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INTRODUCTION

Though landform engineers are prized tools for
habitat restoration, it is not uncommon for practical
applications to result in unanticipated outcomes (e.g.
Strong & Ayres 2013). Departures from expectation
may arise because phenotypic variation is not taken
into consideration, despite ample evidence that eco-
system attributes can be shaped by functional traits
that exhibit heritable and non-heritable variation
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ABSTRACT: Use of landform engineers for habitat
restoration has often resulted in unanticipated out-
comes. It is possible that departures from expecta-
tion arise because applications do not adequately
account for the influence of heritable and  non-
heritable phenotypic variation on ecosystem attrib-
utes. In this study, we performed a common gar -
den greenhouse experiment to determine whether
soil shear strength—a characteristic linked to
 erosion resistance—varies according to heritable
and plastic trait expression in Spartina alterniflora
grown under contrasting nutrient regimes. We
detected heritable variation across a broad spec-
trum of functional traits, including nutrient uptake.
We also found that S. alterniflora exhibited trait-
specific differences in nutrient-induced phenotypic
plasticity. Heritable trait differences and plasticity
together explained approximately 70% of the ob -
served variation in soil shear strength. Soil shear
strength increased when plants received more nu -
trients, but the influence of heritable variation on
soil shear strength was equal to or larger than that
of nutrient-induced plasticity. These findings illus-
trate that heritable and non-heritable trait expres-
sion can potentially govern the fate of marsh eco-
systems, which suggests that consideration should
be given to both factors when deploying landform
engineers for coastal restoration.
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For salt marshes dominated by grass species Spartina
alterniflora, heritable and nutrient-induced trait variation
strongly influence soil erodibility.
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(Whitham et al. 2003, Corenblit et al. 2011, Eppinga
et al. 2011, Pregitzer et al. 2013). Many engineering
species are known to exhibit heritable variation in
traits that exert influence on ecosystem attributes
(i.e. a species’ extended phenotype sensu Dawkins
1999). Engineers also typically ex hibit phenotypic
plasticity, where trait expression is subject to the
influence of prevailing environmental conditions
(Miner et al. 2005, Bardgett et al. 2014). Accordingly,
understanding the influence of heritable and non-
heritable trait expression on landform engineering
could improve habitat restoration by better defining
potential ecosystem outcomes.

Knowledge gained about the influence of heritable
variation and phenotypic plasticity on landform engi-
neering would be particularly valuable for salt marsh
restoration. The landform engineer Spartina alterni-
flora (smooth cordgrass), which exhibits heritable
and plastic trait expression (Seliskar et al. 2002,
Travis & Grace 2010, Qing et al. 2012, Hughes 2014)
is widely used for coastal marsh restoration because
it can stabilize shorelines and increase surface eleva-
tion (Leonard & Luther 1995, Turner et al. 2002,
Howes et al. 2010, Mudd et al. 2010). Despite some
consternation about the introduction of non-native
genotypes (Lesica & Allendorf 1999, Proffitt et al.
2005, Strong & Ayres 2013, Blum et al. 2014, Bernik
et al. 2016), cultivars of S. alterniflora are nonetheless
being incorporated into res torations with the aim of
improving outcomes. For instance, the ‘Vermilion’
cultivar, which exhibits attributes that encourage
establishment (LAPMC 1989, Fine & Thomassie
2000), is virtually the only stock used across the
Louisiana coast (Utomo et al. 2010). It is possible,
however, that use of cultivars does little to encourage
landform engineering be cause cultivation for pre-
ferred traits can result in functional trade-offs. For
example, phenotypes se lected for greater above-
ground growth may provide less soil stabilization
because of reduced belowground investment (Herms
& Mattson 1992). Novel outcomes may also arise
because cultivars exhibit comparably narrow or dis-
tinct ranges of heritable trait variation, and because
responses to prevailing environmental conditions may
differ between cultivated and native genotypes.

In this study, we conducted a common garden
greenhouse experiment to assess the influence of
heritable variation and phenotypic plasticity on land-
form engineering by S. alterniflora. We compared
phenotypic variation among genotypes drawn from
wild and cultivated source populations under high
and low NO3

− treatments, focusing on tissue chem-
istry reflecting nutrient allocation, traits likely to

influence erosion, as well as soil characteristics that
are proxies of erosion resistance. This not only pro-
vided a first look at the relative influence of a species’
extended phenotype and ‘extended phenotypic plas-
ticity’ on geomorphology, it illustrated whether the
use of cultivars is advantageous for marsh restora-
tion. It also offered timely perspectives on ecosystem
outcomes of nutrient loading, including whether
diversion of nutrient-laden water from the Missis-
sippi River stands to promote marsh creation or exac-
erbate coastal erosion in southeastern Louisiana.

