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INTRODUCTION

Monitoring survey programs provide valuable eco -
system information such as data on spatial and tem-
poral trends in abundance that inform, for instance,
marine spatial planning and adaptive management
(Halpern et al. 2008). The state variables in monitor-
ing programs are typically abundance, relative abun-
dance, or density, but estimating these variables is
difficult and costly (Pollock et al. 2002) and may not
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ABSTRACT: Monitoring programs often collect
presence− absence data to understand range ex -
pansions or contractions, metapopulation dynamics,
alien species invasions, or spatial and temporal
trends in relative abundance. Using the proportion
of sites occupied by a species is misleading, how-
ever, if surveys routinely fail to detect species
that are present. We used chevron traps paired
with underwater videos (N = 1555) in a binomial
(presence−absence) generalized additive modeling
framework to quantify how environmental condi-
tions, habitat characteristics, and the number of
individuals at each site (i.e. site abundance) influ-
enced the detection probabilities of economically
important reef fish species in the southeastern
USA. After accounting for variable site abundance,
trap detection probabilities declined 40% for red
porgy Pagrus pagrus, 65% for gray triggerfish
 Balistes capriscus, and 75% for vermilion snapper
Rhomboplites aurorubens as percent hard bottom
increased from 0 to 100%. Increasing water tem-
perature caused red porgy trap de tection proba -
bility to decline modestly, while for gray triggerfish
and vermilion snapper it increased substantially.
Underwater video was more likely to de tect black
sea bass Centropristis striata, red porgy, and gray
triggerfish when site abundance and water clarity
were high and the video camera was facing down-
current. Using multiple gears simultaneously, we
quantified the ways in which predictor variables
influenced the sampling process, which will help in
designing surveys that maximize detection proba-
bility. Our results also suggest that pairing video
cameras to trawls, fisheries acoustics, or nets allows
for the estimation of detection probabilities.

Adding video cameras to fish traps can enable estimation of
reef fish detection probabilities for each gear.
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be appropriate for rare or elusive species (Thompson
2004). Moreover, capture probability is nearly always
assumed to be constant across space, time, habitat
types, or environmental conditions, an assumption
that is often unverified or incorrect (Hangsleben et
al. 2013).

A lower-cost state variable often used instead of
abundance or density is the occupancy rate of a spe-
cies, defined as the proportion of sampling units
occupied by a species, or sometimes the probability of
presence within a sampling unit. It is based on the
patterns of a species’ presence or absence across a
landscape or over time (MacKenzie et al. 2006). Infor-
mation on the occupancy rates of species is particu-
larly useful for understanding range expansion and
contraction (Bartolino et al. 2011), meta population
dynamics (Hanski 1999), and invasions by alien spe-
cies (Reshetnikov & Fice tola 2011). Occupancy rates
are also used as a surrogate for  population size or
species abundance, especially at large spatial scales
and for cryptic, rare, or territorial species (MacKenzie
2005).

Occupancy rates are misleading, however, if sur-
veys fail to detect species that are truly present at a
site (Monk 2014). It is essential to discriminate be -
tween true absence of a species at a site (i.e. struc-
tural zeroes) and the survey simply missing the
 species (i.e. sampling zeroes; MacKenzie et al. 2006).
Not properly accounting for sampling zeroes (i.e.
imperfect detection probability) leads to underesti-
mated occupancy rates, biased habitat assessments,
flawed management decisions, and possibly signifi-
cant ecological and economic losses (Tyre et al. 2003).

Various approaches are used to estimate, or explic-
itly account for detection probability, in cluding mark−
recapture, distance sampling, removal techniques,
and occupancy modeling approaches. Each can be
used to estimate detection probabilities, and thus
provide better estimates of occupancy rates (see
review by Katsanevakis et al. 2012). Although meth -
odologies that account for im perfect detection are
frequently used in wildlife studies, rarely are they
employed to study fish species (MacKenzie et al.
2002, Rota et al. 2009). When carefully applied to
marine fish species, however, methods accounting
for imperfect detection have helped improve our
understanding of sampling biases and the drivers of
fish occupancy rates (Issaris et al. 2012, Coggins et
al. 2014).

Here we use a novel paired sampling gear ap proach
(i.e. fish traps with attached underwater video cam-
eras) in a binomial modeling framework to relate the
detection probabilities of 5 reef fish species to envi-

ronmental conditions, habitat characteristics, and rel-
ative abundance along the South east Atlantic coast
of the USA (SEUS). These species are targets of vari-
ous fisheries in the region, and their management
could be improved with a better un derstanding of
how the fishery-independent sampling process might
be influenced by predictor  variables. If we ignore
imperfect detection, then scientific inferences only
pertain to the portion of the population available to
sampling, not the total population (Pollock et al.
2004).

