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INTRODUCTION

Seagrass habitats are economically and ecologi-
cally valuable coastal ecosystems. They are unfortu-
nately facing many threats and are being lost at
accelerating rates around the globe (Orth et al. 2006,
Waycott et al. 2009). Seagrasses have significant
capacity for carbon storage, and seagrass ecosystems
are a globally significant carbon sink (Fourqurean et
al. 2012); degradation of these habitats results in car-
bon re-emission (Pendleton et al. 2012). Seagrass
habitats are highly productive and provide growing
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ABSTRACT: Seagrass meadows are globally significant
carbon sinks and increasingly threatened; and seagrass
habitat provides critical ecosystem services, for which
above-ground biomass is a key indicator. The capacity
to quantify biomass in seagrass ecosystems is both crit-
ical and urgent, yet no methods exist to perform this at
the large spatial scale required for management (e.g.
regional/continental). We built linear model relation-
ships between in situ above-ground biomass and sea-
grass percentage cover per seagrass species to esti -
mate biomass from both point-based and landscape
scale (>100 km2) seagrass data. First we used a set of
linear models to estimate the biomass component of
each seagrass species in over 20 000 benthic photos.
We then adapted this approach to estimate biomass
from a time-series of remote sensing derived seagrass
percentage cover and dominant species maps. We
demonstrate accurate estimation of above-ground bio-
mass using a set of methods that is not only more time
and resource efficient than existing methods, but is
sufficiently robust and generalisable for application at
large spatial or temporal scales. Our method allows
for quantification of above-ground biomass in sea-
grass ecosystems over spatial scales larger than can be
tractably assessed using current site- and point-based
measurement approaches, and at scales that are re-
quired to understand and manage seagrass systems to
tackle anthropogenic climate change and other impacts.
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Using in situ measurements (red triangles), we modelled
above-ground biomass in over 20 000 benthic photos (inset)
and a time-series of seagrass maps (main image).

Image: Digital Globe; Photo: Chris Roelfsema

FREEREE
 ACCESSCCESS



Mar Ecol Prog Ser 530: 1–14, 2015

surfaces, stabilisation, and critical habitat at a range
of trophic levels (Duarte & Chiscano 1999). Increas-
ing threats to seagrass ecosystems, and recent em -
phasis on the importance of carbon stocks in coastal
ecosystems, or ‘Blue Carbon’ (Mcleod et al. 2011),
has created an urgent need for broad scale, spatially
explicit monitoring approaches to help develop and
implement management programs (Duarte et al.
2013). A key indicator for these ecosystem services is
above- and below-ground biomass. Seagrass moni-
toring techniques involve a wide range of spatial and
temporal scales (Bortone 2000, Larkum & Duarte
2006), from site (m2) to regional (km2) on a semi-
annual basis, but few studies have demonstrated
techniques for monitoring of biomass over large areas
with feasible repeat times or method reproducibility,
whether by field sampling, modelling or mapping.

Traditional direct measures of seagrass biomass
are destructive approaches that involve physically
removing a sample or core of seagrass from the field,
and subsequently analysing them in a laboratory. By
nature this is expensive and time consuming. While
field data collection provides accurate data and con-
tinues to be improved (e.g. Long et al. 1994), it is
not adequate for repeatable monitoring over the size
of areas that can be managed by governments or
community groups. This has led to development of
more rapid, non-destructive, visual assessment ap -
proaches (Mellors 1991, Mumby et al. 1997a, Kutser
et al. 2007).

Mellors (1991) developed an approach where
above-ground biomass was estimated visually in situ
and ranked on a linear scale of 1 to 5, to one decimal
place. Based on the lowest and highest biomass
observed at the study site, a reference quadrat was
established for each integer from 1 to 5. These refer-
ence quadrats were then used as a guide to assign a
biomass rank to multiple quadrats along transects
across the study site. Biomass was harvested and
measured for sets of reference quadrats, and a linear
regression was used for calibration to biomass dry
weight. Mumby et al. (1997a) built on this approach
by increasing the ranking scale range to 1 to 6 and
performing a more thorough calibration routine, pro-
viding analysis of sampling error/bias as well as
 sample size/statistical power relationships. Kutser
et al. (2007) noted some possible limitations of these
in situ visual assessment approaches, including pro-
hibition/restrictions on destructive sampling in mar-
ine protected areas, but more importantly, time
 constraints in the context of fieldwork duration and
observer training. They developed a photo-library
approach that followed a similar methodology con-

ceptually; however, instead of estimating biomass for
each quadrat in situ, photos of the benthos were
taken and the dry weight biomass for each photo was
estimated post-fieldwork. This was achieved by com-
paring the photos to a reference photo library, cre-
ated by harvesting and measuring a small number of
quadrats across a range of above-ground biomass
levels. This reduced the field time needed in com -
parison to the visual approach discussed above.

