ABSTRACT: Dispersal is a critical process in the life history of nearly all plant species and can be facilitated by both abiotic and biotic mechanisms. Despite an abundance of vertebrate fauna utilizing seagrass meadows as a feeding area and thus capable of consuming and excreting seeds, little work has been conducted on biotic seed dispersal mechanisms. The objectives of this study were to (1) determine whether seeds of the seagrass *Zostera marina* could pass through the digestive systems of resident and transient vertebrates of a seagrass bed and remain viable and (2) determine seed retention times in the guts of each species to estimate dispersal distances of *Z. marina* seeds by vertebrate dispersers. Excretion and germination rates of consumed seeds for 3 fish species (*Fundulus heteroclitus*, *Sphoeroides maculatus*, *Lagodon rhomboides*), 1 turtle species (*Malaclemys terrapin*) and 1 waterfowl species (*Aythya affinis*) showed *Z. marina* seeds could survive passage through species’ digestive systems and successfully germinate. Excretion rates were generally highest for *F. heteroclitus*, *S. maculatus*, and *M. terrapin*, lowest for *A. affinis*, and moderate for *L. rhomboides*. Analyses suggest seeds were significantly affected by species’ digestive tracts. Maximum dispersal distances are estimated to be 200, 60, 1500, and 19,500 m for *F. heteroclitus*, *L. rhomboides*, *M. terrapin*, and *A. affinis*, respectively. Data here provide strong evidence that biotic dispersal can occur in *Z. marina*, and biotically transported seeds can be dispersed to isolated areas unlikely to receive seeds via abiotic mechanisms. Biotic dispersal may rival or exceed abiotic mechanisms. Future seagrass dispersal models should incorporate biotic dispersal as a seed transport mechanism.

KEY WORDS: Seeds · Dispersal · Vertebrates · *Zostera marina*
dispersal events may be more common than previously considered, regardless of the life-history traits of plants (Clark et al. 1998, Nathan et al. 2008).

In terrestrial systems, biotic dispersal of propagules occurs through ingestion and excretion of viable seeds or via seeds externally attached to the body of the dispersing agent (Chambers & MacMahon 1994, Debussche & Isennmann 1994, Figuerola et al. 2002, Figuerola & Green 2004). Biotic dispersal distances can range from meters to kilometers, depending on the dispersal agent (e.g. ants and deer, respectively; Myers et al. 2004). Despite knowledge of terrestrial biotic dispersal processes, little is known about them in marine angiosperms, the seagrasses, and whether seeds can actually survive passage through the gut of different species.

Seagrasses are found in most shallow coastal waters around the world (Green & Short 2003) and can reproduce both asexually (rhizome elongation) and sexually (seeds). Currently, mechanisms of dispersal in seagrasses have been described as primarily abiotic, via winds and currents acting on floating propagules (Churchill et al. 1985, Orth et al. 2006, Kendrick et al. 2012). Few studies have highlighted biotic dispersal mechanisms, e.g. waterfowl (Agami & Waisel 1986, 1988, Charalambidou et al. 2003). A number of vertebrate species, including sireniens, turtles, waterfowl, and fishes (Cottam et al. 1944, Adams 1976, Kendrick et al. 2012), are known to consume seagrass through either direct feeding on shoots which may contain seeds or indirect feeding on the associated epiphytes and epifauna (Thayer et al. 1984). Several feeding studies of fauna that inhabit seagrass beds have found either seed fragments or entire seeds in their guts (Adams 1976, Figuerola et al. 2003, Sumoski & Tulipani pers. obs.), providing evidence that seeds are ingested in the foraging process. Observations indicate that much of the ingested material, including seeds if present, may be excreted with minimal damage (Thayer et al. 1984).

This study investigates biotic dispersal mechanisms in the seagrass *Zostera marina* (eelgrass). *Z. marina* is widely distributed in the North Atlantic and Pacific Oceans and in the Mediterranean Sea (Green & Short 2003). It is abundant in the Chesapeake Bay region, USA, where it produces seeds in flowering shoots from late May to early June. Currently, reported dispersal mechanisms for *Z. marina* are abiotic and include floating seeds, floating reproductive shoots with mature seeds, and seeds moving across the sediment from currents (Churchill et al. 1985, Orth et al. 1994, Harwell & Orth 2002). However, *Z. marina* supports dense populations of animals, including fishes and waterfowl, acting as both habitat and a food source for these occupants (Adams 1976, Thayer et al. 1984, Moore & Short 2006, authors’ pers. obs.).

