 2002, (NCCOS 2003), and gastro-
pod abundance and diversity (Beck 2000). Rugosity
has also been used to identify and classify benthic
habitats using light detection and ranging, LIDAR, also
known as airborne laser swath mapping (ALSM) (Brock
et al. 2004, 2006, Kuffner et al. 2007), single or multi-
beam sonar (Lundblad et al. 2006, M. F. J. Wilson et al.
2007), and remote sensing based on satellite imagery
(Pittman et al. 2007, Purkis et al. 2008). Recently, stud-
ies have combined the use of remote sensing and in
situ observations to create multi-scale predictive mod-
els of reef fish diversity (Pittman et al. 2007, Purkis et
al. 2008), or multi-scale benthic habitat models (M. F. J.
Wilson et al. 2007).

Although explanatory models based on the relation-
ship between rugosity and fish abundance and rich-
ness have been constructed previously, most of these
models were created at fine resolutions of 1 to 10 m
over small areas (Luckhurst & Luckhurst 1978, Fried-
lander & Parrish 1998, Gratwicke & Speight 2005) and
may not be applicable at other scales. Pittman et al.
(2007) identified this issue and used a multi-scale
approach to determine that remotely sensed measures
of rugosity alone may suffice to accurately predict
fish species richness. They specifically identified fairly
coarse grain rugosity (7225 m2) as the primary ex-
planatory variable in the model. Purkis et al. (2008)
found similar, though weaker association, beginning at
≤ 5030 m2. In the present study, we built on these find-
ings and provided a coarse-grained, remotely sensed,
regional predictor of hard-bottom habitat for the South
Atlantic Bight, to aid efforts at regional marine conser-
vation planning. This is the first regional hard-bottom
dataset produced from bathymetry that we are aware
of. Although Pittman et al. (2007), Purkis et al. (2008),
and the other studies mentioned previously attempted
to define the relationship between fish abundance or
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1For the sake of clarity, we use only the term ‘rugosity’ when
referring to the roughness of the sea floor. ‘Topographic
complexity’ and ‘benthic complexity’ are often used synony-
mously with ‘rugosity’; however, there are shades to their ex-
act definitions (see Ferdaña et al. 2006). Our use of ‘rugosity’
in the present paper refers to changes in the degree and di-
rection of relief and does not fully encompass other measures
of topographic or benthic complexity.
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diversity and rugosity, a regional model cannot assume
to do this due to lack of data. Instead, with our model,
we attempted to predict hard-bottom habitat as a
proxy for fish abundance and diversity.

While Pittman et al. (2007) made major strides in at-
tempting to bridge the gap between previous high-
resolution analyses and the needs of marine conserva-
tion planners (i.e. data for coarse-grain, large-extent
studies), the analysis was limited by the definition of
rugosity as the standard deviation of depth within a
specified extent. This is one of many algorithms for cre-
ating a rugosity index within a geographic information
system (GIS). Other analyses (Brock et al. 2004, Jenness
2004, Gratwicke & Speight 2005, Kuffner et al. 2007,
Purkis et al. 2008) have used a technique for defining
rugosity grounded in Dahl’s surface index (SI), which
characterizes rugosity as the ratio of the surface area to
the planimetric area (Dahl 1973). Rugosity indices have
been formulated in still other analyses using the line
density of the acceleration of the slope (i.e. the slope of
the slope) (Ardron & Sointula 2002). The authors have
also previously analyzed the use of bathymetric curva-
ture, and simple combinations of aspect variety and
depth difference in preliminary rugosity models. All of
these methods are valid and useful. However, many
have only been applied and tested on very high resolu-
tion (≤1 m2) local datasets with limited extents and all
are based on subjective, preconceived notions of how to
describe rugosity. Ideally, since marine spatial planning
needs to be performed at a variety of scales, both local
and larger regional models would be incorporated into
the planning process.