These 3 approaches all still require a visual esti-
mate of biomass for every sample, and in situ estima-
tion obviously cannot be used to estimate biomass
retrospectively. Visual assessment of biomass also
presents an inherent risk of being subjective and
prone to human error, and calibration to particular
study sites or sets of observers to mitigate these risks
may reduce methodological transferability. More-
over, the physical and mental resources required are
such that these techniques are unlikely to be feas -
ible or repeatable over large areas (e.g. >1000 km2,
regional/ continental) and replicable across ob servers.
For some time, seagrass percentage cover and above-
ground biomass measurements have been shown
to be significantly correlated for numerous species
(Heidelbaugh & Nelson 1996). For the first compo-
nent of this paper we demonstrate a simple, model-
based empirical approach for rapidly estimating
 species-specific above-ground biomass as a func-
tion of seagrass percentage cover from point-based
 seagrass composition data. We build biomass-cover
models using a limited set of destructively sampled
biomass cores, and estimate above-ground biomass,
per species component, for a data set of over 20 000
points. The point-based data set is derived from sys-
tematically acquired and analysed benthic photos
over the period 2004−2013. Most notably, we demon-
strate that this method is significantly more  time-
efficient per sample than published methods for in
situ estimation, and requires significantly less field
sampling effort.

The limited areal extent of traditional destructive
biomass sampling and in situ estimation approaches
(<1 km2) has led to the development of empirical
remote sensing based mapping approaches (Arm-
strong 1993, Mumby et al. 1997b, Phinn et al. 2008,
Knudby & Nordlund 2011). These approaches gener-
ally build a relationship between above-ground bio-
mass and the measured reflectance of seagrass from
remotely sensed image data, and then apply the rela-
tionship to the full image data set. In clear waters,
accuracy is relatively high in environments where
seagrass meadows are dominated by one or 2 species
(Armstrong 1993, Mumby et al. 1997b), but accuracy
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drops significantly in more complex environments
comprising several different seagrass species and
other benthic cover types (e.g. coral, macroalgae)
(Phinn et al. 2008, Knudby & Nordlund 2011). Even
though biomass is correlated with percentage cover,
when seagrass communities are comprised of mor-
phologically different species, it follows that the re -
mote sensing signal is more sensitive to a combina-
tion of canopy structure and percentage cover than
biomass. For example, a ground level round leaf
 species (e.g. Halophila ovalis) is likely to have a
lower biomass level than a taller long leaf species
(e.g. Zostera muelleri) at an equivalent percentage
cover level, even though they may exhibit a similar
remote sensing signal in multi-spectral imagery.
Although varying incident light angle/intensity and
current direction can alter the remote sensing
signal and therefore confound remote sensing
percentage cover estimates, percentage cover
is still a more reliable variable to map than bio-
mass in complex seagrass environments (Phinn
et al. 2008, Knudby & Nordlund 2011), parti -
cularly at moderate resolution (~30 m pixels)
(Lyons et al. 2012).

For the second component of this paper we
extend the utility of the model-based approach,
to estimate above-ground biomass from spa-
tially continuous, landscape scale (>100 km2)
species and percentage cover data. We modify
the species component approach and build
dominant species biomass-cover models to esti-
mate above-ground biomass from a nine-date
time-series of species and percentage cover
maps derived from high resolution satellite
imagery (Roelfsema et al. 2014a). Combining
this with the point-based estimates provides a
time-series data set of seagrass biomass at a
spatial and temporal scale not yet reported in
published literature.

MATERIALS AND METHODS

Study site

The Eastern Banks is a series of shallow water
banks (~200 km2) covered by extensive sea-
grass meadows, located in the eastern side of
Moreton Bay, Australia. It comprises 5 major
seagrass habitat areas (Moreton Banks, Amity
Banks, Chain Banks, Maroom Banks and
Wanga Wallen Banks), which are surrounded
by deep waters (Fig. 1). The Eastern Banks are

well flushed by oceanic waters, meaning there is rel-
atively little runoff from the city of Brisbane, which is
~30 km to the west. The sub-tropical Eastern Banks
support a range of inter- and sub-tidal environments,
including seagrass, mangroves, saltmarshes, and
sand and mud flats. The seagrass communities com-
prise 6 major species, including Halo phila ovalis, H.
spinulosa, Halodule uninervis, Zostera muelleri,
Syringodium isoetifolium and Cymo docea serrulata.
These species occur in a range of community types
including monospecific stands, multispecific stands,
as well as mixed communities with one or 2 dominant
species. The majority of the seagrass beds occur in
water depths of <3 m, although there are several
patches of seagrass in waters 3 to 10 m deep, mostly
H. spinulosa and H. ovalis.
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Fig. 1. Study site: geographical layout and extent of the Eastern
Banks, Moreton Bay, Australia; approximate location and distribu-
tion of benthic photo transects from 2004−2013 (green lines) and bio-

mass core locations from 2012−2013 (red triangles)
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Model input data