MATERIALS AND METHODS

Study area

We used fishery-independent chevron trap and
underwater video data from the Southeast Reef Fish
Survey (SERFS) to determine which variables in -
fluenced detection probabilities for various reef fish
species in the SEUS (Fig. 1). We used 2011−2012
SERFS data in our analyses, a time when underwater
video cameras were attached to traps deployed
throughout the study area between North Carolina
and Florida (Fig. 1).

The SERFS survey is designed to sample reef fish
species and therefore targets hard substrate on the
continental shelf and shelf-break, the preferred habi-
tat of many economically important reef fish species
in the region (Schobernd & Sedberry 2009). The con-
tinental shelf and shelf-break in the SEUS are domi-
nated by sand and mud substrates, but reef fish spe-
cies associate with scattered patches of hard, rocky
substrate (Kendall et al. 2008). Hard-bottom habitats
sampled in our study ranged in complexity from flat
limestone pavement, sometimes covered with a sand
or gravel veneer, to high-relief rocky ledges
(Schobernd & Sedberry 2009). Sampling occurred
from approximately Cape Hatteras, North Carolina,
to St. Lucie Inlet, Florida (Fig. 1).

Sampling

Stations were selected for sampling in 1 of 3 ways.
(1) Most sites were randomly selected from the
SERFS sampling frame that consisted of approxi-
mately 3000 stations on or near hard-bottom habitat.
(2) Some stations in the sampling frame were sam-
pled opportunistically even though they were not
randomly selected for sampling in a given year.
(3) New hard-bottom stations were added during
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the study period through the use of information from
various sources including fishermen, charts, and
 historical surveys. These new locations were investi-
gated using a vessel echo sounder or drop cameras
and sampled if hard bottom was detected. All sam-
pling for this study occurred during daylight hours
between April and October on the RV ‘Savannah,’
RV ‘Palmetto,’ or the NOAA Ship ‘Pisces’ using iden-
tical methodologies as de scribed below.

Chevron traps were constructed from plastic-coated,
galvanized 2 mm diameter wire (mesh size = 3.4 cm2)
and measured 1.7 m × 1.5 m × 0.6 m, with a total vol-
ume of 0.91 m3 (Fig. 2; see Bacheler et al. 2013a).
Trap mouth openings were shaped like a teardrop
and measured approximately 18 cm wide and 45 cm
high. Each trap was baited with 24 menhaden
(Brevoortia spp.). Traps were typically de ployed in
groups of 6, and each trap in a set was deployed at

least 200 m from all other traps in a given year to
 provide some measure of independence among
traps. A soak time of 90 min was targeted for each
trap deployed, and any trap not fishing properly
(e.g. bouncing due to waves or current, trap
mouth was ob structed) was excluded from ana -
lysis. All fish caught were enumerated and meas-
ured for total length.

A high-definition Canon® Vixia HFS-S200 video
camera in a Gates underwater housing was
attached over the mouth of each trap, facing away
from the trap (Fig. 2). Canon cameras had a width
of view of approximately 60° and were used to
identify and enumerate fish seen  swimming
around the trap and quantify microhabitat fea-
tures. A second high-definition GoPro® Hero
video or Nikon Coolpix S210/S220 still camera
was at tached over the nose of most traps in an
under water housing, and was used to quantify
micro habitat features in the opposite direction.
Traps with  corresponding videos are hereafter re -
ferred to as ‘trap-video samples.’ Trap-video sam-
ples were excluded from our analysis if videos
were unreadable for any reason (e.g. too dark,
camera out of focus, files corrupt) or the traps did
not fish properly.

Relative abundance of reef fish on video was
estimated using the MeanCount approach (Scho -
bernd et al. 2014), which was calculated as the
mean number of individuals of each species over
a number of video frames in the video sample. We
limited our video reading time to an interval of
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Fig. 1. Spatial distribution of chevron trap and video sampling by
the Southeast Reef Fish Survey between North Carolina and
Florida, USA, in 2011 and 2012. Each dot represents a trap-video
deployment included in the analysis; the darker the symbol, the 

greater the overlap among points

Fig. 2. Chevron trap fitted with 2 outward-looking cameras de-
ployed by the Southeast Reef Fish Survey in 2011 and 2012.
Videos from the Canon® Vixia HF S200 cameras were used
for counting reef fish and recording habitat information,
while the second camera (GoPro® Hero or Nikon Coolpix
S210/S220) was only used for additional habitat description
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20 total minutes, commencing 10 min after the trap
landed on the bottom to allow time for the trap to set-
tle. We read 1 s snapshots every 30 s for the 20 min
time interval, totaling 41 snapshots read for each
video. The mean number of individuals for each tar-
get species in the 41 snapshots was considered the
MeanCount for that species in each video sample.
MeanCount was chosen because it tracks true abun-
dance linearly (Scho bernd et al. 2014), but 1 down-
side is that it is not 100% effective at documenting all
species present at a site (Bacheler & Shertzer 2015).
Due to logistical constraints, we read videos for 107
fish species: (1) those listed in the Fish Stock Sustain-
ability Index (NMFS 2014), (2) highly migratory spe-
cies such as sharks, mackerels, and tunas, and (3) the
invasive lionfish Pterois spp.