The lack of an empirical, mesoscale model to predict
hard-bottom habitat remains a gap between researchers
and managers, especially in developing countries and
other data-poor regions. For such regions, we present
here a method that can provide an initial predictor of
hard-bottom habitat and fill an important data gap. We
have created a data-driven model to predict areas of
hard-bottom habitat by including several possible
components of rugosity as predictor variables within a
logistic regression framework. The model is based on a
publicly available, coarse grain (~8100 m2) bathymetric
dataset, the National Geophysical Data Center Coastal
Relief Model (Divins & Metzger 2003), so as to meet the
needs of regional planners (e.g. Fishery Management
Councils, conservation NGOs, and state environmental
protection agencies).

MATERIALS AND METHODS

Study area. For the present study we used the South-
east Area Monitoring and Assessment Program (SEA-
MAP) database (SEAMAP-SA 2001), which describes

the location and extent of hard-bottom reef habitats
throughout the South Atlantic Bight. We selected 5
study sites between Jacksonville and Palm Beach on
the Atlantic coast of Florida in the United States based
on the availability of high-quality data from the
SEAMAP hard-bottom dataset. We chose these loca-
tions (N = 8091) for the consistency of the sampling
regimes spatially and by the gear type employed (both
within each location and amongst the locations) to
serve as the ‘observed dataset’ in our model. Sample
sizes varied between sites (range = 1037 to 2349 obser-
vations), as did the percentage of hard-bottom obser-
vations (range = 8.2 to 16.3%). Locations that had
>1 sample were removed, as were all ‘potential hard-
bottom’, ‘artificial hard-bottom’ and ‘artificial reef’
points, limiting the total dataset used in the analysis to
7264 observations.

The sample sites ranged in size from 202 to 969 km2

and were located in relatively close proximity to the
shore (mean ± SD distance of sampled locations = 11.1
± 6.4 km) on the upper continental shelf. The average
depth across all sites was 15.66 ± 5.11 m.

Predictor variables. We used variations on (e.g.
using different neighborhood sizes), and interactions
between, 12 continuous predictor variables. The vari-
ables included were: slope, SD of the depth, flow accu-
mulation (see http://support.esri.com/ for a detailed
description of the flow accumulation function), aspect
variety, slope difference, SD of the slope, distance to
high slope, curvature, fine-, and broad-scale bathy-
metric position index (Wright et al. 2005), and the ratio
of the surface area to the planimetric area. The vari-
ables flow accumulation and distance to high slope
resulted in values several orders of magnitude larger
than those of the other variables. These 2 variables
were log transformed to help standardize errors and
estimates. We derived all predictor variables used in
the logistic regression from a bathymetric dataset: the
National Geophysical Data Center (NGDC) Coastal
Relief Model (Divins & Metzger 2003), which provides
depth data for the coast of the United States at a reso-
lution of 3 arc-seconds or ~90 m (~8100 m2). We down-
loaded a custom grid of the bathymetric data encom-
passing the study sites (from 31 to 27° N, from the coast
to 79.75° W) from the NGDC website, and manipulated
it in ArcMAP 9.1 (ESRI 2005). Although there was
significant and strong correlation between some of the
predictor variables, we included all variables in the ini-
tial stepwise model as we did not plan on analyzing
coefficient estimates and errors, but simply wanted the
model with the best predictive ability.

We created all variables in ArcMap (ESRI 2005) as
raster grids. Slope, aspect, curvature, and flow accumu-
lation rasters were created from the bathymetry grid
using functions within the Spatial Analyst Extension
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(ESRI 2005). Rasters of SD of depth and slope, as well as
the variety of aspects, were generated by passing a
moving 3 × 3 cell window over slope, depth, or aspect
grids and calculating a summary statistic for the neigh-
borhood (i.e. the variety or SD). We produced the slope
difference raster by subtracting the mean of a 9-cell
moving window from the value of the center cell. The
distance to high slope areas was calculated by reclassi-
fying the slope grid into 2 classes using Jenks Natural
Breaks, and then taking the Euclidean distance to the
nearest high slope area for each grid cell. The ratio of
surface area to planimetric area was calculated using
the ArcView 3.x extension, Surface Areas and Ratios
from Elevation Grid v. 1.2 (Jenness 2004). Both fine-
scale and broad-scale bathymetric position index (BPI;
see Wright et al. 2005, Lundblad et al. 2006) grids were
constructed using the Benthic Terrain Modeler (BTM)
extension for ArcMap 9.x (Wright et al. 2005).