Biomass field data

Seagrass biomass cores were collected in 2012 and
2013 at 70 locations across the Eastern Banks, repre-
senting a range of species and biomass levels (core
locations marked in Fig. 1). Biomass cores, 15 cm
in diameter and 20 cm deep, were retrieved by a
snorkeler or diver using a standard PVC pipe corer,
and were taken at the beginning and end of snorkel
photo transects to best ensure representation of the
community types in the photos collected. Sediment
was removed from the cores in situ using a 1 mm
mesh bag, and remaining material was stored on ice,
then frozen (−20°C) until processed. Any detectable
living organisms were returned to the ocean before
cold storage. Epiphytes were removed both manually
and with 10% hydrochloric acid, and then samples
were dried at 60°C. For each core, above and below-
ground biomass was measured for each species in
grams dry weight (gDW). A coincident benthic photo
was acquired before each core harvest; these photos
were geo-referenced and analysed for seagrass per-
centage cover and species composition as per the
method in the following section. Whilst above and
below-ground biomass are reasonably well corre-
lated, exploratory work suggested that predicting
below-ground biomass from above-ground estimates
would not be appropriate using the same simple
 linear modelling approach, which is expected given
demonstrated variability in seagrass phenology in
Moreton Bay (Maxwell et al. 2014). Thus we mod-
elled above-ground biomass only, and all references
to biomass refer to above-ground biomass. Biomass
weight values were converted to a standard area unit
(gDW m−2), which is the unit of measure implied
when referring to biomass in this paper, unless
explicitly stated otherwise.

Point-based data: benthic photography

Between 2004 and 2013 the Eastern Banks were re-
peatedly surveyed using a photo transect survey
method (Roelfsema et al. 2009, 2014a), with a primary
aim of calibrating and validating remote sensing map-
ping routines. A snorkeler towed a handheld GPS unit
floating in a dry bag, capturing photos of the benthos
~0.5 m above the substrate along a transect line, at
~2 m intervals (~1 m2 foot print). The snorkeler GPS
log and photo time-stamp were synchronised in order
to georeference each individual photo. Due to the

 logistics of working from boats and underwater, no
absolute transect lines were followed, rather the start
and end points of each transect were approximately
matched for each survey campaign (transect spatial
distribution can be seen in Fig. 1). Each photo was
analysed for seagrass percentage cover and species
composition using a 24 point grid in Coral Point Count
Excel as described by Roelfsema et al. (2014a). Sea-
grass percentage cover is defined as the amount of
substrate covered by seagrass from a birds-eye-view
(referred to simply as seagrass cover). Depending on
seagrass species composition, presence of other ben-
thic cover types (e.g. coral, macroalgae) and substrate
type, the average analysis rate was 75 photos h−1. Be-
tween 2004 and 2013 around 20 000 photos were col-
lected and analysed (see Table S1 in the Supplement
at www.int-res.com/articles/suppl/m530p001_supp. pdf)
and are freely available on PANGAEA (Roelfsema et
al. 2015).

Landscape scale data: seagrass maps

We loosely define landscape scale as being both a
large area (>100 km2) and spatially continuous. The
landscape-scale seagrass data used for modelling are
seagrass species and cover maps for 9 dates from
2004 to 2013, covering a seagrass area of around
150 km2. Seagrass species and cover map products
used in this paper are presented elsewhere (Roelf-
sema et al. 2014a), and are freely available on PAN-
GAEA (Roelfsema et al. 2014b). High resolution
satellite images (Quickbird-2 and Worldview-2) were
acquired coincident to the photo transect data de -
scribed above, and used to map seagrass cover and
seagrass species. Seagrass cover was mapped using
discrete cover classes, with each class representing a
10% interval (i.e. 1−10%, 11−20%, etc.), and sea-
grass species was mapped as either a single domi-
nant species or alternatively as mixed seagrass. Con-
tiguous patches of the same cover or species class
are simply referred to as ‘polygons’. Overall accuracy
(Congalton & Green 2009) ranged from 48 to 58%
(mean: 52%) for the cover maps, and 68 to 80%
(mean: 77%) for the species maps. 

Biomass modelling

Percentage cover

We explored the relationship between seagrass bio-
mass and seagrass percentage cover by fitting a range
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of model types and comparing both their fit and pre-
dictive power. Using data from 70 biomass cores and
coincident benthic photos, we fit a standard least
squares regression between total above-ground bio-
mass and photo estimated percentage cover (single
linear term), with both raw and log transformed bio-
mass values. We refer to this model as the ‘mixed
species’ model. We then re-fit this least squares
regression with a second and third order polynomial
term. Mumby et al. (1997a) suggest transformation of
the biomass values to satisfy parametric regression
assumptions, and we chose to implement a natural
log transformation. Log transformed biomass pro-
vided lower prediction error and marginally less
 pattern in residual plots; thus from this point, all ref-
erences to biomass modelling imply log transformed
values, unless otherwise stated.