While some studies have examined the consumption of seeds of several different seagrass species by fauna (Agami & Waisel 1986, 1988, Charalambidou et al. 2003), none have examined biotic dispersal of *Zostera marina* nor estimated the dispersal distances of resident and non-resident species that may consume seeds. Our objectives in this study were to (1) determine whether *Z. marina* seeds can pass through the guts of different resident and transient vertebrates and remain viable and (2) determine seed retention times in the guts of each species to estimate dispersal distances of *Z. marina* seeds by vertebrate dispersers.

MATERIALS AND METHODS

Zostera marina seeds for the feeding experiments were obtained from mature flowering shoots present in *Z. marina* meadows in late May to early June, 2009 to 2011, in South Bay on the seaside of the Delmarva Peninsula, Virginia, USA (37°16’20” N, 75°48’51” W). Seeds were separated from reproductive shoots and stored using methods described by Marion & Orth (2010). Prior to feeding trials, seeds were assessed for viability by gently squeezing them and checking individual fall velocities (Marion & Orth 2010).

Feeding trials

Five possible biotic dispersal species representing a range of vertebrate types found in *Zostera marina* beds within Chesapeake Bay were chosen for feeding trials based on literature reports of the presence of *Z. marina* seeds in guts, abundance in seagrass beds, foraging strategy that would allow for the ingestion of seeds, or personal observations (Table 1). Three species were assumed to have a short dispersal potential of <1 km: *Fundulus heteroclitus* (mummichog), *Sphoeroides maculatus* (northern puffer), and *Lagodon rhomboides* (pinfish); and 2 species showed the potential to disperse seeds at distances >1 km: *Malaclays terrapin* (diamondback terrapin) and *Aythya affinis* (lesser scaup) (Adams 1976, Orth & Heck 1980, D. Tulipani unpubl. data). These species can ingest seeds either by feeding directly on *Z. marina* (*L. rhomboides* TL: >80 mm, *A. affinis*), or by
indirectly consuming seeds by feeding on epiphytes and epifauna (L. rhomboides < 80 mm, F. heteroclitus, S. maculatus, M. terrapin). Feeding trials were conducted from July to November in 2009, 2010, and 2011, based on the availability of species each year (Table 1).

Fishes and terrapins were collected from nearby Zostera marina meadows by trawling, seining, or using a minnow trap. Fishes were selected for length to ensure seed consumption, particularly Lagodon rhomboides which had been found to have Z. marina seeds present in their guts (Table 2 in Adams 1976). L. rhomboides undergoes an ontogenetic shift in feeding strategy from omnivory to herbivory between 80 and 120 mm (Stoner & Livingston 1984). We used specimens that would be considered herbivorous (Table 2). Specimens were transported to the laboratory in aerated holding tanks. Individuals were kept in separate aerated aquaria. Test specimens were offered seeds placed in a feeding matrix (Fundulus heteroclitus: squid gelatin; L. rhomboides, Sphoeroides maculatus: shrimp; Malacemys terrapin: blue crab claw). Prior to each experiment, test specimens were placed in individual aquaria and starved for 12 to 48 h. At the initiation of each feeding trial, viable Z. marina seeds were placed in feeding matrices and subsequently fed to the test specimens. M. terrapin, S. maculatus, and L. rhomboides were fed 3 to 5 seeds for each feeding trial, while F. heteroclitus were fed seeds until satiated. Total number of seeds used for each species each year is given in Table 1. Non-consumed seeds were enumerated by either counting and removing fallen seeds at the bottom of the tank or by siphoning the bottom of the tank for seeds. In the 2010 and 2011 feeding trials, a mesh screen separated fish specimens from the bottom of each tank to prevent re-consumption of seeds. This behavior was noted during the 2009 F. heteroclitus feeding trials. Fishes were left undisturbed for 24 to 48 h after feeding, at which time all excreted seeds, including damaged seeds or seed coats, were removed from tank bottoms, in order to determine excretion rates. Terrapin cages were cleaned daily, and water was sieved to extract excreted seeds, both whole, as well as damaged. Intact seeds were stored in 25 ml vials containing each specimen’s appropriate aquarium water. Lengths of feeding trials varied for all species, but generally were conducted until all seeds were excreted, or in a few individual cases, an additional 24 h beyond the species observed seed retention time (S. Sumoski pers. obs.).