Substrate was visually estimated for each video as
the percent of the bottom that consisted of hard, con-
solidated sediment at least 10 cm in dia meter. Relief
was estimated as the maximum relief of the substrate
within the viewing area, classi fied as ‘low’ (<0.3 m),
‘moderate’ (0.3−1.0 m), or ‘high’ (>1.0 m). Biota were
estimated as the total coverage of the substrate (%) by
attached biota such as algae, sponges, or soft corals,
classified here as ‘none’ (0%), ‘low’ (1−10%), ‘moder-
ate’ (11−40%), or ‘high’ (>40%). For each station sam-
pled, estimates were generated for each of the 2 cam-
eras, after which a mean was calculated; if the second
camera did not record for any reason, habitat was
scored from the Canon camera only. The maximum
relief from either video was used for relief. Current di-
rection was also estimated based on par ticle move-
ments in re lation to video camera field of view, and
was classified as ‘away,’ ‘sideways,’ or ‘towards’. Wa-
ter clarity was classified as ‘low’ if  sub strate could not
be seen, ‘moderate’ if substrate (but not horizon)
could be seen, and ‘high’ if horizon could be seen
in the distance. Bottom water temperature (°C) was
measured for each group of 6 sim ultaneously deployed
traps using a ‘conductivity–temperature–depth’ cast,
and depth (m) was measured for each trap-video de-
ployment. Samples with missing or un known habitat,
current, or temperature values were excluded from
analysis, as were samples with soak times greater
than 150 min due to low  sample sizes.

Data analysis

Trap detection probability was estimated using
only those trap-video samples where a reef species of
interest was detected on the video (i.e. known to be
present at the site); the presence or absence of that

species in the concomitant traps was then used as the
response variable in a binomial model and related to
covariates. Likewise, video detection probability was
determined by examining only those trap-video sam-
ples where the species was caught in the trap, and its
presence or absence on the corresponding videos
was also related to covariates.

Two criteria were used to determine whether a
 particular reef fish species could be included in the
analysis using binomial models. (1) Initial models
suggested that video (for trap detection probability
models) or trap (for video detection probability
 models) frequency of occurrence needed to be at
least 200 in order for models to converge. (2) Species
were only included if they had raw trap or video
detection probabilities between 0.10 and 0.90;
 models rarely converged (due to a lack of contrast)
when detection probabilities were extremely high or
extremely low. Using these criteria, red porgy Pagrus
pagrus, gray triggerfish Balistes capriscus, vermilion
snapper Rhomboplites aurorubens, and red snapper
Lutjanus campechanus were included in the trap
detection probability models, and the same species
were included in the video detection probability
models except that black sea bass Centropristis stri-
ata was included and red snapper was removed. 

Binomial generalized additive models (GAMs) were
used to relate the presence or absence of species
to predictor variables. GAMs are generalized linear
models, except that a component of each linear pre-
dictor is a sum of smooth (i.e. nonlinear) functions of
the predictor variables in the model (Wood 2006).
GAMs extend traditional additive models by allow-
ing for alternative distributions of underlying random
variation, just as generalized linear models allow
for alternative distributions in linear models. The re -
sponse variable for binomial models was the pres-
ence or absence of each reef fish species in traps or
videos when the species was confirmed to be present
at the site using the other (paired) sampling gear.

Prior to model development, we assessed whether
the predictor variables included in binomial models
exhibited multicollinearity, because its presence
causes erratic model behavior and should be avoided
(Neter et al. 1989). We quantified the severity of
 multicollinearity among predictor variables using the
variance inflation factor (VIF), which measures the
amount of variance that is inflated for each variable
as a result of its collinearity with other predictor
 variables. The VIF for all predictor variables was less
than 3.5, which is below the level generally acknowl-
edged to be problematic (5−10; Neter et al. 1989).
Furthermore, pairwise correlation plots among all
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predictor variables did not show any clear patterns,
suggesting that no significant multicollinearity existed
among predictor variables in our data set.