To further explore the relationship between biomass
and cover, and increase the understanding of predic-
tive power, we also modelled the data using a gener-
alised linear model (GLM) and a generalised additive
model (GAM). These models allow spe cification of an
error distribution family; thus no log transformation of
the response was required. We used a gamma dis -
tribution (with inverse link function) due to biomass
 values being strictly non-negative.

Seagrass species vary in structural and morphologi-
cal characteristics, meaning that at a similar percent-
age cover level, the amount of biomass contained
within an area is unlikely to be the same between spe-
cies. In this study, we demonstrate biomass estimation
stratified by seagrass species type, similar to allometric
and component techniques used for estimating bio-
mass for terrestrial vegetation (Jen kins et al. 2003).
Firstly, we estimated individual species biomass at
the point-based sample scale using a benthic photo
data set — we refer to this as the ‘species component
model’. We then adapted this method to estimate bio-
mass at the landscape scale using re mote sensing de-
rived seagrass maps of cover and dominant species —
we refer to this model as the ‘dominant species model’.
Here we demonstrate these stratified approaches using
least squares regression, though the exact method -
ology could be repeated for any model type (see Re-
sults section justifying selection of least squares over a
GLM/GAM).

Point-based data

A least squares regression was used to model
above-ground biomass as a function of photo esti-
mated percentage cover (single linear term), sepa-

rately for each species component. The component
models were then used to predict the above-ground
biomass component (AGBC) for each species, with
the estimated combined above-ground biomass
(AGB) being the sum of the components:

(1)

where S1…n represents each species of seagrass. This
component model was then used to estimate biomass
at locations and time periods where biomass cores
were not sampled, which comprised ~20 000 photos
collected between 2004 and 2013. This method can
be applied to any photograph that can be analysed
for species composition, or in fact any point-based
measurement of species composition and cover.

Landscape scale

The component method requires full species com-
position information, meaning it cannot be applied to
the seagrass map products, as each polygon in the
map only has one percentage cover and one domi-
nant species label. Therefore the method was simpli-
fied to accept only one cover and species value as
model input. The biomass core data was stratified
into subsets based on dominant species, and a least
squares regression was then fitted separately to each
subset. Dominant was defined as that species com-
prising >55% of the total biomass. Though we found
no effect, readers can easily regenerate models and
statistics using a higher threshold specified at the
beginning of the modelling code. AGB can then be
predicted conditionally as the corresponding domi-
nant species estimate (AGBSpp) or where there was
no dominant species, from the mixed species model
(AGBmix):

(2)

This dominant species model was then used to esti-
mate biomass from the seagrass cover and species
map products, where the model was applied to each
polygon in the seagrass map. This was achieved by
applying the appropriate model coefficients to each
map using a simple Python 2.7 script in ArcGIS 10.1.
Since the seagrass cover maps were in 10% interval
categories, the mid-point of each class was used as
the predictor variable. If it were more suitable for the
application, a biomass estimate range could be com-
puted using the upper and lower limits of the cover
category. It is also worth mentioning here that this

∑=
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i
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AGB , otherwise
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method can be applied to seagrass maps derived
from either passive (i.e. satellite multispectral) or
active (i.e. acoustic/SONAR) mapping approaches,
so the methods are not limited to systems that are
either shallow or have optically clear water. In fact,
these methods can be applied to a map derived from
any approach (e.g. hand drawn, manual interpreta-
tion of aerial photography/Google Earth imagery,
modelled layers).

Model fitting and uncertainty

To provide estimates of uncertainty and the ex-
pected prediction error in larger data sets, models
were evaluated with overall root mean square error
(RMSE), k-fold cross validation prediction error and
repeated k-fold cross validation prediction error.
Overall RMSE was calculated from the prediction
residuals on the final model fits for all available data.
k-fold prediction error was calculated as the mean er-
ror (RMSE) of prediction into the test folds of a k-fold
cross validation. Repeated k-fold pre diction error is
the same metric, except the mean is calculated from
multiple random iterations of the k-fold cross valida-
tion, which can serve to reduce the variance in error
estimates (Rodríguez et al. 2010). We performed k-
fold cross validation with k = 1,...,10, to determine
possible effects of k on error estimate bias (Rodríguez
et al. 2010). These values will display Monte Carlo
variation due to assignment of different random splits,
though this is greatly reduced in the repeated k-fold
metric. We chose cross validation over bootstrap
methods for estimating prediction error due to the
possibility that bootstrap methods may result in bias
when predicting into very large data sets (e.g. 20 000
photos) (Kim 2009). We take these error estimates as
an error range for the final biomass products; a 95%
interval could be taken on the re peated k-fold cross
validation, though Vanwinckelen & Blockeel (2012)
caution that such use may be in appropriate. We also
produced modelled versus ob served biomass plots for
visual assessment of the mixed species, species com -
ponent and dominant species modelling approaches.