Specific retention time of seeds in the guts of fishes was estimated by feeding either a single seed or glass bead mimic (~1 mm²) to ensure no digestion occurred. We noted no difference in excretion times between seeds and beads when incorporated into the test. Fishes were then monitored hourly for seed or bead excretion. Retention time of seeds in the guts of Malacemys terrapin was estimated by monitoring excretion of seeds at frequent intervals during feeding trials.

Aythya affinis were held at the United States Geological Survey—Patuxent Wildlife Research Center, Maryland, USA. Individuals were fed seeds in a food slurry using Lafeber’s Emerald Exotic Carnivore Diet (Lafeber Company) to ensure their stomachs were full during the feeding trial (R. Therrien pers. comm.). Specimens were then placed in individual 50 gallon (ca. 190 l) tubs with ambient seawater filled halfway, a mesh screen separating them from the bottom, and an

Table 1. Number of individuals for each species used in the feeding trials and total number of seeds consumed for each trial year

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Trial year</th>
<th>No. of individuals</th>
<th>No. of seeds consumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundulus heteroclitus</td>
<td>2009</td>
<td>14</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>17</td>
<td>176</td>
</tr>
<tr>
<td>Malaclemys terrapin</td>
<td>2009</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>Sphoeroides maculatus</td>
<td>2009</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>9</td>
<td>84</td>
</tr>
<tr>
<td>Lagodon rhomboides</td>
<td>2010</td>
<td>14</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>10</td>
<td>106</td>
</tr>
<tr>
<td>Aythya affinis</td>
<td>2011</td>
<td>4</td>
<td>969</td>
</tr>
</tbody>
</table>

Table 2. Number of specimens, mean fork length (mm), and mean weight (g) of specimens used in the experiments for each species during the experimental period. nd = no data

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Years</th>
<th>No. of specimens</th>
<th>Mean fork length ± SD (mm)</th>
<th>Mean weight ± SD (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundulus heteroclitus</td>
<td>2009−2010</td>
<td>31</td>
<td>84.23 ± 8.66</td>
<td>nd</td>
</tr>
<tr>
<td>Sphoeroides maculatus</td>
<td>2010−2011</td>
<td>4</td>
<td>143.75 ± 26.57</td>
<td>nd</td>
</tr>
<tr>
<td>Lagodon rhomboides</td>
<td>2010−2011</td>
<td>14</td>
<td>123.36 ± 13.57</td>
<td>nd</td>
</tr>
<tr>
<td>Malaclemys terrapin</td>
<td>2009−2010</td>
<td>14</td>
<td>nd</td>
<td>263.78 ± 75.30</td>
</tr>
<tr>
<td>Aythya affinis</td>
<td>2011</td>
<td>4</td>
<td>nd</td>
<td>681.25 ± 15.48</td>
</tr>
</tbody>
</table>
opaque cover to minimize stress to the animal. Individuals were allowed to swim undisturbed for 6 to 7 h (observed seed retention time: 2 to 5 h) after which the individuals were removed and the tubs were drained, with all water siphoned into a 1.0 mm sieve to retain excreted seeds—both damaged and intact. Retention time of seeds in the guts of *A. affinis* was determined by mixing a dye marker in the carnivore diet and monitoring for excretion of the marker.

Control experiments included 3 to 5 seeds being placed in each feeding matrix and salt water during each feeding trial for at least 2 h before being removed and placed in a vial for storage. A second control (‘seawater control’) consisted of seeds held in plain seawater. Controls for *Aythya affinis* consisted of seeds placed in the food slurry and seeds placed in the food slurry and dye combination.

Germination tests

Excreted seeds were stored in 25 ml vials with seawater until November of each trial year, which immediately preceded the natural germination time of *Zostera marina* in Virginia (Moore et al. 1993). Seeds were planted in 1.0 mm sieved sediment collected from the York River, Virginia, USA. Seed planting depth was approximately 5 to 10 mm. The location of each seed was recorded by specimen to ensure proper identification of each emergent seedling. Sediment containers with seeds were placed in an outdoor tank with standing water and covered with a shade cloth. Temperature and salinity were monitored and kept at ambient conditions matching those of the neighboring York River. Ice was removed as necessary. Seedling emergence was monitored weekly until March, at which time the sediment was sieved through a 1.0 mm sieve and all seedlings and ungerminated seeds were removed and counted. Seedlings were identified based on the presence of a cotyledon or green shoot. Seeds which had not germinated were stripped of their seed coat and soaked in a 1.0% Tetrazolium staining solution for 24 h to determine the presence of living tissue, an indication of seed viability (Conacher et al. 1994).