MATERIALS AND METHODS

Source materials

We utilized material from 5 source populations that
exhibit differences in both genetic identity and
genetic diversity (see Table S1 and Fig. S1 in the
Supplement at www.int-res. com/ articles/ suppl/ m601
p001_ supp. pdf). To examine natural variation within
a region, source material was collected from Bay
Jimmy (LA1) and from a marsh ~40 km away in
 Catfish Lake (LA2). To examine a broader range of
natural variation, source material was collected from
a population near New York City (NY). At each site,
plant material was harvested from a 5 × 5 m area. We
also examined the cultivar ‘Vermilion’ (C1), which
has been in wide use since 1989, as well as the more
recently developed ‘CP’ cultivar (C2). Vermilion
was developed for aboveground biomass production,
transplantation survival, and tolerance to inundation
and salinity (LAPMC 1989, Fine & Thomassie 2000),
whereas CP was developed for high seed set and ger-
mination to enable aerial seeding (Utomo et al. 2010,
Knott et al. 2012, 2013). We obtained starting stocks
of C1 and C2 from nurseries at Nicholls State Uni -
versity, Thibodaux, LA, and the LSU AgCenter,
Baton Rouge, LA, respectively. Both C1 and C2 were
 propagated from a single genotypic line.

Experimental design

Donor material from all 5 sources was vegetatively
propagated, then grown under common garden
green house conditions for approximately 1 yr to cre-
ate stocks for a full factorial common garden green-
house experiment. Initiated in April 2013, the ex -
periment spanned a full growing season. For each
of the 10 treatment combinations (5 source popula-
tions × 2 NO3

− conditions), 2 plants were randomly
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 established in each of 5 replicate blocks. Thus the
 experiment encompassed 100 plants total (5 prove-
nances × 2 NO3

− conditions × 5 replicates × 2 sub-
samples = 100 plants). Individuals were established
using whole-plant single-stems cut to 5 cm, constitut-
ing a reduction to 3−7 g starting material. Potting
material included soil collected from a salt marsh in
the Pointe-aux-Chênes Wildlife Management Area
(Lou isiana), which was thoroughly cleaned of foreign
debris and homogenized, and then mixed with sand
and Sphagnum moss in a 2:2:3 ratio. Trade pots con-
taining 7 l potting material were amended with 18 g
of Scotts Osmocote Plus, a patterned-release com-
plete nutrient fertilizer containing 15% N, 9% P, and
12% K, to supply all plants with an adequate base
level of resources for the duration of the experiment,
releasing at maximum 1 g m−2 per month NO3

−. Pots
were placed inside buckets containing 13 l of water
treated with Instant Ocean® Sea Salt (Blacksburg,
VA) to attain 5 ppt salinity, with water levels held
approximately 3 to 4 cm above the soil surface after
the first week of the experiment (Fig. S2 in the Sup-
plement). To minimize salt accumulation above the
soil surface, salt additions were omitted from inflows
every other week, keeping concentrations to an
 average of 5 ppt. To simulate flow-through, pots
were drained of ‘outflow’ and water was replaced
with ‘inflow’ each week, with the buckets refilled
with 11 l to account for volume retained by soil satu-
ration. For the nutrient treatment, inflow water deliv-
ered 0.69 g dissolved Hi-Yield® NaNO3 pot−1, bring-
ing NO3

− concentrations up to 10 mg l−1. While NO3
−

concentrations for the lower Mississippi River are
only 1 to 3 mg l−1 on average, marshes fed by river
diversions are expected to receive a median estimate
of 60 g m−2 per year NO3

− due to high flow rates (with
about 46% projected to be  retained). We estimated
that the inflow rate in our treatment delivered the
equivalent of approximately 29 g m−2 yr−1 (Mitsch et
al. 2005).

Genetic characterization

Adapting methods from Blum et al. (2007), we
assessed allelic variation across a panel of 8 micro-
satellite markers to characterize genetic diversity
and differentiation among plants from different
source populations. Except for C1, which exhibited
1 genotype for all 20 individuals, plants from each
source population exhibited 2 genotypes: 1 unique
to a single individual, and another shared by the
remaining 19 individuals. A principal coordinates

analysis (PCoA) of allelic variation recovered distinct
clusters of genotypes from LA1, LA2, NY, and C2
populations (Fig. S1). However, some LA2 plants
exhibited a genotype that was indistinguishable from
C1 (Fig. S1), which indicates that LA2 plants were
either Vermilion cultivars introduced to Catfish Lake,
or that cultivar alleles have introgressed into nearby
natural populations as a result of admixture. Accord-
ingly, we proceeded with the expectation that little
if any performance difference would be found be -
tween LA2 and C1 plants. Log-likelihood calcula-
tions assigned genotypes to the correct source with
100% accuracy, and pairwise Ritland and Lynch
relatedness metrics (RLM) provide further evidence
of dissimilarity between groups, revealing related-
ness between individuals from the same provenance
but not among provenances, allowing for the shared
genotype between C1 and LA2 (Lynch & Ritland
1999) (Table S1).