We also analysed the effect of sample size on model
performance, as this significantly affects the cost-ben-
efit consideration for the field sampling effort required.
Fitting seagrass cover and biomass from the full
data set (i.e. the mixed species model), we simulated
a sample size of n = 2, 3, …, 70, and re corded the least
squares coefficients, R2 and RMSE. We ran this simu-
lation 10 000 times and calculated a 95% interval for
both bootstrap and permutation resampling.

Data accessibility

All modelling and calculations were performed us-
ing the open source language R (R Core Development
Team 2013). All code and data required to reproduce
results is available as a Supplement (www.int-res.
com/ articles/suppl/m530p001_supp.zip) and continued
improvements will be available at: http://bitbucket.org/
mitchest/ lyons_ biomassmodelling/.

RESULTS

Model performance

Seventy biomass cores and coincident analysed
field photos were used to develop the biomass esti-
mation models. Data exploration showed that Zostera
muelleri and Halodule uninervis were not being re -
liably discriminated (in both the photo and remote
sensing analysis) due to their morphological similar-
ity, and as such they were treated as a single species
complex for this study. Based on many years of field
data collection (Roelfsema et al. 2013) and studies in
the area, we know that Z. muelleri is the dominant
species and thus suspect it will most likely be the
 correct identification.

Fit and error statistics modelling total biomass and
total cover are shown in Table 1. As mentioned above,
log transformed biomass provided a lower prediction
error and marginally less patterned residuals and was
therefore chosen as the preferred re sponse variable
for the modelling in this study. Addition of second and
third order polynomial terms or use of a GLM/GAM
did not noticeably affect fit statistics and were thus not
further explored in this study. Varying k in the k-fold
cross  validation routines did not have a significant
 impact on error margins (see Table S2 in the Supple-
ment at www.int-res.com/articles/suppl/m530p001_
supp. pdf), thus we opted for the standard 10-fold
cross validation for all routines. The consistency of
biomass prediction error around 24 to 26 gDW m−2

demonstrates a stable and robust rela tionship between
biomass and percentage cover, and could serve as a
baseline error margin for estimates.

Fit and error statistics for the species component
mo delling approach are shown in Table 2, and for the
dominant species modelling approach in Table 3.
These results again demonstrate a strong relation-
ship between biomass and percentage cover, with
the species component regression models showing
marginally better fits. However, Cymodocea serru-
lata has a significantly larger error margin in both
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cases, probably due to generally only being found at
higher biomass levels. The opposite is the case for
Halophila ovalis. The consistency between overall
RMSE, and k-fold and repeated k-fold prediction
error suggests the models should generalise well to
new larger data sets. The prediction errors for each
species can be taken as the expected error margin for
the corresponding species estimates in the final bio-
mass products.

To evaluate predictive performance of the final bio-
mass products, we generated standard modelled ver-
sus observed plots for the species component and
dominant species model, as well as the mixed species
regression fit (Fig. 2). These plots also include an
error margin calculated for different biomass ranges
to better inform users of uncertainty at different bio-
mass levels. The species component and dominant
species models resulted in a marked improvement in
estimation compared to the mixed species linear
model, which is evident visually and in the improved
RMSE values. This provides the core motivation for
utilisation of the methods demonstrated here.

Sample size simulation showed that there was neg-
ligible variation in model performance for around n >
40 samples, higher but likely acceptable variation for
25 < n < 40 sample, and unacceptable variance for
about n < 25 samples (Fig. 3 and see Fig. S1 in the
Supplement). Minimum sample size is likely to vary
with species composition, as well as with environ-
mental or physiological variation within the study
area. Thus it is difficult to make an absolute recom-
mendation on minimum sample size.

Biomass estimations

Point-based data

The species component biomass model was used
to estimate biomass from around 20 000 points with
cover and species composition derived from benthic
photos between 2004 and 2013. For each photo, the
model gives an estimate of above-ground biomass for
each species present. Fig. 4 shows a graphical sum-
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mary of biomass estimates using the full June 2012
photo data set as an example (other years can be pro-
duced using the data/code supplied), demonstrating
the level of detail that can be obtained from a data set
in each year.