Dispersal distances of each species were estimated using reported movement rates based on literature values and observed seed retention times in the guts of individual species. These estimates were then compared to distances reported for abiotic dispersers.

Analysis

Germination rates were compared among the 5 species by conducting survival analysis using the Lifetest procedure in SAS (independent variable: specimens used, dependent variable: seed excretion rate; SAS Institute). This test estimates the survival distributions and equality of the given variables, while making no assumptions about the given distributions (Dixon & Newman 1991).

Relationships between specimen length (*Fundulus heteroclitus*, *Sphoeroides maculatus*, *Lagodon rhomboides*) or weight (*Malaclemys terrapin*, *Aythya affinis*) (Table 2) and seed evacuation rates were investigated using logistic regressions in R statistical software. The binary response variables allowed consumed seeds to be placed in either an ‘excreted’ or ‘non-excreted’ category.

In order to determine the combined effects of seed loss during gut passage and subsequent mortality prior to germination, excretion and germination rates were multiplied for each species. This proportion analysis was compared to germination rates of each control for the respective species to assess the overall germination among controls or biotic dispersers. A survivorship analysis was applied using the Cox proportional hazards model (Newman & Dixon 1996, Proc PHREG) to each species germination rate through time while in the sediment and at the end of the experiment. This test typically assesses the probability of death throughout a given interval of time. It is used here to compare the germination of seeds that have passed through the gut of a specimen versus control seeds, thus resulting in hazard ratios where a value of 1 = a specimen-consumed seed and control seed are equally likely to germinate by the next point in time, <1 = a control seed is more likely to germinate than a consumed seed by the next point in time, and >1 = a specimen-consumed seed is more likely to germinate than a control seed by the next point in time.

RESULTS

Excretion and germination rates of viable *Zostera marina* seeds varied by species and trial year and were generally highest for *Fundulus heteroclitus*, *Sphoeroides maculatus*, and *Malaclemys terrapin*, lowest for *Aythya affinis*, and moderate for *Lagodon rhomboides*. Excretion rates for *F. heteroclitus* were higher in 2010 (99%) than in 2009 (76%), while they decreased for *S. maculatus* between 2010 and 2011. *M. terrapin* had relatively high excretion rates, yet
low germination success. Overall, germination rates were highest among fish species and lowest in *A. affinis* (Fig. 1).

Observed seed retention times for passage of single seeds or beads were 15 to 20, 7 to 10+, 7 to 10+, and 2 to 5 h in *Fundulus heteroclitus*, *Sphoeroides maculatus*, *Lagodon rhomboides*, and *Aythya affinis*, respectively. Retention times were estimated to be between 24 and 144 h for *Malaclemys terrapin*.

Germination success of *Zostera marina* seeds was assessed across all 5 species and including all trial years for each species. Post-gut passage success of seeds varied significantly by species ($\chi^2 = 20.926$, df = 4, $p = 0.0003$). *Malaclemys terrapin* had the lowest success rate among the 5 species; *Fundulus heteroclitus* and *Sphoeroides maculatus* had among the highest germination success (Table 3).

Germination rates of consumed seeds compared to control seeds indicated the feeding matrix had an effect on seed survival in *Malaclemys terrapin* (in 2010) and *Lagodon rhomboideus* and *Sphoeroides maculatus* (both in 2011) (Fig. 2). Controls suggest gut passage has little effect on survival in *S. maculatus* (in 2010) and *Fundulus heteroclitus* (in 2010), yet increases the chance of seed mortality when passing through guts of *Aythya affinis* (Fig. 2).