Phenotypic trait and soil analysis

Plant traits and soil characteristics were measured
after Week 28 of the experiment. At that time, all
aboveground (AG) and belowground (BG) biomass
was harvested, measured, and prepared for chemical
analyses. The total number of shoots and the number
of shoots with seed heads were counted for each pot
(with ‘shoot’ referring to AG material, not inclusive of
BG rhizomes). Shoot height, shoot diameter, seed
head length, the number of living leaves per shoot,
and the length of live leaves were measured for 3
mature shoots (or 3 shoots representing the canopy
vegetation, if seed heads were not present) for aver-
age measures per pot. The total weight of seed heads
was also measured for each pot. Roots and rhizomes
from upper (<6 cm) and lower (>6 cm) soil horizons
were separated and thoroughly cleaned in cold fresh
water. A hydraulic universal testing machine (MTS
Systems) was then used to measure the force neces-
sary to induce failure (peak load) and to calculate the
ultimate tensile strength (UTS, i.e. force per area) of
rhizomes. The cross-sectional area of each rhizome
segment was also recorded. Each biomass compo-
nent was then oven-dried to obtain constant mass
weights and to calculate AG and BG biomass, and
ratios of AG to BG biomass (shoot:root ratio) as well
as root to rhizome biomass (root:rhizome ratio) and
upper to lower soil horizon biomass (BG depth ratio).
Immediately after harvesting AG biomass (and prior
to harvesting BG biomass), torque measurements
were taken using a shear vane (Seiken) at 2 points
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just below the soil surface (0 cm) and within the
lower soil horizon (10 cm). These measurements
were used to calculate soil shear strength, which is a
proxy of erosion resistance (Amer et al. 2017). Aver-
age soil depth was calculated from measures taken at
the center and perimeter edge of each pot prior to
harvesting BG biomass.

Nutrient uptake analysis

Series of water samples were collected during
Week 3 and Week 28 of the experiment. Using a
 filter-tipped glass syringe, samples were drawn
through polyethylene tubing attached to each plant
bucket, then transferred into glass vials and refriger-
ated until spectroscopic analysis (Westco Smart Chem
200). During Week 28, samples were taken immedi-
ately following, 48 h after, and 1 wk after the final
inflow replacement to determine NO2

− and NO3
−

concentrations. After Week 28, the volume of outflow
was also measured in order to calculate the mass
abundance of retained nutrients. Additionally, stan-
dardized dry leaf and rhizome samples from each pot
were ground and homogenized using a mortar and
pestle. Homogenized samples were analyzed using an
EA112 Element Analyzer (Thermo Scientific) to mea -
sure total C and N concentrations.

Statistical analyses

For all variables other than nutrient removal, the
effects of source population (hereafter referred to as
‘provenance’) and nutrient treatment were tested
using factorial ANOVAs (Table S2). To account for a
relationship between UTS and rhizome thickness,
an ANCOVA was used to test for differences in
intrinsic UTS by controlling for covariation in rhi-
zome cross-sectional area. If transformations did not
satisfy model assumptions, non-parametric Kruskal-
Wallis tests (test statistic K) were used to evaluate
the effect of provenance within controls and within
treatments, and to test for a nutrient effect over all
samples without including provenance as a factor.
The critical value was set to 0.05 for all significance
tests, but post hoc comparisons were performed
when p < 0.10. Post hoc comparisons evaluated the
significance of pairwise differences between prove-
nance using Fisher’s least significant difference
(LSD) and Dunn’s tests. Differences in nutrient re -
moval over time were compared using repeated-
measure ANOVAs.

A factor analysis was also conducted to identify the
major dimensions of trait variation using z-transfor-
mations of all trait variables (including outflow vol-
ume and outflow salinity, but not soil characteristics).
Following Hester et al. (2001), significant factors
were included in a 2-way MANOVA (see Table 1) to
test for differences according to provenance and
nutrient treatment. Stepwise linear regression was
then conducted to determine which factors explained
the largest proportion of variation in each soil char -
acteristic. Stepwise linear regression was also used
to assess the effects of BG biomass and architec -
ture, including roots versus rhizomes, on soil shear
strength.

RESULTS

Phenotypic trait variation

All measured traits exhibited heritable variation
(Figs. 1 & 2), where plants of different provenance
exhibited a distinct combination of trait differences.
At the end of the experiment, the number of surviv-
ing plants (N) in control and nutrient treatments
were: NLA1 = 2, 4; NLA2 = 9, 8; NC1 = 9, 10; NC2 = 8, 9;
and NNY = 2, 8, respectively. LA1 exhibited the high-
est mortality rates, low fecundity, and low biomass—
particularly AG biomass—despite exhibiting the
longest leaves (Fig. 1; some data not shown). LA1
plants distinctively invested more towards roots than
rhizomes, and exhibited the greatest average propor-
tion of BG biomass distributed in the shallower soil
horizon (Fig. 1). LA2 plants exhibited intermediate
expression of most traits, including those associated
with productivity and fecundity. However, LA2 plants
had tall shoots, the highest mean UTS, and the high-
est intrinsic UTS. C1 plants consistently expressed
some of the highest average biomass measures and
experienced the  lowest level of mortality. In addition
to tall shoots, C1 plants produced the largest number
of seed heads, and exhibited intermediate mean and
intrinsic UTS values. C2 plants exhibited trait trade-
offs, with the thickest shoots but the lowest shoot
density, and produced large numbers of seeds but
few seed heads. As shoot and rhizome thickness
tended to correlate (Figs. 1 & 2), C2 also had the
thickest rhizomes on average as well as the lowest
UTS and highest peak load values. NY plants also
exhibited tradeoffs, showing the  highest shoot den-
sity but the thinnest shoots and rhizomes, with the
lowest average peak load values. NY plants also
exhibited the lowest mean and intrinsic UTS values.
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In addition, NY plants exhibited the shortest average
shoot height, the lowest biomass measures, and they
did not produce seed heads.