Landscape scale

The dominant species biomass model was used to
estimate biomass from 9 seagrass cover/species map
sets between 2004 and 2013. The model gives an
estimate of total above-ground biomass for every
polygon in the seagrass map, thus creating a spatially
continuous biomass map. By multiplying the esti-
mated biomass value (gDW m−2) by the area (m2) of
each seagrass map polygon, estimates of total above-
ground biomass weight (gDW or kgDW) were also
calculated. Fig. 5 shows the June 2012 biomass map
as an example (other years can be produced using
the data/code supplied) and a time-series plot of total
DW biomass on the Wanga Wallen Banks calculated
from the biomass maps from 2004 to 2013.

Application of autotrophic thresholds

Duarte et al. (2010) provide some empirically de -
rived thresholds of above-ground biomass, at which
various seagrass species and meadows tend to be

8

Fig. 3. Effect of sample size on RMSE between seagrass
 percentage cover and seagrass above-ground biomass, sim-
ulated from a random sample of size n = 2, 3, …, 70. Simula-
tion was run 10 000 times; Statistics: permutation resampling
mean (•) and 95% intervals for bootstrap (black bars) and
permutation (red bars) resampling. See Fig. S1 in the Sup-
plement (www.int-res.com/articles/suppl/m530p001_ supp. pdf)

for similar plots produced for R2 and coefficients

Fig. 2. Observed vs. model predicted seagrass above-
ground biomass for (a) mixed species linear regression, (b)
species component biomass model and (c) dominant species
biomass model. Lines: linear fit (blue) and 1-to-1 (red).
RMSE values (in bio-mass gDW m−2): overall RMSE and
ranged RMSE for observed biomass values <25, <50, and 

<75 (dotted line)

http://www.int-res.com/articles/suppl/m530p001_supp.pdf
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autotrophic and act as CO2 sinks. Although these
thresholds are likely to vary across environmental
and geographical gradients, we demonstrate this as a
potential tool for simultaneous assessment of the car-
bon budget by incorporating these thresholds into
the results (Figs. 4 & 5).

DISCUSSION

Model performance

The biomass modelling in this study builds on
established knowledge of the relationship between
percentage cover and above-ground biomass (Heidel -
baugh & Nelson 1996), and demonstrates the  critical
role of species composition when modelling biomass

as a function of percentage cover. We
show how confounding factors in using
percentage cover (such as species mor-
phology, or prevailing light condition/
current that changes apparent percentage
cover; Mumby et al. 1997a), may in part
be reconciled by incorporating species
composition into modelling. Accordingly,
we observed a reduction in the error
 margin of biomass prediction when going
from a single linear model of percentage
cover versus total biomass to the species
component or dominant species ensem-
bles (Fig. 2). From visual assessment and
the RMSE values at difference biomass
ranges (Fig. 2), the mixed species and
dominant species models tend to under -
estimate at higher biomass levels, which is
marginally resolved in the species com -
ponent model. Underestimation results
from higher error margins on estimation
of Cymodocea serrulata, which makes up
most of the samples with biomass >75 gDW
m−2. The high error margin and  under-
estimation is a consequence of canopy
height. At high percentage cover levels,
C. serrulata grows at a range of canopy
heights, thus several patches at the same
percentage cover level can have signifi-
cantly different biomass. Other species
in the study area tend not to have this
property. Interestingly, in Mumby et al.
(1997a), estimate variation also increased
at higher biomass levels. The species com -
ponent model also has marginally better
error margins at lower  biomass ranges.

We expect this effect is likely to increase with
increasing species heterogeneity due to the species
component model better accounting for morphologi-
cal differences be tween species, though we could not
explicitly test this since most of the samples used
in this study had a clear dominant species (~75% of
samples were >75% comprised of 1 species).

Uncertainty in biomass estimates

In context of the model fitting and application to
the point-based photo data set, the main source
of uncertainty is the assumption made about the
 simplicity of the relationship between biomass and
cover. Seagrass in Moreton Bay displays high pheno-
typic plasticity (Maxwell et al. 2014), with morpho -

9

Fig. 4. Seagrass above-ground biomass estimates from the species com -
ponent biomass model for June 2012 benthic photo data from the Eastern
Banks, Moreton Bay, Aus tralia. Occurrence frequency of photos across the
biomass range is for each species and total bio mass (bottom right plot). Note
varying range on y-axis. Colours: different seagrass habitat areas (Banks)
within the study area. Vertical lines = autotrophic thresholds (At) as defined
by Duarte et al. (2010): species specific At (solid line), closely related species
At (thick dotted line), mixed species At (thin  dotted line). See Table 2 for 

expected error margins on biomass predictions for each species
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logy varying markedly with changing water prop -
erties and depth. This is particularly the case for
Zostera muelleri, which is the dominant species in
this study. This would reduce the strength of a linear
relationship between percentage cover and biomass
within a particular species. For example the Z. muel-
leri/Halodule uninervis complex had a lower R2,
though in this case the prediction error margin was

not anomalously higher than other species. Another
factor to consider is the effect of canopy structure on
the biomass-cover relationship. For example, Halo -
phila ovalis has round oval shaped leaves that lie par-
allel to the substrate, which increases the percentage
cover value disproportionately to biomass compared
to the other species which have (usually longer)
leaves that grow vertically. It is worth noting that a