We included predictor variables in trap and video
binomial models based on specific hypotheses and
previous research. For trap detection, we included
7 predictor variables in binomial models. Current
direction was included because we hypothesized that
fish would be more likely to be caught when the
mouth of the trap is facing downstream, as opposed
to upstream, because of fish staying in the bait plume
(Zhou & Shirley 1997). Three habitat variables were
included (i.e. percent of substrate that is hard bottom,
attached biota coverage, maximum substrate relief)
because some marine organisms have higher catch
rates on soft, open sediments than rocky, high-relief
substrate (Robichaud et al. 2000, Geraldi et al. 2009).
Water temperature was inclu ded because physiolog-
ical studies suggest that fish  activity and feeding
rates are temperature-dependent (Fry 1967); depth
was not considered given its multicollinearity with
temperature. Soak time of the trap was included
because we hypothesized that fish  species would be
more likely to be detected in traps that soaked for
longer periods of time. The video MeanCount index
of abundance for the particular species of interest
was also included in trap detection probability mod-
els to standardize for variable fish abundance around
the trap; we hypothesized that fish species would be
more likely to be detected when their site abundance
was high.

The full binomial GAM relating trap detection
probability to predictor variables was:

η = α + f1(cur) + f2(biota) + f3(relief) + s1(meancount)
+ s2(temp) + s3(soak) + s4(substrate) (1)

where η is the probability of presence in the trap
when seen on the corresponding video, α is the inter-
cept, cur is current direction, biota is the percent cov-
erage of attached biota, relief is the maximum re lief
of the substrate, meancount is the log-transformed
site-specific abundance for each species from video,
temp is the bottom water temperature (°C), soak is
the soak time of the trap, substrate is the percent of
the substrate that was hard bottom, f1−3 are categori-
cal functions, and s1−4 are nonparametric smoothing
functions.

Four predictor variables were considered for in -
clusion in video models. Water clarity was included
because we expected fish to be detected by video
more frequently when water was clear than when it
was turbid. Current direction was included because
we hypothesized that fish would tend to be detected

more often when the camera was facing downstream
compared to upstream because of the bait plume
from the trap. Maximum substrate relief was in -
cluded to control for the possibility that fish might be
more likely to be obscured (and detected less fre-
quently) in high-relief habitats compared to flat sub-
strate. Last, we included trap catch to standardize for
 variable relative abundance at a site.

The full binomial GAM model relating video de-
tection probability to predictor variables was:

η = α + f1(clarity) + f2(cur) + f3(relief) + s1(trap catch) (2)

where η is the probability of presence on a video
when caught in the corresponding trap, α is the inter-
cept, clarity is water clarity, cur is current direction,
relief is the maximum relief of the substrate, trap
catch is the log-transformed site-specific trap catch of
each species, f1−3 are categorical functions, and s1 is
a nonparametric smoothing function.

For each model developed for each species and
gear combination, we compared full GAMs to vari-
ous reduced models that contained fewer predictor
variables. Comparisons were made using the unbi-
ased risk estimator (UBRE) and Akaike’s information
criterion (AIC) scores (Burnham & Anderson 2002).
For each method, the model with the lowest UBRE
and AIC scores was considered to be the most parsi-
monious and was selected as the best model in that
particular model set. In all cases, residuals in final
models met assumptions of normality and constant
variance. All models were coded and analyzed in R
version 3.0 (R Core Team 2014) using the mgcv
library, version 1.7-22 (Wood 2011). There were also
no consistent patterns in the relationship between
the semivariance of the model residuals and distance
between sampling points, indicating negligible spa-
tial autocorrelation in the residuals.

The overall influence of predictor variables on trap
or video detection probability was visualized using a
bootstrapping approach. We resampled the predic-
tions (N = 10 000) for each model at mean values of
all predictor variables according to the point-wise
estimates of error that were assumed to be normally
distributed. Since mean values did not exist for
 categorical data, the following levels were used to
predict detection probabilities: current direction of
‘away,’ attached biota coverage of ‘low,’ substrate
relief of ‘low,’ and water clarity of ‘moderate.’ The
exact  values or levels chosen for prediction in -
fluenced the absolute estimates of detection prob -
ability, but not the relative pattern (our primary focus).
All 95% confidence intervals were estimated as the
0.025 and 0.975 quantiles of the 10 000 point estimates.
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RESULTS

In total, 1555 trap-video samples were included
in our analysis. More samples were included from
2012 than 2011, but the dates, latitudes, depths, and
bottom water tem peratures were similar between the
2 years (Table 1).

Trap detection probability

Red porgy had the highest video frequency of
occurrence, followed by gray triggerfish, vermilion
snapper, and red snapper (Table 2). Considering only
those trap-video samples when the target species
was present on video, trap frequency of occurrence
and trap detection probability were highest for red
porgy and lowest for red snapper (Table 2).

Based on UBRE and AIC scores, models for all 4
fish species included video MeanCount, 3 species
included temperature and substrate, 2 species in -
cluded biota, and only a single species each in -
cluded current direction, substrate relief, and soak
time (Table 3). The relationship between trap detec-
tion probability and log-transformed video Mean-
Count was linear or slightly nonlinear for all species,
indicating that all species were more likely to be
caught in traps when more individuals were seen on
video (Fig. 3).