Eight multivariate factors cumulatively explained
87.3% of the total variance across all traits (Table 1).
The first factor, which corresponded to AG and BG
biomass, explained the largest proportion of total
variance (33.7%) and significantly differed by prove-

nance (F4 = 2.84, p = 0.03, pη2 = 0.17, where pη2 is the
partial effect size). Five other  factors that explained
an additional 44.6% of the total variance also signifi-
cantly differed by provenance: factor 2 (F4 = 40.93,
p < 0.001, pη2 = 0.75), factor 3 (F4 = 9.37, p < 0.001,

pη2 = 0.41), factor 4 (F4 = 5.82, p = 0.001, pη2 = 0.30),
factor 5 (F4 = 15.47, p < 0.001, pη2 = 0.53); and factor 8
(F4 = 4.54, p = 0.003; pη2 = 0.25%; Table 1; Fig. S3 in
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Fig. 1. Phenotypic variation (mean ± SE) among Spartina alterniflora from Bay Jimmy, LA (LA1), Catfish Lake, LA (LA2), and
Jamaica Bay, NY (NY), as well as in the Vermilion (C1) and CP (C2) cultivars under control conditions (light gray) and elevated
NO3

− treatments (dark gray). AG = aboveground, BG = belowground. See Table S2 in the Supplement for detailed ANOVA
results. At the top right of panels, T indicates a nutrient approaches (p < 0.10), or achieves significance (T* p < 0.05, T** p <
0.01), and no T indicates no nutrient effect (p ≥ 0.10). In (c), significant provenance × nutrient effects are labelled ‘Interaction’
in parentheses. When non-parametric tests were neccessary, separate tests evaluated the effect of provenance within controls
(lower-case letters) and treatments (upper-case letters), as well as the effect of nutrients without provenance as a factor. Above

bars, * indicates a significant nutrient effect and different letters indicate significant pairwise differences
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Fig. 2. Differences in tensile strength traits (mean ± SE) among Spartina alterniflora from Bay Jimmy, LA (LA1), Catfish Lake,
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Factor Trait loading Provenance (P) Nutrient (N) P × N Block
(s2) Factor traits L F4,50 p pη2 F1,50 p pη2 F4,50 p pη2 F4,50 p pη2

F1 BG biomass 0.99 2.61 0.047 0.17 10.96 0.002 0.18 0.55 0.70 0.04 4.15 0.01 0.25
(0.34) Rhiz. 0.94

Root 0.93
<6 cm 0.93
>6 cm 0.91
Root >6 cm 0.89
Rhiz. <6 cm 0.89
Rhiz. >6 cm 0.78
Root <6 cm 0.77
Biomass 0.91
AG biomass 0.80

F2 N BG −0.81 43.33 <0.001 0.78 11.44 0.001 0.19 2.00 0.11 0.14 1.56 0.20 0.11
(0.16) C:N BG 0.79

BG:AG −0.78
Shoot height 0.76
Seed mass 0.71
C AG 0.67
No. seed heads 0.67
Shoot diameter 0.66

F3 Root:rhizome 0.98 17.10 <0.001 0.58 0.01 0.93 0.00 1.03 0.40 0.08 9.59 <0.001 0.43
(0.11) <6 cm 0.86

>6 cm 0.73

F4 Int. peak load 0.90 5.36 0.001 0.30 1.22 0.28 0.02 0.37 0.83 0.03 1.53 0.21 0.11
(0.08) Peak load 0.84

Int. UTS 0.84

F5 UTS −0.84 16.97 <0.001 0.58 1.64 0.21 0.03 0.60 0.66 0.05 2.21 0.08 0.15
(0.07) Rhiz. diameter 0.76

Leaves shoot−1 0.74

F6 N AG 0.94 0.61 0.66 0.05 0.21 0.65 0.00 5.53 0.001 0.31 1.53 0.21 0.11
(0.05) C:N AG −0.92

F7 Outflow salinity 0.87 1.38 0.26 0.10 9.48 0.003 0.16 0.40 0.81 0.03 26.41 <0.001 0.68
(0.04) Outflow volume −0.71

F8 Leaf length 0.77 4.97 0.002 0.28 3.13 0.08 0.06 0.62 0.65 0.05 3.26 0.02 0.21
(0.03)

Table 1. Factors (F1−F8) explaining Spartina alterniflora trait variation, and their response to experimental treatments. Traits
with >0.60 loading (L) are listed and parentheses give proportion variation explained (s2). Bold indicates significance (α =
0.05). Abbreviations and acronyms refer to: above- (AG) and belowground (BG), BG rhizome (rhizome), carbon and nitrogen 

mass or ratio (e.g. C:N ratio), number (no.), intrinsic (int., i.e. controlling for area), and ultimate tensile strength (UTS)
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the Supplement). Based on MANOVA pη2 values
(Table 1), the 3 factors that captured the largest pro-
portion of trait variation according to provenance
were factor 2 (corresponding to C:N, shoot diameter,
shoot height, shoot:root ratio, and fecundity), factor 3
(corresponding to root: rhizome ratio), and factor 5
(corresponding to UTS, rhizome diameter and num-
ber of leaves; Table 1). These 3 factors explained 16,
10.6, and 7.2% of the total trait variance, respec-
tively. Provenance ex plained 75.2, 40.7, and 52.7% of
the variance in each factor.