Analytical framework. We modeled the presence or
absence of hard-bottom habitat as a function of pos-
sible components of rugosity using a multiple logistic
regression (Hosmer & Lemeshow 1989, Nelder &
McCullagh 1989). Generalized linear models (GLMs)
have frequently been used in presence/absence mod-
els and are easily interpretable (Guisan & Zimmer-
man 2000). We tested variables derived from a coarse
(~90 m) bathymetric dataset to determine if they could
be used to reasonably predict the presence or absence
of hard-bottom habitat. We performed all statistical
analyses using the R open-source software package
(R-Development-Core-Team 2004), and used the ‘glm’
function from the base ‘stats’ package in R (Venables &
Ripley 1999, R-Development-Core-Team 2004) and the
‘stepAIC’ function from the MASS package (Venables
& Ripley 1999) to implement the logistic regression. As
our response variable was binary (presence or absence
of hard-bottom habitat), we selected the binomial fam-
ily and a logistic link function for the GLM. We per-
formed model selection by using Akaike’s information
criterion (AIC; Akaike 1973, 1974), as well as through
the comparison of the area under the curve (AUC) of the
receiver operator characteristic (ROC) curves (Green &
Swets 1974, Hanley 1982, Lusted 1984). All stepwise
regression model selection was based on which model
had the lowest AIC score.

We completed the analysis in 2 stages: (1) creation
and selection of a mesoscale rugosity model; (2) com-
parison of the empirical model to models based on
existing formulations of rugosity.

(1) We created and compared 3 models to predict
hard-bottom habitat. First, we ran a ‘maximal model’
that included all variables and second-order interac-
tion terms. We assumed this model would overfit the
data, but that it would represent the highest level of
prediction achievable using these variables. Next, we

included all variables from the maximal model in a
backward and forward stepwise regression (referred
to as the ‘stepwise model’). The stepwise regression
model was then stripped of all variables that were not
significant (p > 0.05). After reiterating the stepwise
regression model without these terms, several other
terms failed to exhibit significant results (p > 0.05) and
were consequently removed. We included the remain-
ing variables in the final ‘stripped model’.

(2) We compared the predictive ability of the best
model from the first stage of the analysis with 3 com-
monly used models of rugosity: Dahl (1973)/Jenness
(2004), Wright et al. (2005), and Pittman et al. (2007).
We also included one further model using SD of depth
and the variety of aspects, as we had used this proxy for
rugosity previously. The Dahl/Jenness model included
only the surface area ratio, and the Pittman model in-
cluded only SD of depth. The Wright model (using the
BTM) included slope, surface area ratio, and BPI at both
fine and broad scales. We reproduced each of the other
4 models as a regression model using the same pres-
ence/absence data for hard-bottom habitat used to cre-
ate our empirical models.

We further evaluated the ‘best’ model by analyzing
ROC curves using the ROCR package (Sing et al.
2005). We constructed ROC curves for the best model
and analyzed them with respect to the model’s sensi-
tivity or the true positive rate (number of true positive
predictions/number of positive samples), and speci-
ficity or the true negative rate (number of true negative
predictions/number of negative samples). The inter-
section of these 2 graphs maximizes the percent of
both presence and absence (i.e. hard-bottom habitat
and non-hard-bottom habitat) that may be correctly
predicted at the same time. This intersection also cor-
responds to a cutoff point of the response variable (y)
in the logistic regression that may be used to achieve
the stated level of simultaneous prediction.

Our interpretation of AUC follows Hosmer & Le-
meshow (1989) in considering an AUC of 0.5 as ‘no
discrimination’, 0.7 to 0.8 as ‘acceptable discrimina-
tion’, 0.8 to 0.9 as ‘excellent discrimination’, and >0.9
as ‘outstanding discrimination’.

Finally, we created predictive maps of the likelihood
of hard-bottom habitat across the South Atlantic Bight
by reproducing the equation of the best regression
model in the Map Algebra tool within ArcMap.