After accounting for variable site abundance of fish
around traps, mean trap detection probability for red
porgy, gray triggerfish, and vermilion snapper
declined nearly linearly as the percent hard bottom
increased (Fig. 4). For instance, mean trap detection
probability of red porgy declined 40% as percent
hard bottom increased from 0 to 100% (Fig. 4).
Declines in mean trap detection probability for gray
triggerfish (65%) and vermilion snapper (75%) over
the same range in percent hard bottom were even
more severe (Fig. 4).:

Trap detection probability for 3 reef fish species
was also influenced by water temperature (Fig. 5).
Mean trap detection probability for red porgy de -
clined 16% as water temperature increased from 13
to 21°C, but then plateaued at warmer water tem -
peratures (Fig. 5). Gray triggerfish trap detection
probability increased nearly linearly (233%) as water
temperature increased from 13 to 29°C (Fig. 5). Ver -
milion snapper trap detection probability was invari-
ant to water temperature below 20°C, but was posi-
tively related to temperature above 20°C (Fig. 5).

Three additional predictor variables had mixed
effects on reef fish detection probabilities. As the
coverage of attached biota increased at a site, mean
trap detection probability for red porgy declined by
24% (Fig. 6). In contrast, trap detection probability
of vermilion snapper was more variable but tended
to increase with higher amounts of attached biota
(Fig. 6). Mean trap detection probability was also
slightly higher for red snapper at moderate substrate
relief compared to low or high relief, while vermilion
snapper were marginally more likely to be detected
by traps at moderate soak times (~100 min) than
shorter or longer soak times.

Video detection probability

Black sea bass had the highest trap frequency of
occurrence, followed by red porgy, gray triggerfish,
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Variable 2011 2012

Number of samples 522 1033
considered
Date range 19 May−25 Oct 24 Apr−10 Oct
Latitude range (°N) 27.2−34.3 27.2−35.0
Depth range (m) 15−93 15−106
Bottom temperature (°C) 14.8−28.8 12.9−27.8

Table 1. Annual Southeast Reef Fish Survey sampling in -
formation for video and trap samples included in binomial 

generalized additive models

Species Frequency of % frequency of Trap frequency of occur- Overall trap 
occurrence on video occurrence on video rence when seen on video detection probability

Red porgy 661 0.43 390 0.59
Gray triggerfish 475 0.32 240 0.51
Vermilion snapper 436 0.28 205 0.47
Red snapper 383 0.25 146 0.38

Table 2. Reef fish species sampled by the Southeast Reef Fish Survey  between North Carolina and Florida, USA, in 2011 and 
2012. In total, 1555 trap-video samples were included in the analysis
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and vermilion snapper (Table 4). Considering only
those trap-video samples where the target species
was caught in the trap, video detection probability
was highest for red porgy and lowest for black sea
bass.

Based on UBRE and AIC, the best binomial GAMs
for video detection probability were similar for black
sea bass, red porgy, and gray triggerfish in that they
included all 4 predictor variables: water clarity,
 current direction, substrate relief, and trap catch
(Table 5). Unlike the other 3 species, the model for
vermilion snapper only included trap catch (Table 5).

Video detection probability for all 4 reef fish spe-
cies examined was positively related to their log-
transformed catch in corresponding traps (Fig. 7).
Mean video detection probability of black sea bass
increased strongly and linearly at low levels of log-
transformed trap catch, but reached an asymptote at
higher levels of trap catch (Fig. 7). Mean video detec-
tion probability for red porgy, gray triggerfish, and
vermilion snapper were nearly linearly related to
their own log-transformed trap catch, suggesting that
video was more likely to detect these species when
more individuals of each species were caught in the
trap (Fig. 7).

After standardizing for variable abundance of each
species at a site (by including trap catch as a pre -
dictor variable), mean video detection probabilities
of black sea bass, red porgy, and gray triggerfish
were significantly influenced by water clarity, cur-
rent direction, and substrate relief (Fig. 8). All 3 reef
fish species were less likely to be detected by video
when water clarity decreased (Fig. 8). Likewise, all 3
species were more likely to be detected when the
current direction was away from the camera as op -
posed to moving towards the camera. Mean video
detection probabilities were also slightly higher for
black sea bass, red porgy, and gray triggerfish at
high compared to low relief substrate (Fig. 8).