Fewer traits differed according to nutrient condi-
tions. The effect of nutrient treatment on traits was
also typically similar to or smaller than provenance
(Figs. 2 & 3), and the proportion of variance ex -
plained by nutrients was relatively low. Of the 8 fac-
tors characterizing the majority of overall trait varia-
tion, only 3 differed between control and elevated
nutrient treatments: factor 1, factor 2, and factor 7;
Table 1, Figs. 1 & S3). As described by factor 1, ele-
vated nutrients had a positive effect on AG and BG
biomass (from 0−6 cm and >6 cm depths; Fig. 1). As
described by factor 2, shoot thickness, height, and
inflorescence length were all significantly higher
under elevated nutrient conditions (Fig. 1). Shoot
density (which did not load strongly with any factor)
was also significantly higher under elevated nutrient
conditions (Fig. 1).

Factorial ANOVAs (Table S2) offered little power
(<0.20) to detect heritable differences in trait re -
sponses to nutrients, but post hoc comparisons of

pair wise differences among source populations
between control and elevated nutrient treatments
offered some evidence of interactions (Figs. 2 & 3).
For traits other than shoot density, the magnitude
rather than the direction of the response to nutrients
differed by provenance (Figs. 2 & 3). For example,
elevated nutrient conditions increased AG and
BG (i.e. overall) biomass, but had no effect on the
ratio of AG to BG biomass (i.e. shoot:root ratio)
(Table S2). Similarly, it had no effect on AG produc-
tivity in C2 plants, or on BG productivity in LA1
plants (Fig. 1). Additionally, LA2 (but not C1) plants
exhibited a 33% increase in seed heads and a
51% increase in seed mass (Fig. 1) under elevated
nutrient conditions.

Nutrient uptake

Tissue chemistry differed according to provenance
as well as nutrient availability. NY plant tissue exhib-
ited a significantly lower rhizome C:N ratio, having
88% higher BG N concentrations on average com-
pared to all other source populations. As described
by factor 2, rhizome N concentration and C:N were
also significantly higher under elevated nutrient con-
ditions (Fig. 1). We also detected interactions be -
tween provenance and nutrient availability. The
most apparent interaction occurred with leaf C:N.
This response was also evidenced by a significant
interaction between provenance and treatment for
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factor 6 (F4 = 5.01, p = 0.002). Notably, LA2 and C1
plants also exhibited increased leaf N concentrations,
while other plants exhibited a decrease—particu-
larly NY plants (which instead exhibited higher rhi-
zome N concentrations).

Differences were also detected in nutrient uptake.
Although LA1 plants attained the highest mean NO3

−

concentration after exhibiting a large initial decline
(Fig. 3), changes in NO3

− concentrations over time
did not differ according to provenance (F4 = 1.18, p =
0.34). However, differences in NO3

− by mass were
informative when accounting for variation in water
loss (K4 = 9.08, p = 0.06). Post hoc tests indicated that
NO3

− was significantly higher for LA1 and NY plants
than C1 plants (Dunn’s test, p < 0.05), which is consis-
tent with the differences observed in plant tissue N
concentrations (and estimated abundance by mass).
No differences in NO3

− were found between LA2 and
C2 plants. Examination of changes in NO2

− revealed
no additional N trends according to provenance (F4 =
0.40, p = 0.81).

Soil characteristics

Soil elevation did not differ according to prove-
nance (F4,55 = 0.99, p = 1.23; Fig. 4), but it signifi-
cantly increased under high nutrient conditions
(F1,55 = 5.31, p = 0.03, pη2 = 0.09), by 2% on average.
Stepwise regression showed that factor 7 (salinity
and water outflow volume) explained 31% of
observed variation (Fig. 4, Fig. S4 in the Supple-
ment), and factor 1 (biomass) explained an addi-
tional 24% of observed variation (F2,61 = 5.40, p =
0.01, R2 = 0.12; Figs. 4 & S4).