In 5 instances hazard ratios had significant values, indicating the seed survivorship is likely being affected by the gut of the animal: *Malaclemys terrapin* (in 2010), *Lagodon rhomboideus* (in 2010, 2011), and *Sphoeroides maculatus* (in 2011) when comparing the feeding trial against the seawater control, and

Table 3. Total proportion of seeds germinated for all species and individuals used throughout the trial years

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Trial years</th>
<th>No. of individuals</th>
<th>Proportion germinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundulus heteroclitus</td>
<td>2009–2010</td>
<td>31</td>
<td>0.39</td>
</tr>
<tr>
<td>Malaclemys terrapin</td>
<td>2009–2010</td>
<td>17</td>
<td>0.14</td>
</tr>
<tr>
<td>Sphoeroides maculatus</td>
<td>2009–2011</td>
<td>12</td>
<td>0.37</td>
</tr>
<tr>
<td>Lagodon rhomboideus</td>
<td>2010–2011</td>
<td>24</td>
<td>0.32</td>
</tr>
<tr>
<td>Aythya affinis</td>
<td>2011</td>
<td>4</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Aythya affinis when comparing the feeding trial against the control with food and dye (Table 4). Hazard ratios indicated better germination via the consumed seed when feeding trials were compared to both controls in *S. maculatus* (in 2010). Values were closest to being equal for all feeding trials against all controls and all years in *Fundulus heteroclitus* (Table 4).

Specimen size had little effect on seed survival during gut passage: *Fundulus heteroclitus* (in 2010) ($Z = 0.143_{0.101,175}$, $p = 0.886$), *Lagodon rhomboideus* ($Z = 1.549_{0.025,61}$, $p = 0.121$) and *Sphoeroides maculatus* ($Z = 1.858_{0.016,56}$, $p = 0.063$). Fish length did have a significant effect on seed emergence post-consumption in *F. heteroclitus* trials in 2009 when seeds were possibly re-ingested ($Z = 3.889_{0.03,201}$, $p = 0.0001$; Table 4). Seed passage time was not correlated with the weight of *Malaclemys terrapin* ($Z = 0.249_{0.005,60}$, $p = 0.803$), while weights of *Aythya affinis* did have a significant effect on seeds ($Z = 5.064_{0.008,969}$, $p = 4.11 \times 10^{-7}$).

![Fig. 1. Excretion and germination rates of *Zostera marina* seeds consumed by *Fundulus heteroclitus*, *Sphoeroides maculatus*, *Lagodon rhomboideus*, *Malaclemys terrapin*, and *Aythya affinis*. Feeding trials were conducted in 2009, 2010, and 2011.](image1)

![Fig. 2. Germination rate (%) of *Zostera marina* seeds in controls compared to experimental treatments for seeds consumed by *Fundulus heteroclitus*, *Malaclemys terrapin*, *Lagodon rhomboideus*, *Sphoeroides maculatus*, and *Aythya affinis*. For *A. affinis*: +: control seeds with feeding matrix and dye marker; ++: control seeds with feeding matrix.](image2)
In the 2010 feeding trials, 204 seeds did not germinate, but 30 still had intact and rigid seed coats. None of these 30 seeds stained with tetrazolium, suggesting these seeds were also non-viable. In the 2011 germination trials, 131 seeds did not germinate, but 35 had intact and rigid seed coats. Only 3 stained positively with tetrazolium, suggesting these seeds were viable.

Maximum dispersal distances were calculated as the product of literature reported values of species movements and estimates of observed seed retention times in guts (Table 5) for *Fundulus heteroclitus*, *Lagodon rhomboides*, *Malaclemys terrapin*, and *Aythya affinis* and were determined to be 200, 60, 1500, and 19,500 m, respectively (Fig. 3). No movement data were available for *Sphoeroides maculatus*, but a dispersal distance may be expected in the range of *F. heteroclitus* and *L. rhomboides* (Able & Fahay 2010).

Table 4. Cox proportional hazard model survivorship analysis for each species and year of feeding trial compared to controls with and without feeding matrices. Hazard models are used here to determine germination of consumed versus control seeds. PE: parameter estimate; SE: standard error; *H*: hazard ratio; +: control seeds with feeding matrix and dye marker; ++: control seeds with feeding matrix; *p ≤ 0.05*