DISCUSSION

The pattern of a species’ presence or absence (i.e.
occupancy) across a landscape is a critical ecological
state variable that has been used to estimate abun-
dance, understand range expansions or contractions,
and elucidate metapopulation dynamics (MacKenzie
2005). However, not accounting for imperfect detec-
tion confounds occupancy data because missing a

7

Model (Base minus covariates) UBRE AIC f1(cur) f2(biota) f3(relief) s1(meancount) s2(temp) s3(soak) s4(substrate)

Red porgy
Base − relief − soak 0.1826 781.67 2** 3** ex 1.0*** 2.3* ex 1.0***
Base − soak 0.1832 782.08 2** 3** 2 1.0*** 2.3* ex 1.0*
Base − relief 0.1856 783.66 2** 3** ex 1.0*** 2.3* 1.0 1.0***
Base 0.1862 784.06 2** 3** 2 1.0*** 2.3* 1.0 1.0*

Gray triggerfish
Base − cur − biota − soak − relief 0.2719 604.14 ex ex ex 1.2*** 1.0*** ex 1.8**
Base − cur − biota − soak 0.2730 604.69 ex ex 2 1.0*** 1.0*** ex 1.5***
Base − cur − biota − relief 0.2734 604.86 ex ex ex 1.3*** 1.0*** 1.0 1.8**
Base − cur − biota 0.2750 605.62 ex ex 2 1.0*** 1.0*** 1.0 1.5**

Vermilion snapper
Base − cur − relief 0.2090 527.13 ex 3*** ex 5.3*** 2.8*** 1.8* 1.0***
Base − cur − relief − soak 0.2131 528.90 ex 3*** ex 5.4*** 2.6*** ex 1.0***
Base − cur 0.2142 529.40 ex 3*** 2 5.5*** 2.8*** 1.8* 1.0***
Base − relief 0.2177 530.92 2 3*** ex 5.3*** 2.7*** 1.8* 1.0***

Red snapper
Base − cur − biota − temp − soak − substrate 0.2354 473.16 ex ex 2* 1.0*** ex ex ex
Base − cur − biota − temp − soak 0.2358 473.31 ex ex 2* 1.0*** ex ex 5.5
Base − cur − biota − temp 0.2394 474.70 ex ex 2* 1.0*** ex 1.0 5.5
Base − cur − biota − temp − substrate 0.2399 474.89 ex ex 2 1.0*** ex 1.0 ex

Table 3. Binomial generalized additive models of reef fish species presence or absence in traps when seen on corresponding videos col-
lected by the Southeast Reef Fish Survey. Estimated degrees of freedom are shown for each term; asterisks denote significance at the
 following alpha levels: * = 0.10, ** = 0.05, *** 0.01; ex: covariate was excluded from that particular model; UBRE: unbiased risk estimator
score; AIC: Akaike’s information criterion. Base model given in Eq. (1). Only the 4 best models are shown for each species, based on UBRE 

and AIC scores
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species at a site ends up being treated as an absence
from that site, leading to underestimated occupancy
rates, biased habitat relationships, and potentially
erroneous management recommendations (Tyre et
al. 2003, MacKenzie et al. 2006). Imperfect detection
also distorts our un derstanding of community struc-

ture and dynamics. We explicitly modeled detection
probabilities for 5 reef fish species using a combined
gear approach and spatially and temporally exten-
sive sampling data to show that trap and video detec-
tion probabilities were influenced by environmental
conditions, habitat characteristics, and site abun-
dance of each target species. These results improve
our understanding of the sampling process for reef
fish species as well as the ecological dynamics of
marine fish species by providing a novel method to
remove biases in occupancy rates due to variable
detection probabilities. They also provide general
guidance to scientists interested in developing trap
or video surveys for reef fish species, and could be
particularly useful if targeting rare species.
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Influence of habitat

We found that red porgy, gray triggerfish, and ver-
milion snapper were all more likely to be detected by
traps on soft-bottom compared to hard-bottom sub-

strate, while red snapper was not. Detectability of fish
by various sampling gears is in some cases  habitat-
dependent (Green et al. 2013). For instance, Geraldi
et al. (2009) found that American lobster Homarus
americanus abundance was higher on hard, rocky
substrate, but catchability of individual lobsters was
higher on soft (unstructured) substrate. American
lobster movement rates were shown to be highest on
soft substrate, suggesting that traps may have been
encountered more often in that habitat type (Geraldi
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Species Frequency of % frequency of Video frequency of occur- Overall video 
occurrence in traps occurrence in traps rence when caught in trap detection probability

Black sea bass 857 0.55 488 0.57
Red porgy 442 0.28 390 0.88
Gray triggerfish 381 0.25 240 0.63
Vermilion snapper 263 0.17 205 0.78