10

Fig. 5. Biomass map for June 2012 on the Eastern Banks, Moreton Bay, Australia, generated by applying the dominant species
biomass model to seagrass percentage cover and dominant species maps. Map inset: zoomed in view of the Wanga Wallen
Banks. Bar plot: total dry weight (DW) of biomass (tonnes) over time on the Wanga Wallen Banks (defined by dotted line), cal-
culated by applying the dominant species biomass model to the full time-series of seagrass maps. Colour scheme = net auto-
trophic threshold for mixed species seagrass (At) as defined by Duarte et al. (2010): <At (reds), >At (greens). See Table 3 for 

expected error margins in biomass predictions
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similar effect may also occur at very low tide or under
strong water current, where a usually vertical canopy
may align at an angle to or flat on the substrate.
We suggest that both morphological variation within
species and canopy structure could be accounted for
with further model stratification or increased degrees
of freedom (e.g. additional terms or environmental
covariate predictors as in Carr et al. 2012). 

Measurement error is also a common source of
uncertainty. We expect that at the point-based spatial
scale, measurement error is negligible in this study
since the biomass samples were analysed by experi-
enced biologists, and the photos were analysed by
experienced photo analysts who have worked in the
study area for over a decade. The spatial scale of the
biomass core data (<1 m2) is not appropriate to assess
biomass estimates at the seagrass mapping unit spa-
tial scale (>5 to 10 m2). Without biomass field data
at this scale (it is unlikely this type of data is even
obtainable), we make the assumption that the model
fit and cross validation statistics scale up from photos
to polygons. That is, the uncertainty component in
the biomass map products due to the modelling is
defined by the regression fit and cross validated pre-
diction error margins. In practice, upon applying the
dominant species model to the seagrass maps, error
in the seagrass maps propagates through to the re -
sultant biomass maps. The overall accuracy of both the
cover and species maps theoretically define the max-
imum accuracy for the biomass map. The accuracy of
the resultant biomass map is then a function of the
propagated error from each map plus the biomass
model error. The accuracy of the maps also affects the
uncertainty in biomass estimation in different ways.

Error in the species map will result in using the
wrong set of coefficients for biomass prediction; thus
the propagated map error will depend on the dif -
ference from the coefficients of the true species. In
our case, species were mapped relatively accurately
(mean: ~80%), so we would expect to apply the
wrong set of coefficients to only 20% of the map
polygons. As an example, consider a Z. meulleri poly -
gon with 30% cover: predicting biomass with the
Cymodocea serrulata or Syringodium isoetifolium
coefficients would result in a prediction error of +13
or +8 gDW m−2, respectively. Error in the cover map
will result in using the wrong cover value in predict-
ing biomass, thus the propagated map error will
depend on the magnitude of the cover map error and
the steepness of the slope coefficient. In our case, we
expect this to be a more common source of error
since the cover maps have a lower mean overall
accuracy (~50%). However, since the cover map cat-

egories are ordinal, we can cal culate a fuzzy accuracy
measure: if a discrepancy of ±10% cover is added,
the mean overall accuracy for the cover maps is much
higher (~75%). So we would expect that only 25% of
the map polygons would have a significant biomass
estimation error. As an example, again consider a
Z. meulleri polygon with a true cover of 30%: a map-
ping error of ±10% would result in a biomass predic-
tion error of around ±3 gDW m−2, whereas a mapping
error of +50% would result in an error of around
+23 gDW m−2. If it were feasible to collect a sufficient
number of map polygon scale biomass measure-
ments, it would be possible to more accurately esti-
mate the error components discussed above.

Advantages of model-based biomass estimation

We have introduced a range of biomass monitoring
approaches in this paper, and here we will outline
some advantages of our model-based approach, the
foremost being time-efficiency. The method de -
scribed here is significantly more time efficient than
both destructive core sampling and in situ visual
methods over the spatial scales demonstrated in this
study. For example, disregarding biomass core ana -
lysis, using in situ estimation by an observer, Mumby
et al. (1997a) state an analysis time of 37.5 site esti-
mates per hour (which at the time was a significant
improvement in sampling efficiency), in contrast to
65.2 site estimates h−1 for our method, equating to a
~74% increase in time efficiency. This is given a
mean photo acquisition rate of 500 photos h−1 in situ,
and a mean photo analysis rate of 75 photos h−1 post
field. Note that for producing the model estimations
there is no practical time difference in processing
with respect to site number. For example, running
our R code on 70 biomass cores and the 3549 photos
from the year 2012 registers an elapsed time of <2 s.
Excitingly, there is significant research into auto-
mated analysis of composition of benthic photos
 (Beijbom et al. 2012), which would not only improve
composition analysis, but the biomass estimation
would be practically instantaneous, decreasing the
overall analysis time by orders of magnitude.