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Year</th>
<th>Consumed seeds versus feeding matrix control</th>
<th>Consumed seeds versus seawater control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PE</td>
<td>SE</td>
</tr>
<tr>
<td>Fundulus heteroclitus</td>
<td>2009</td>
<td>−0.017</td>
<td>0.351</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>−0.161</td>
<td>0.346</td>
</tr>
<tr>
<td>Malaclemys terrapin</td>
<td>2010</td>
<td>−0.519</td>
<td>1.414</td>
</tr>
<tr>
<td>Lagodon rhomboides</td>
<td>2010</td>
<td>−0.519</td>
<td>0.367</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>−0.587</td>
<td>0.476</td>
</tr>
<tr>
<td>Sphoeroides maculatus</td>
<td>2010</td>
<td>0.378</td>
<td>0.378</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>−0.137</td>
<td>0.387</td>
</tr>
<tr>
<td>Aythya affinis</td>
<td>2011</td>
<td>−0.868+</td>
<td>0.305+</td>
</tr>
</tbody>
</table>

Table 5. Seed retention times estimated from single seeds or beads, recorded daily movement and maximum distances traveled for each species, are combined to estimate seed dispersal distances for each species. nd = no data

<table>
<thead>
<tr>
<th>Species</th>
<th>Observed gut retention</th>
<th>Daily movement</th>
<th>Maximum distance traveled</th>
<th>Dispersal estimate</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundulus heteroclitus</td>
<td>15–20</td>
<td>200</td>
<td>600–3600</td>
<td>200</td>
<td>Skinner et al. (2005)</td>
</tr>
<tr>
<td>Sphoeroides maculatus</td>
<td>7–10+</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>Present study</td>
</tr>
<tr>
<td>Lagodon rhomboides</td>
<td>7–10+</td>
<td>nd</td>
<td>60</td>
<td>0–60</td>
<td>Potthoff & Allen (2003)</td>
</tr>
<tr>
<td>Malaclemys terrapin</td>
<td>24–144</td>
<td>1430</td>
<td>8000</td>
<td>1500</td>
<td>Ernst & Lovich (2009), D. Tulipani (pers. comm.)</td>
</tr>
</tbody>
</table>

In the 2010 feeding trials, 204 seeds did not germinate, but 30 still had intact and rigid seed coats. None of these 30 seeds stained with tetrazolium, suggesting these seeds were also non-viable. In the 2011 germination trials, 131 seeds did not germinate, but 35 had intact and rigid seed coats. Only 3 stained positively with tetrazolium, suggesting these seeds were viable.

Maximum dispersal distances were calculated as the product of literature reported values of species movements and estimates of observed seed retention times in guts (Table 5) for *Fundulus heteroclitus*, *Lagodon rhomboides*, *Malaclemys terrapin*, and *Aythya affinis* and were determined to be 200, 60, 1500, and 19,500 m, respectively (Fig. 3). No movement data were available for *Sphoeroides maculatus*, but a dispersal distance may be expected in the range of *F. heteroclitus* and *L. rhomboides* (Able & Fahay 2010).
DISCUSSION

Three years of feeding experiments indicated that *Zostera marina* seeds could survive passage through the guts of species in very different functional groups (fishes, turtles, birds) and successfully germinate. This is the first study to date to demonstrate survival of *Z. marina* seeds after ingestion by an animal, and provides evidence that biotic dispersal of *Z. marina* seeds is possible and needs to be considered in the dispersal dynamics of this species.

Seed excretion and germination

Excretion and germination rates varied among the 5 species both within and between years and may be a function of both foraging ecology and gut morphology of the individual species. Excretion rates of *Lagodon rhomboides* were lowest of the fish species used, and survivorship analyses yielded hazard ratios suggesting loss of seeds due to gut morphology in both 2010 and 2011. Other species showing significant effects from digestive tracts on seeds included *Malaclemys terrapin* (in 2010), *Sphoeroides maculatus* and *Aythya affinis* (both in 2011), suggesting mechanical or chemical weakening of the seed coat while in the gut of these species (Baskin & Baskin 1998). Similar effects were apparent when comparing germination rates of experimental treatments to controls. Results of each test suggest either gut morphology or feeding behavior is damaging some of the seeds in the species used in these experiments. *L. rhomboides* are primarily herbivorous at the size range used here, with dentition to crush seeds prior to entering the digestive tract and an extended intestine for further breakdown of plant material (Stoner & Livingston 1984, Luczkovich et al. 1995). *A. affinis* also feeds directly on seagrass and contains a gizzard comprised of grit to grind and break down plant cell walls (Cottam et al. 1944). *M. terrapin* selectively chooses epifauna, such as barnacles (D. Tulipani pers. comm.), which are broken down in the buccal cavity before entering the digestive tract. Secondarily consumed seeds are subject to this process (Bels et al. 1998). *S. maculatus* have beak-like jaws used to feed on and crush shelled invertebrates (Targett 1979). In addition, it is possible that our use of feeding matrices influenced overall seed mortality; it is likely that fewer seeds are destroyed when offered in combination with other food. However, despite our observations that all species used here have the capacity to damage seeds during the feeding and digestive processes and that the added feeding matrices may have influenced overall mortality, our data show that a number of seeds can successfully pass through their guts and germinate.