RESULTS

We compared AIC and AUC values for the maximal,
stepwise and stripped models. Models with low AIC val-
ues and high AUC values were considered to be better
than those with higher AIC values and lower AUC
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values. All 3 models exhibited AUC values on the high
end of the ‘acceptable’ range (Fig. 1). Although the max-
imal model had the highest AUC (AUC = 0.765), the AIC
value for the maximal model was higher than both the
stepwise regression model and the stripped stepwise
regression model (AIC = 2022.5, 1971.4, and 1969.3,
respectively). AUC values and AIC values for the step-
wise and stripped models were very similar (0.763 and
0.757, respectively). In an effort to create a simpler, more
easily interpretable and reproducible model for man-
agers to use to predict hard-bottom habitat, we used the
stripped model in the next stage of the analysis.

Stripped model explanatory variables

The stripped model used a large number of explana-
tory variables (Table 1). We attempted to substitute for,
or eliminate, a number of the second-order interaction
terms, but found significant increases in AIC and
decreases in AUC each time. Six first-order terms were
included in the final model: (1) variety of aspects, (2)
slope difference from a 3 × 3 neighborhood, (3) SD of
the slope, (4) log of distance to high slope areas, (5) sur-
face area ratio, and (4) fine-scale BPI. Two of these, SD
of the slope and neighborhood slope difference were
highly correlated, and their coefficient estimates were
not interpreted. The variety of aspects and the surface
area ratio both reflect measures of the degree of rugos-
ity in an area. Increases in these values led to a higher
likelihood of hard-bottom habitat. The model indicated
an inverse relationship between distance from high
slope areas and likelihood of hard-bottom habitat,
indicating a decrease in the probability of hard-bottom
habitat further away from high slope areas. There
was also an inverse relationship between fine-scale
BPI and probability of hard-bottom habitat, though no
immediate explanation for this relationship was found.

The second-order terms included in the best model
were not easily explained. It is clear that SD of slope,
variety of aspects, surface area ratio, and fine-scale BPI
all played significant roles as interaction terms. We
conjecture that areas of high slope deviation were
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Table 1. Predictor variables and coefficients retained in the logistic regression model that ‘best’ predicted hard-bottom habitat (the
Stripped Stepwise Regression Model). Variables were selected through backward and forward stepwise regression from an initial
maximal model containing all first- and second-order terms. All non-significant values were stripped from the final model. Pr(>|z|)
is the two-tailed p-value corresponding to the z ratio (z score) based on a normal distribution expressed in units of its distribution’s 

standard deviation. ***p = 0.001; **p = 0.01; *p = 0.05; (–) p = 0.1. SD: standard deviation; BPI: bathymetric position index

Predictor variable Estimate ± SE z Pr(>|z|) p

(Intercept) (–5.121 ± 1.160) × 104 –4.413 1.02 × 10–5 ***
Relative aspect variety (4.279 ± 1.400) × 104 3.057 2.234 × 10–3 **
Slope difference (–5.084 ± 2.124) × 104 –2.393 1.6698 × 10–2 *
SD of slope (6.468 ± 1.621) × 104 3.989 6.62 × 10–5 ***
Log of distance to high slope (–1.509 ± 0.317) –4.761 1.92 × 10–6 ***
Surface area (5.121 ± 1.160) × 104 4.413 1.02 × 10–5 ***
Fine-scale BPI (–3.893 ± 1.145) –3.401 6.70 × 10–4 ***
Relative aspect variety:slope (2.001 ± 0.603) × 101 3.321 8.98 × 10–4 ***
Relative aspect variety:surface area (–4.279 ± 1.400) × 104 –3.057 2.234 × 10–3 **
Relative aspect variety:log of flow accumulation (–6.958 ± 3.480) × 10–1 –1.999 4.5564 × 10–2 *
SD of slope:slope (3.251 ± 1.550) × 101 2.097 3.5994 × 10–2 *
Slope:SD of depth (–3.254 ± 1.245) × 101 –2.613 8.987 × 10–3 **
Difference from mean slope:SD of slope (–9.474 ± 5.139) –1.843 6.5260 × 10–2 (–)
Difference from mean slope:surface area (5.084 ± 2.124) × 104 2.393 1.6700 × 10–2 *
SD of slope:log_slope_dist (3.572 ± 0.857) 4.169 3.06 × 10–5 ***
SD of slope:SD of depth (1.373 ± 0.388) × 101 3.539 4.02 × 10–4 ***
SD of slope:surface area (–6.469 ± 1.621) × 104 –3.990 6.62 × 10–5 ***
Log of distance to high slope:fine-scale BPI (8.770 ± 3.388) × 10–1 2.589 9.631 × 10–3 **
Fine-scale BPI:SD of depth (3.206 ± 1.117) 2.872 4.083 × 10–3 **
Fine-scale BPI:broad-scale BPI (7.293 ± 2.799) × 10–1 2.606 9.173 × 10–3 **