Shallow soil shear strength differed according to
provenance and was best explained by differences
in biomass (Table 1, Figs. 4 & S4). At the soil sur-
face, shear strength significantly differed according
to provenance (F4,55 = 7.52, p < 0.001, pη2 = 0.35) and
nutrient treatment (F1,55 = 4.53, p = 0.04, pη2 = 0.08).
Compared to the average, soil shear strength was
43% lower with NY plants and 37% higher with C1
plants (but only 9% higher with LA2 plants). Step-
wise regression indicated that factors 1, 2, 3, and 5
explain 68.4% of observed variation in soil shear
strength (F4 = 35.10, p < 0.001; Fig. 4). Factor 1, corre-
sponding to biomass, had the strongest effect size
(β = 0.71; Fig. S4). Breaking down components of
 factor 1 using stepwise regression and semipartial
correlations revealed that BG biomass explained
52.5% of the variation in surface shear strength, with
another 3.1% uniquely explained by AG biomass

(F2,65 = 41.87, p < 0.001). Of variation explained by
BG biomass, 54.7% was uniquely explained by shal-
low roots and 13.6% by deep rhizomes (while the
other components did not significantly improve the
model; F4,67 = 38.42, p < 0.001).

Shear strength at the deeper soil horizon also sig-
nificantly differed by provenance (F4,55 = 4.24, p =
0.01, pη2 = 0.24) and among nutrient treatments
(F1,55 = 8.00, p = 0.01, pη2 = 0.13; Fig. 4). Over control
and nutrient treatments, C1 plants elevated shear
strength (10 cm) by 25% above average, while LA1
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and NY plants reduced it by 18 and 22% below aver-
age, respectively. Shear strength (10 cm) was 28%
higher on  average in elevated nutrient treatments.
The stepwise regression model for shear strength
(10 cm) indicated that factors 1 and 2 explained
73.1% of the observed variation (F2,63 = 86.71, p <
0.001), with factor 1 having the largest effect size (β =
0.85; Fig. S4). Repeating the analysis for factor 1 traits
revealed that BG biomass components explained
72.0% of the variation in shear strength (10 cm), with
another 4.6% uniquely explained by AG biomass
(F2,65 = 109.59, p < 0.001). Of variation explained by
BG biomass, 19.9% was uniquely explained by shal-
low roots, 18.0% by deep rhizomes, 15.5% by shal-
low rhizomes, and 12.1% by deep roots (F4,63 = 43.14,
p < 0.001).

DISCUSSION

Practical applications of landform engineers often
do not consider whether outcomes are attributable to
heritable or non-heritable phenotypic variation. Our
common garden greenhouse experiment showed
that differences in plant attributes and soil character-
istics associated with erosion resistance correspond
to heritable and non-heritable variation in the salt
marsh engineer Spartina alterniflora. A suite of phe-
notypic traits, including traits likely to mediate ero-
sion resistance, exhibited both heritable variation
and plasticity in response to nutrients. Notably, culti-
vars exhibited considerable phenotypic plasticity,
comparable to levels expressed by plants drawn from
natural populations. We found that soil shear strength
increased when plants received more nutrients; how-
ever, we also found that provenance had an equal or
larger influence than nutrient-induced plasticity on
soil shear strength. These findings illustrate that her-
itable and non-heritable trait variation can poten-
tially govern the fate of marsh ecosystems, which
suggests that consideration should be given to both
factors when deploying landform engineers like S.
alterniflora for coastal restoration.

Heritable variation and phenotypic plasticity in
Spartina alterniflora

Cultivars and plants drawn from natural sources
differed across all measured traits under common
garden conditions, indicating that S. alterniflora
exhibits considerable heritable phenotypic variation,
and thus affirming prior findings (Seliskar et al. 2002,

Proffitt et al. 2005, Travis & Grace 2010, Hughes
2014). Phenotypic variation in S. alterniflora has been
interpreted as evidence of adaptation to stressor
exposure resulting in morphological specialization
(Hester et al. 1998, Smith & Proffitt 1999, Proffitt et al.
2003). Consistent with this, we found that NY plants
exhibited low biomass and seed production, which
may reflect demands for resource conservation under
comparably shorter growing seasons at northern lat-
itudes. We also found that the CP (C2) cultivar, which
has been selected for increased fecundity, produced
heavier seed heads, though other plants produced
more seeds. Other evidence suggests, however, that
some S. alterniflora are generalists capable of per-
forming well across a range of environmental condi-
tions (Proffitt et al. 2003). The Vermilion (C1) cultivar,
for example, attained high biomass, low levels of
mortality and relatively high fecundity under con-
trasting nutrient conditions.

Like prior studies, we found that S. alterniflora
exhibits heritable variation in nutrient uptake. Differ-
ences in sensitivity to nutrient availability have been
observed among S. alterniflora drawn from distinct
source populations, including variation in N uptake,
allocation, and use efficiency (Qing et al. 2012). Intra-
specific variation in salt stress resistance, which can
influence nutrient uptake, has also been observed
among S. alterniflora populations (Hester et al. 2001).
Under high salinity conditions, S. alterniflora must
invest nitrogen in glycine betaine synthesis to main-
tain the osmotic balance needed for water uptake
and transport (Cavalieri & Huang 1981). Individuals
with a limited ability to exclude or secrete salt ions
also tend to invest more heavily in belowground
growth (Hester et al. 2001), which is consistent with
the lower shoot:root and rhizome N concentrations
observed in NY plants. Variation in the ability to syn-
thesize osmoregulatory compounds may also explain
the reduced water loss and increased nutrient out-
flow we observed in LA1 plants (Bradley & Morris
1991, Hester et al. 2001). Further study is warranted
to determine the physiological basis of heritable
 variation in nutrient uptake,  however, as it could also
reflect osmoregulation and associated conditions
like oxygen availability and sulfide concentrations
(Morris 1980).