Lengths and weights of species generally had little effect on seed survival. Specimen length had a significant effect on seed excretion rate for *Fundulus heteroclitus* in the 2009 experiments, but not in 2010, when re-consumption of seeds within the 24 to 48 h feeding was eliminated, suggesting that fish length may not be a factor here. Weights of *Aythya affinis* also had a significant effect on excretion rates. It is more likely that the small sample size contributed to this value.

Seed-dispersal distances

A critical component of dispersal is the distance a seed moves from its parent to a location suitable for germination, growth, and survival (Harper 1977, Nathan & Muller-Landau 2000). In biotic dispersal that distance is a function of how long a seed remains in the gut and how far the individual moves during that time period (Figueroa et al. 2010). Estimated dispersal distances assume linear movement, which could overestimate a dispersal calculation if a species changes directions during movements (Table 5). Our estimates compare favorably with several mechanisms of abiotic dispersal for *Zostera marina* and other seagrass species (Fig. 3) (Kendrick et al. 2012), with the possible exception of *Aythya affinis* and *Malaclemys terrapin* where dispersal may exceed abiotic distances. We think dispersal distances of waterfowl may exceed what we have noted here. The seed retention times we observed for *A. affinis* were relatively short compared to published literature values which exceed 24 h in some species (Charalambidou et al. 2003, Figuerola et al. 2010), suggesting that waterfowl that ingest *Z. marina* seeds may disperse seeds much further than the reported distances for *A. affinis*.

While the majority of biotic consumers will likely transport seeds shorter distances than abiotic mechanisms (Fig. 3), we suggest there may be distinct advantages for seeds dispersed by biotic mechanisms. Biotic dispersers are typically either permanent or transient residents of seagrass beds and are free to move within or between beds (Orth & Heck 1980). In dense seagrass areas, much of the habitat range of a biotic disperser may also be suitable for seagrass growth. Species foraging either directly or indirectly on the grass will likely reside within suit-
able growth areas to remain close to food sources, thus increasing their effectiveness as a dispersal agent. In contrast, abiotic dispersal is limited in movement by wind and currents (Kendrick et al. 2012), and, once exported from the seagrass bed, seeds could arrive in areas not suitable for seagrass growth, e.g. intertidal areas or regions of low salinity. Occasionally, biotic dispersers may aid in seagrass survival when scarification due to acidification or chemical weathering in the gut prompts early germination (Baskin & Baskin 1998, Herrera 2002). In many cases successful biotic dispersal adds to the genetic diversity of existing seagrass beds or may establish new seagrass populations in areas distant from established beds (Howe & Smallwood 1982, Olivieri et al. 1995, Herrera 2002). Biotic dispersal of seagrass seeds may be more common than previously considered (Kendrick et al. 2012). Most seagrass beds support dense assemblages of small and large consumers (Thayer et al. 1984, Valentine & Heck 1999), a number of which are seasonally transient (Adams 1976, Orth & Heck 1980) and are potential consumers of seeds. A number of field studies have reported terrestrial and macrophyte seeds in waterfowl feces and digestive tracts that are either directly consumed or indirectly when foraging for benthic invertebrates (Guppy 1906, Baldwin & Lovvorn 1994, Ntiamoa Baidu et al. 1998, Mueller 1999, Green et al. 2002, Figuerola et al. 2010). In addition, tropical seagrass beds support omnivorous fishes and megafauna, such as manatees, dugongs, and green turtles, capable of applying intense grazing pressure and possibly consuming large quantities of seeds in the process (Thayer et al. 1984, Preen 1995, Valentine & Heck 1999, McDermid et al. 2007, Kendrick et al. 2012). These megafauna forage within ranges of 0 to 15 km² and 0 to 50 km² for manatees and dugongs, respectively, or travel 0.6 to 3.3 km h⁻¹ for green turtles (Godley et al. 2002, Deutsch et al. 2003, Sheppard et al. 2006). Seeds surviving gut passage of these vertebrates are capable of being dispersed distances greatly exceeding those of abiotic mechanisms (Fig. 3).