Table 4. Species-specific trap and video information for the 4 reef fish species sampled by the Southeast Reef Fish Survey, used 
to determine video detection probability. In total, 1555 trap-video samples were included in the analysis
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et al. 2009). It is also possible that scent plumes from
bait in traps attenuated less rapidly in soft-bottom
habitats, providing a stronger attraction than traps in
rocky habitats (Tremblay & Smith 2001). Reef fish
trap catchability in Barbados was similarly negatively
related to percent reef cover and substrate rugosity,
suggesting that traps were more attractive to fish in
areas of low habitat complexity (Robichaud et al.
2000). For reef fish in our study, it is unclear what
mechanism or combination of mechanisms was driv-
ing higher detection rates on soft  sub strate, but pos -
sibilities include higher reef fish movement rates
(Topping & Szedlmayer 2011), larger or more persist-
ent bait plumes (Tremblay & Smith 2001), traps more
likely to act as habitat or cover, or higher feeding
 motivation given low prey densities in soft-bottom
habitats. Regardless, reef fish surveys should attempt
to account for differences in detectability (or catch -
ability) when sampling in different habitat types.

Other habitat characteristics besides percent hard
bottom influenced the trap and video detection prob-
abilities for some reef fish species. For instance, trap
detectability of red porgy declined as the coverage of

attached biota increased, but
the opposite relationship was
observed for vermilion snap-
per, albeit with more variabil-
ity. Robichaud et al. (2000)
showed that although reef
fish densities were higher in
more complex habitats, reef
fish catchability was lower, so
that overall catch rates among
habitats were similar. Under-
water visual census methods
also tend to miss more in -
dividuals in complex habitats
(Green et al. 2013), similar to
traps but via a different mech-
anism. Similar to the re sults of
Green et al. (2013), we also
expected to detect fish better
on video in low-relief habitats,
assuming that high-relief habi-
tats may tend to obscure some
fish on video. We found no
 evidence for this hypothesis,
and in fact found some weak
evidence that detectability for
3 out of 4 species was slightly
higher in high-relief habitats.

Influence of environmental conditions

Water temperature also in fluenced trap detection
proba bilities of red porgy, gray triggerfish, and ver-
milion snapper. Given that fish are ectothermic,
many studies have observed a positive relationship
between catchability and water temperature when
water temperature is low (e.g. Arreguín-Sánchez
1996), but feeding motivation and presumably catch-
ability even tually decline when water temperature
increases be yond the thermal niche of the species
(Hayward & Arnold 1996). Gray triggerfish and, to a
lesser extent, vermilion snapper displayed a positive
relationship between trap detectability and water
temperature, whereas red porgy trap detectability
was slightly negatively related to water temperature.
These re sults suggest that gray triggerfish and
 vermilion snapper may have a thermal niche that
is higher than that of red porgy. Moreover, of all
 species examined, gray triggerfish appear to be the
most sensitive to changes in water temperature,
while red snapper, whose binomial model excluded
temperature, appear to be the least sensitive.
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Model (Base minus UBRE AIC f1(clarity) f2(cur) f3(relief) s1(trap catch)
covariates)

Black sea bass
Base 0.0322 884.6 2*** 2*** 2*** 1.0***
Base − clarity 0.0549 904.1 ex 2*** 2*** 1.0***
Base − relief 0.0573 906.1 2*** 2*** ex 1.0***
Base − cur 0.0951 938.5 2*** ex 2*** 1.0***

Red porgy
Base −0.3438 290.0 2*** 2** 2*** 1.7***
Base − cur −0.3352 293.8 2*** ex 2*** 3.4***
Base − relief −0.3347 294.1 2*** 2** ex 1.4***
Base − clarity −0.3276 297.2 ex 2* 2*** 1.4***

Gray triggerfish
Base 0.1954 455.4 2* 2*** 2** 1.8***
Base − clarity 0.2001 457.2 ex 2** 2*** 1.8***
Base − relief 0.2087 460.5 2** 2*** ex 1.8***
Base − cur 0.2135 462.3 2 ex 2** 1.8***

Vermilion snapper
Base − clarity − cur − 0.0079 265.1 ex ex ex 1.0***
relief

Base − clarity − relief 0.0110 265.9 ex 2 ex 1.0***
Base − clarity − cur 0.0132 266.5 ex ex 2 1.0***
Base − clarity 0.0158 267.2 ex 2 2 1.0***