As expected, we detected evidence of phenotypic
plasticity—for example, elevated nutrients promoted
greater biomass and increased shoot diameter, height,
and density—but we also found that plasticity dif-
fered according to provenance, which suggests that
S. alterniflora exhibits heritable variation in pheno-
typic plasticity. It is well understood that AG and BG
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attributes vary in response to resource availability
and stressor exposure (Mendelssohn & Morris 2000,
Bertness et al. 2008, Darby & Turner 2008a,b, Morris
et al. 2013a,b, Zhang et al. 2013, Liu et al. 2016). Phe-
notypic plasticity can be advantageous for plants like
S. alterniflora that undergo vegetative reproduction,
as it can enable clones to persist over shifting envi-
ronmental conditions—particularly in extreme envi-
ronments like coastal salt marshes that experience
salinity and inundation stress (Douhovnikoff & Dodd
2015). Heritable variation in plasticity can also be
advantageous, since the demand and value of plasti-
city can depend on the nature of prevailing environ-
mental conditions (Sultan 2000). Our findings are
consistent with this expectation, where trait-specific
differences in response to N enhancement appear to
correspond to variation in resource allocation strate-
gies. For instance, exposure to elevated nutrients
resulted in higher seed production in LA2 plants,
whereas it resulted in greater shoot diameter and
density in NY plants. Such differences suggest that
resource investments necessary to cope with envi-
ronmental variation along the northern Gulf coast
differ from those necessary to cope with conditions
across the mid-Atlantic coast (Seliskar et al. 2002).
Additional comparisons, especially among more geno -
types drawn from within the same region, would bet-
ter illustrate whether differences in plasticity reflect
alternative responses to common stressors or special-
ization to local conditions.

Though our findings indicate that plasticity is her-
itable, it is also possible that the observed variation
is a consequence of epigenetic regulation of trait ex -
pression. As has been found in S. alterniflora and
other species (Verhoeven et al. 2010, Bräutigam et
al. 2013, Kilvitis et al. 2014, Verhoeven & Preite
2014, Douhovnikoff & Dodd 2015, Foust et al. 2016),
epi genetic regulation may allow clones to respond
to changing environmental conditions. This would
help explain the observed differences in responses
to nutrients between LA2 and Vermilion plants,
which appear to exhibit the same genotype (Fig. S1).
Alternatively, trait expression may differ between
individuals with the same apparent genotype due to
differences in genetic mutation loads accumulated
over the course of clonal propagation (Klekowski
1997). Further assessments of rapid and cross-gen-
erational re sponses to shifting nutrient conditions
would  clarify whether epigenetic regulation contri -
butes to marsh resilience. Doing so might also in -
form restoration practices that are based on ex pec -
tations of predict able and consistent expression of
cultivated traits.

The extended phenotype of a landform engineer

We found further evidence that S. alterniflora ex -
hibits an extended phenotype that influences ecosys-
tem attributes (Seliskar et al. 2002, Proffitt et al. 2005,
Violle et al. 2007, Nie et al. 2010, Travis & Grace
2010, Hughes 2014). Like prior studies showing that
S. alterniflora exhibits heritable variation in pheno-
typic ‘effect’ traits (Seliskar et al. 2002, Proffitt et al.
2005, Violle et al. 2007, Travis & Grace 2010, Cor-
nelissen et al. 2014, Hughes 2014), we found that S.
alterniflora exhibits heritable variation in traits that
can influence ecosystem attributes. For example,
 heritable variation in architecture (e.g. stem den-
sity) can influence sediment deposition and accretion
(Leonard & Luther 1995). Similarly, variation in bio-
mass can translate to differences in productivity
that influence marsh surface elevation (Turner et al.
2002).

We also found clear evidence that the extended
phenotype of S. alterniflora encompasses landform
engineering. Surface and sub-subsurface soil shear
strength, which serves as a proxy measure of erosion
resistance, differed according to plant provenance.
The effect sizes we observed were similar to those
that have been found in other studies showing com-
munity and ecosystem outcomes of heritable varia-
tion in S. alterniflora (Seliskar et al. 2002, Proffitt et
al. 2003, Travis & Grace 2010). While the potential for
engineering species to modify landform dynamics is
becoming increasingly recognized (Corenblit et al.
2011), this study is the first to illustrate that geo -
morphology is mediated by intraspecific variation in
a landform engineer. This finding is not entirely sur-
prising, however, considering that prior studies have
shown that heritable variation in S. alterniflora can
influence associated ecosystem attributes like the
quantity and distribution of soil organic matter and
microbial activity (Seliskar et al. 2002, Proffitt et al.
2005, Nie et al. 2010). It also builds on observations
that plant species vary in capacity to influence Earth
surface processes and suggestions that adaptive vari-
ation in plants can shape biogeomorphic feedbacks
(Corenblit et al. 2011).