Besides overall time, our approach also offers 2
more potential resource savings. Firstly, the majority
of processing time is post-field, which will equate to
significant resource savings in terms of field work
time and cost. Secondly, the analysed photos were
not only used for biomass modelling, but were also
used to calibrate the seagrass cover and species map-
ping routines from Roelfsema et al. (2014a). These 2

11
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savings could be a significant factor when analysing
cost benefit for field planning.

Explicitly comparing the visual and our model-
based approach, one might expect that a visual inter-
pretation method would provide a more accurate
estimate of biomass, though data from other studies
do not support this. Estimate variation between ob -
servers shown in Kutser et al. (2007) is not signifi-
cantly different to prediction error margins for esti-
mates in this study. Similarly, variation of sample
means and the error range for overlapping biomass
categories in Mumby et al. (1997a) were also not sig-
nificantly different to prediction error margins for
estimates in this study. In fact, being able to provide
an estimate of prediction error that applies consis-
tently across 1000s of estimates is one of the key
advantages of a model-based approach. Compared
to visual assessment, an advantage of a model-based
approach is that estimates are not subjective and are
less prone to human error (both absolute error and
variance between observers). Though one could argue
that observer bias is simply replaced with model
error, model error is repeatable and easier to quan-
tify. Another unique advantage of the species compo-
nent model approach on point-based data is that bio-
mass is estimated per species. None of the published
methods offer a feasible approach for estimating bio-
mass separately for each occurring species.

We expect that our approach will be more robust
when transferring to other data sets and environ-
ments, the only requirement being that a stable
model relationship can be developed between bio-
mass and seagrass predictor variables. Compared to
quantifying observer bias and variability in visual
assessment methods, model performance and predic-
tion error is more easily and consistently identified
over very large areas and very large sample num-
bers. We also expect that our approach will be robust
generalising to different predictor data structures.
Biomass can be estimated when only seagrass cover
data (point- or map-based) is available, useful for
scenarios where species information has not or can-
not be derived. For example, multi-temporal seagrass
mapping that extends back before high-resolution
satellite imagery was available is unlikely to yield
species information at all (Lyons et al. 2013). A key
property of the methods in this study is that biomass
can be estimated retrospectively, which cannot be
done with in situ visual approaches. Future improve-
ments in spectral unmixing and inversion methods
(e.g. Dekker et al. 2011) may yield high resolution spe -
cies composition data at landscape scale (>100 km2),
allowing application of the full species component

approach. Finally, and purely speculatively, it may be
possible to adapt these methods to other biota such
as macroalgae or corals.

Future work and final remarks

A key aspect of future work would be to build a
library of biomass field data for more seagrass spe-
cies and for specific growing seasons. Duarte & Chis-
cano (1999) as well as Hossain et al. (2010) demon-
strated significant temporal variability in biomass,
thus it would be prudent to explicitly test the effect
of seasonality on the biomass-cover relationship. This
would be a step towards a more automated monitor-
ing approach, enabling biomass estimation in new
study sites without the need for in situ sampling.
Future work should also aim to increase model com-
plexity and introduce environmental covariate data
to reconcile the non-linear relationship with chang-
ing species morphology, as discussed above; the data
sets already exist in Moreton Bay (Saunders et al.
2013, Maxwell et al. 2014).

Seagrass ecosystems comprise one of the most im -
portant carbon sinks on earth and assessment of the
carbon stocks in these systems is an important com-
ponent of carbon accounting projects (e.g. Blue Car-
bon initiatives). This study has demonstrated a sim-
ple and robust methodology for estimating seagrass
above-ground biomass over large spatial areas based
on benthic photos, satellite image derived maps, and
limited in situ field sampling. We note that whilst
above-ground biomass is a key indicator, below-
ground biomass can be the major component of stor-
age. The relationship between above- and below-
ground biomass has been demonstrated for some
time (Duarte & Chiscano 1999); thus we hope that
modelling of this relationship will utilise results from
the methodology demonstrated here to also predict
below-ground biomass at similarly large scales. Re -
viving analogies to terrestrial vegetation, more effi-
cient and accurate estimation of structural (e.g. bio-
mass) and physiological (e.g. light use) properties
began with work similar to that in this paper. For
example using simple aggregated ‘big leaf’ models,
analogous to aggregating seagrass species, is less ac -
curate than using models developed to incorporate
different structural and floristic forms (Nightingale
et al. 2004). The methods we describe in this paper
could therefore be an important tool for accurately
quantifying the carbon in seagrass ecosystems over
spatial scales larger than can be tractably assessed
using traditional in situ measurement approaches.
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