Mar Ecol Prog Ser 377: 1–11, 2009

even more important when they coincided with large
differences in depth. This combination relates to the
degree of relief and complexity in the benthic environ-
ment. The correlations between SD of depth, SD of
slope, slope, and surface area make further specula-
tion about the role of most of the second-order vari-
ables in the model inappropriate.

Empirical versus pre-formulated model comparisons

The stripped regression model was better at predict-
ing hard-bottom habitat than the 4 commonly used
rugosity models (Fig. 1). The other 4 models produced
‘acceptable’ discrimination levels (AUC > 0.7), but
were not as good as the stripped stepwise regression
model (AUC = 0.757). AIC values for these models
(AIC > 2011) were also substantially worse than those
for the stripped model (AIC = 1969.3). The stripped
stepwise regression model was thus the best model for
predicting hard-bottom habitat, and its performance
was more closely evaluated to better understand its
true predictive ability.

‘Best’ model evaluation

The AUC for the stripped model (Fig. 2a) is consider-
ably better than random (AUC = 0.5), and corresponds
to the middle portion of the ‘acceptable discrimination’
range. When both the true positive rate and the
true negative rate are simultaneously maximized, the
model correctly predicts areas of both hard-bottom and

non-hard-bottom habitat with 70% accuracy (Fig. 2b).
The cutoff (i.e. the y-value from the regression equa-
tion) associated with this level of prediction is 0.035.
Although the model was created using only ‘hard-bot-
tom’ data points from the SEAMAP dataset, the model
appears to also predict ‘partial hard-bottom’ areas well
(Fig. 3). A map of the probability of existence of hard-
bottom areas in the South Atlantic Bight was created
using this model (Fig. 4).

DISCUSSION

Filling data gaps in marine conservation planning

Although there has been an increase in the number
of regional marine planning efforts over the last 2
decades, models to support the site prioritization tools
that drive these plans have lagged behind. Limited
data availability in developing countries has exacer-
bated this issue. Systematic conservation planning to
represent and protect marine biodiversity requires spa-
tially consistent, large-area datasets to allow compar-
isons to be drawn between sub-regions. However,
most marine research is done over small areas and at
high resolution, in an effort to control for unknowns
and to better differentiate between the effects of vari-
ables. The needs of marine managers and researchers
have often been at odds, and the gap between the
products of one and the needs of the other has steadily
widened (but see Valentine et al. 2005, Pitcher 2007).
In the present study, we attempted to fill this gap by
using the knowledge generated in small-scale studies
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Fig. 2. (a) Receiver operator characteristic curve and (b) sensitivity/specificity curves for the ‘stripped’ regression model
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to create an empirically predicted dataset at a resolu-
tion and scale useable by marine resource managers.
The regional hard-bottom dataset created in the pre-
sent study is unique, and the methodology used to cre-
ate it can be applied to any other marine environments
and regions. Further, by employing a fairly low-resolu-
tion (90 m) bathymetry dataset to predict hard-bottom
habitat, we have opened up to developing countries
that may have no access to high-resolution datasets the
possibility of incorporating this type of information into
planning exercises.