Table 5. Binomial generalized additive models of reef fish species’ presence or
 absence on videos when caught in corresponding traps by the Southeast Reef Fish
 Survey. Estimated degrees of freedom are shown for each term; asterisks denote
 significance at the following alpha levels: * = 0.10, ** = 0.05, *** 0.01; ex: covariate
was excluded from that particular model; UBRE: unbiased risk estimator score; AIC:
Akaike’s information criterion. Base model given in Eq. (2). Only the 4 best models 

are shown for each species, based on UBRE and AIC scores
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Water clarity and current direction influenced the
detectability of black sea bass, red porgy, and gray
triggerfish on video. As hypothesized, video detec-
tion probabilities generally increased when water
clarity was high. Although water clarity is generally
acknowledged to be an important aspect of under-

water video surveys (Mueller et al. 2006), we were
unable to find any previous work that specifically
related detectability or fish counts on video to water
clarity levels. Interestingly, video detectability be -
tween high and moderate water-clarity levels was
very similar, but declined substantially at low water
clarity levels, suggesting that reef fish may be de -
tected reasonably well as long as water clarity was
above a modest threshold. Also as expected, video
detection probabilities were lower when the current
was moving towards, as opposed to away from, the
camera, likely because most reef fish species tend to
aggregate down-current of the trap to remain in the
bait plume, similar to red king crabs Paralithodes
camtschaticus (Zhou & Shirley 1997). That trap de -
tectability was influenced by current direction for
only 1 of the 4 species examined (red porgy) suggests
that current direction does not influence the trapping
process as strongly as it does for video.

Influence of site abundance

Trap or video detection probabilities were posi-
tively related to the site-specific relative abundance
for all species examined. Detection probability is
often positively related to the abundance of the
 target organism (Royle & Nichols 2003), but catch (or
occupancy rates) can become decoupled from abun-
dance for some gears, as has been shown for north-
ern cod Gadus morhua in the northwest Atlantic
(Shelton & Lilly 2000). Reef fish trap catches have
been shown to be correlated with video counts in the
SEUS (Bacheler et al. 2013b), and trap catch has also
tracked actual site abundance well for black sea bass
(Bacheler et al. 2013a). While it is encouraging that
detection probability and abundance were positively
correlated for all reef fish species examined, the main
reason for including trap catch or video MeanCount
as predictor variables in our binomial models was
to standardize detection probability for variable fish
abundance at a site. We consider standardizing de -
tection probability by site abundance to be a critical
issue that must take place in future studies using
simi lar methodological approaches as those pre-
sented here.

Benefits and drawbacks of combining gears

We estimated detection probabilities for reef fish
using a multi-gear approach, where detection proba-
bilities were estimated for one gear when confirmed
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to be present at a site based on catches or counts from
the corresponding gear. Few studies have used multi-
ple gears to estimate detection probabilities; most
studies use repeated site visits and assume that occu-
pancy status within a sampling season remains un-
changed among visits (MacKenzie et al. 2002). Multi-
ple sampling gears have been used in some  situations
to expand detection probabilities and understand
predictor variable effects for terrestrial (Graves et al.
2011) and aquatic organisms  (Coggins et al. 2014).
For example, Coggins et al. (2014) used trap and
video data for red snapper in an occupancy modeling
framework to show that depth and latitude influenced
occupancy more than micro-habitat  features, after
accounting for imperfect de tectability. Similar studies

used the same sampling approach, such as observers
or divers, at the same or very similar times to reduce
or eliminate the temporal closure assumption (Issaris
et al. 2012). We consider the use of multiple gears or
observers to be superior to repeated site visits within
a sampling season, both theoretically and empirically,
because the potentially strong assumption of closure
is not necessary. An approach with potential wide-
spread appeal would be to add video cameras to
other commonly used sampling gears such as trawls,
acoustics, or nets to understand how detection prob -
abilities of each gear are influenced by various pre-
dictor variables (e.g. Somerton et al. 1999).

There are some shortcomings of our methodologi-
cal approach. First, only species caught in traps or
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seen on video many times, and with moderate detec-
tion probabilities, could be included in our binomial
modeling analyses. Moreover, species whose models
had the smallest samples sizes (i.e. red snapper in
traps, vermilion snapper on video) also included the
fewest significant predictors, suggesting that mar-
ginal sample sizes may have contributed to the
low number of significant relationships. Second, our
approach was able to determine how detection prob-
abilities were influenced by predictor variables, but
not how occupancy rates may have been influenced
by those same factors. Last, detection proba bility on
video could be increased by reading more snapshots
or snapshots over a longer video interval (Bacheler
& Shertzer 2015).

These results underscore the im portance of dealing
with imperfect detectability in ecological research
and monitoring surveys, especially in a highly
dynamic coastal ecosystem like the SEUS that expe-
riences significant variability in environmental condi-
tions and contains different habitat types. Knowing
how predictor variables influence the sampling pro-
cess of various gears and gear-specific de tection
probabilities helps scientists design optimal surveys,
especially for rare or elusive species. At the very
least, indices of abundance should be standardized
by the variables found to be important in this study
(Maunder & Punt 2004). More elegant and powerful
approaches that should be considered in the future
include occupancy models that specifically account
for variation in abundance among sites (Royle &
Nichols 2003) or N-mixture models that actually use
count data and are able to estimate individual cap-
ture probabilities (Royle 2004).
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