CONCLUSIONS

Our first-order experiments conducted here in a laboratory setting conclusively prove that Zostera marina seeds can be ingested, excreted whole, and germinate successfully, by a variety of vertebrate species. Given that several studies have found seagrass seeds in guts of fishes and birds, we suggest that successful dispersal via biotic mechanisms may be more common than previously considered (Kendrick et al. 2012). As it is highly likely that many seeds are ingested indirectly during foraging activities of a particular species, subsequent studies should begin to focus on seed ingestion rates under field conditions when species have a diversity of food choices. The density of grass consumers also influences the likelihood and frequency of indirect seed dispersal. Seed ingestion rates may be high in tropical areas where grazing is more intense, particularly by large herbivores, such as dugongs and turtles. More importantly, the ability of seeds to successfully pass through the gut of a waterfowl species offers support for a mechanism of long-distance dispersal, as this group of vertebrates is numerically important in many areas of the world (Clausen et al. 2002, Green et al. 2002). While seeds will suffer mortality during the ingestion and digestive processes, some proportion of seeds can be expected to survive, germinate, and grow to adult plants, leading to the colonization of new habitats (Nathan et al. 2008). Finally, our data suggest that future seagrass dispersal models should incorporate biotic dispersal mechanisms.

Acknowledgements. This work was funded by a Virginia Institute of Marine Science (VIMS) student assistantship and the 2011 VIMS student research grant. The authors thank personnel from the USGS Patuxent Wildlife Research Center, the VIMS SAV laboratory, S.E.S.’s thesis committee, fellow VIMS students, especially Diane Tulipani, and faculty for their assistance in collecting specimens and analyzing data. We appreciated the excellent comments from 3 anonymous reviewers. This is Contribution No. 3253 from the VIMS.

LITERATURE CITED

Afton AD (2009) Chronology and rates of migratory movements, migration corridors, and habitats used throughout the annual cycle by female lesser scaup radio-marked on pool 19 of the Mississippi River. Annual Progress Report, 30 November, 2009. USGS Louisiana Cooperative Fish and Wildlife Unit, Baton Rouge, LA

Agami M, Waisel Y (1988) The role of fish in distribution and germination of seeds of the submerged macrophytes
Najas marina L. and Ruppia maritima L. Oecologia 76: 83–88

Sumoski & Orth: Biotic dispersal in eelgrass 9
routines and diets of waterbirds in coastal lagoons in Ghana. Ibis 140:89–103
202–228
Orth RJ, Heck KL Jr (1980) Structural components of eel-
grass (Zostera marina) meadows in the lower Chesape-
ake Bay—fishes. Estuaries 3:278–288
Orth RJ, Luckenbach M, Moore KA (1994) Seed dispersal in a marine macrophyte: implications for colonization and
Potthoff MT, Allen DM (2003) Site fidelity, home range, and tidal migrations of juvenile pinfish, Lagodon rhom-
boides, in salt marsh creeks. Environ Biol Fishes 67:231–240
Sheppard JK, Preen AR, Marsh H, Lawler IR, Whiting SD, Jones RE (2006) Movement heterogeneity of dugongs,
Skinner MA, Courtenay SC, Parker WR, Curry RA (2005) Site fidelity of mummichogs (Fundulus heteroclitus) in an
Atlantic Canadian estuary. Water Qual Res J Canada 40:
288–298
Targett TE (1979) A contribution to the biology of the puffers Sphoeroides testudineus and Sphoeroides spengleri
from Biscayne Bay, Florida. Fish Bull 77:292–295
Thayer GW, Bjorndal KA, Ogden JC, Williams SL, Zieman
JC (1984) Role of larger herbivores in seagrass communi-
ties. Estuaries 7:351–376
dence for the continued grazing of marine grasses. Mar
Ecol Prog Ser 176:291–302
seeds really dispersed by birds at larger spatial and tem-
poral scales? J Biogeogr 24:61–65
Wilkinson DM (1999) Birds and seed dispersal; a response to

Editorial responsibility: Kenneth Heck Jr.,
Dauphin Island, Alabama, USA

Submitted: June 11, 2012; Accepted: October 26, 2012
Proofs received from author(s): November 30, 2012