The present study focussed on one more data gap in
regional marine resource management: data availabil-
ity in non-coastal areas. Most previous regional marine
planning efforts have been highly focused on the
land–sea interface because, at least in part, it contains
the most easily accessible data. Recently, several

national and international programs have begun to
concentrate on non-coastal mapping (e.g. the Euro-
pean Union’s Mapping European Seabed Habitat pro-
gram and Australia’s National Marine Bioregionalisa-
tion program). However, most models continue to focus
on readily available population density and road den-
sity data, land-use classifications and estuarine habi-
tat maps, and other datasets related to land-based
anthropogenic effects on the marine environment. Few
marine species habitat maps have been available on a
regional scale, and thus incorporating them into such
systematic planning schemes is difficult. Although we
limited our model to depths of <60 m, this encom-
passes most of the continental shelf in the southeastern
United States and thus dramatically enlarges the area
over which managers can reasonably extend their
planning efforts. In addition, although the applicability

7

Fig. 3. Detail of predicted likelihood of hard-bottom habitat and observed samples from the SEAMAP hard-bottom dataset 
(including ‘potential hard-bottom’ sites) based on the stripped regression model
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of this model to other bathymetric datasets should be
tested, the present study shows that the methodology
is sound and should be transferable to predicting hard-
bottom habitat on the continental slope (see M. F. J.
Wilson et al. 2007) and the abyssal plain.

Model applicability

Fish species richness, and marine biodiversity more
generally, have repeatedly been shown to be related to
both hard-bottom habitat and rugosity. Pittman et al.
(2007) directly suggested that, in the absence of data
on habitat types, rugosity could be a useful surrogate
for reef fish diversity. Our map of predicted hard-
bottom habitat (Fig. 4) is the logical conclusion of our
attempt to apply this knowledge on a regional scale.
By presenting this map and the model it is based on,
we hope to offer regional marine resource planners in
both developing and developed countries a regional
proxy for hard-bottom habitat and an initial indicator
of marine biodiversity. This dataset could be used in
site prioritization algorithms such as Marxan (Possing-
ham et al. 2000), or to quantify and compare the likely
amount of hard-bottom habitat being protected in
existing marine reserves. It might also prove useful as
an input in analyses of coral patch connectivity for
areas where reef locations have not been identified. In
this scenario, areas predicted to have hard-bottom
habitat would be used as spawning locations in larval
dispersal and network connectivity models (see Treml
et al. 2008).

This method will also be useful to USA state fisheries
agencies and regional fisheries councils as they
attempt to comply with the essential fish habitat (EFH)
standards in the re-authorized Magnuson-Stevens
Fishery Conservation and Management Act and move
towards an ecosystem approach to fisheries (EAF). As
traditional fisheries management continues to fail to
prevent overfishing in numerous fisheries (POC 2003,
USCOP 2004, NOAA 2007), governmental bodies are
also turning more and more to marine protected areas
(MPAs) as a possible means of regulating fisheries and
increasing fishery resilience (Sumaila et al. 2000,
Halpern 2003). All of these new standards and man-
agement measures require a regional dataset of ben-
thic habitat types. The current study presents an effi-
cient method for these administrative bodies to take
a first step towards incorporating habitat type and
marine biodiversity into their planning, using free and
readily available datasets.

This type of model may also prove useful as a com-
parison to low data-density areas in mosaic datasets
created from a variety of data sources (e.g. the dataset
used in this analysis: SEAMAP-SA 2001). These data-
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Fig. 4. Final predicted map of likelihood of hard-bottom habitat
along the South Atlantic Bight based on the ‘stripped’ regression 
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sets may have numerous problems that raise uncer-
tainty in their results (e.g. irregular spatial sampling,
the variety of different methods/gears employed, the
assumption of habitat presence based on capture of
obligate species, and inconsistencies between sam-
pling results at the same location). Evaluation of our
model results in relation to these data-deficient areas
will help increase confidence in the results and use of
such mosaic datasets.

The authors are implementing a workflow that links
all of the software tools needed to produce a predicted
hard-bottom map for regions where this model is not
directly applicable. Such a model would require simi-
lar bathymetric and presence/absence hard-bottom
datasets for that region. Tools already exist to create
several of the explanatory variable layers from the
bathymetry data, including surface area and fine- and
broad-scale BPI (Wright et al. 2005), and work is
underway to create tools for the remaining variables.
Once complete, these tools will be linked to spatially
explicit statistical modeling software such as Marine
Geospatial Ecology Tools (Roberts et al. 2008), which
can fit regression models, create predicted presence/
absence maps, and evaluate model performance using
ROC curves and other metrics.

Model performance

All the empirical models we tested performed better
than the pre-formulated algorithms. AIC values for all
pre-formulated models except the BTM model were
considerably higher than our models. AUC values
showed less difference, but, again, our models per-
formed better in this respect. The pre-formulated
algorithms of rugosity have never been tested in a
regression model. It is likely that the coefficients and
equation formulated by the regression model signifi-
cantly improved the results of these models for the pur-
pose of predicting hard-bottom habitat. For this reason
we recommend that regression analysis (e.g. GLMs,
generalized additive models, classification, regression
trees) be used regardless of which and how variables
are chosen to be included in future attempts to build
rugosity models on any scale.

Although, in our study area, the other models tested
in this analysis did not discriminate between hard-
bottom and non-hard-bottom areas as effectively as
the empirical regression models, this in no way invali-
dates their prior use in other analyses. The stripped
stepwise regression model was the ‘best’ model to pre-
dict this particular regional dataset, with its low relief,
coarse resolution, and large extent. All of the other
models were used to analyze different datasets, gener-
ally at much higher resolutions and over much smaller

areas. However, from the perspective of predictive
ability as interpreted by AUC, the pre-formulated
models in the present study still provided ‘acceptable’
results. The simplicity of these models and the low
data-processing requirements associated with them
make them an interesting alternative or an even faster
‘first-look’ at where hard-bottom habitat is likely to
exist.

Model limitations and future directions

Application of this methodology should work for a
wide variety of benthic terrain types. However, this
model itself is only applicable to low relief, nearshore,
large-area studies. Use of this model without adjust-
ment to predict hard-bottom habitats outside of the
continental shelf of the southeastern USA is recom-
mended only if strong similarities between the benthic
environment in the 2 areas can be proven (i.e. habitat
types, amount of relief, etc.) and the resolution of the
input bathymetric dataset is similar. In all other cir-
cumstances, we recommend using the methodology
set out in this paper to formulate a new predictive
model.

Questions still remain regarding the ability of meso-
scale models to directly predict species diversity, rich-
ness, and abundance. While our model does not directly
predict these indices, it is meant to predict an indicator
of them (i.e. hard-bottom habitat). Due to this, further
groundtruthing of this model must be done at indi-
vidual sites to determine if it not only predicts hard-
bottom habitat, but is also a direct indicator of species
diversity, richness, or abundance. The cost and time
associated with such a project, however, precluded its
inclusion in the present study. Macroscale studies have
often found depth and latitude to be important fac-
tors in predicting diversity, richness, and abundance,
as well as fish assemblages (Yoklavich et al. 2000,
Williams & Ralston 2002, NCCOS 2003). These factors
should also be included in marine spatial planning to
help ensure representation of different species assem-
blages and to refine or weight biodiversity proxies.

The present study was limited by the coarse resolu-
tion of the bathymetric dataset and the errors inherent
in the response variable dataset (i.e. the SEAMAP
hard-bottom dataset). It is very likely that the model
could be significantly improved if either of these 2
issues were resolved. Users should also be aware of
data gaps in the coastal relief model bathymetry
dataset. There are clearly anomalous areas and data-
deficient areas within this dataset, and the predictive
ability of our model is inhibited by this.

Numerous potential components of rugosity were
included in this analysis as explanatory variables.
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However, we did not attempt to find threshold values
for the variables or test the use of the continuous vari-
ables against binary versions. As we saw in the final
model from the inclusion of the variable representing
the distance from the high slope, but not the variable
for the slope itself, variables using thresholds may be
more relevant than the straight variable in predicting
hard-bottom habitat. We also did not look at variables
at multiple scales. In particular, BPI could have been
examined over different neighborhoods (as in M. F. J.
Wilson et al. 2007). These factors, and other methods
for transforming the predictor variables, should be
taken into account in future rugosity models.
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