After accounting for measures of productivity, the
factors that best explained variation in shear strength
corresponded to the traits that distinguished plants
from different source populations. This is consistent
with evidence from a field-scale common garden
experiment (Bernik 2015) indicating that differences
in shoreline erosion rates are likely due to variation
in traits other than BG biomass production. We found
corroborative evidence of a more subtle mechanism
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of soil modification, whereby the effect of BG bio-
mass on shear strength is mediated by relative allo-
cations to fine root production versus rhizomes, with
greater fine root production accounting for a higher
proportion of the observed variation in shear strength.

Soil shear strength measures may not fully capture
the contributions of root tensile strength (i.e. UTS) to
erosion resistance. The overall shear strength for a
section of a root mat likely corresponds to the product
of UTS and the total cross sectional area of roots and
rhizomes that must break for shearing to commence
(van Eerdt 1985, Tengbeh 1993, Howes et al. 2010).
Our findings illustrate that S. alterniflora exhibits
the inverse power relationship between root (i.e. rhi-
zome) diameter and tensile strength that has been
observed in other systems (van Eerdt 1985, Gyssels et
al. 2005, De Baets et al. 2008). We also found that both
rhizome diameter and tensile strength varied accord-
ing to provenance, and that they do not necessarily
increase erosion resistance. For example, C2 plants
had thick rhizomes that could withstand the highest
force (i.e. peak load), but exhibited the lowest UTS.
Plants from NY exhibited the thinnest rhizomes but
did not exceed the UTS exhibited by other genotypes,
indicating that NY rhizomes are intrinsically weaker
compared to those of other plants examined here
(Fig. 2). Low UTS and weaker rhizomes were also ob-
served for the Vermilion (C1) cultivar, which notably
contrasts with the high UTS values exhibited by LA2
plants (Fig. 2). It remains possible that these and
other traits (e.g. shoot diameter and density, root di-
ameter, fine roots) influence erosion resistance by
modifying other soil attributes (i.e. besides elevation
and shear strength) that are better characterized
through field-scale experiments (Bouma et al. 2005,
Leonard & Croft 2006, Yang et al. 2008, Burylo et al.
2012, Fagherazzi et al. 2012, 2013).

Extended phenotypic plasticity in a 
landform engineer

Though prior work on heritable variation involving
reciprocal transplants suggested that ecosystem-
level effects of phenotypic plasticity (i.e. extended
phenotypic plasticity) are minor (Seliskar et al. 2002),
nutrient addition resulted in increased surface eleva-
tion and it led to responses that increased measures
of erosion resistance, regardless of provenance. An
experiment examining the extended phenotype of
Phalaris arundinacea similarly detected evidence of
heritable variation in plasticity, but found that nutri-
ent availability controlled the competitive advantage

of specialist genotypes by stimulating or suppressing
differences in engineer traits (Eppinga & Molofsky
2013). In contrast, we also found that differences in
the extended phenotype of S. alterniflora persisted
regardless of nutrient regime.

The observed range of extended phenotypic
 plasticity was nonetheless smaller relative to the
range of heritable phenotypic differences found
among S. alterniflora from different source popula-
tions (Seliskar et al. 2002). This finding provides an
intriguing counterexample to the well-documented
and often-cited extended phenotype of Populus
tremuloides (Whitham et al. 2006). Effects of P.
tremuloides genotypes on leaf litter decomposition
and nutrient cycling are also moderated by nutrient
regime, where nutrients exert a greater effect than
does genotype (Madritch et al. 2006). In contrast, we
observed that the effect of provenance on erosion
resistance equaled or exceeded the effect of nutri-
ents. Indeed, provenance explained twice as much of
the observed variation in deep soil shear strength. It
is possible, however, that greenhouse-scale meas-
ures do not adequately capture the full range of
effects that nutrient enhancement may elicit.

Management implications

The fate of imperiled salt marshes in part depends
on responses of S. alterniflora to elevated nutrient
regimes (Deegan et al. 2012). Nutrient loading might
reduce erosion by stimulating a net gain of BG bio-
mass (Morris et al. 2013a,b). By lowering demand
for foraging, nutrient loading might instead reduce
BG growth (Darby & Turner 2008a,b). It might also
weaken soil integrity by increasing rates of decom-
position (Turner 2011). Since both productivity and
soil characteristics are circumscribed by the ex -
tended phenotype of S. alterniflora (Seliskar et al.
2002, Bernik 2015), it is possible that marsh erosion is
contingent on heritable and non-heritable variation
in response to nutrient availability. Consistent with
prior studies (Morris et al. 2013a), we found that
nutrient addition resulted in greater biomass as well
as changes in architecture that did not increase
shoot:root ratios. Additionally, elevated nutrients
resulted in increased surface elevation and higher
erosion resistance. However, we found that traits that
can govern erosion resistance (e.g. root:rhizome
ratios, rhizome tensile strength) differed according to
provenance, as did trait-specific responses to N en -
hancement that may reflect differences in resource
allocation strategies. These findings suggest that out-
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comes of coastal restoration projects, such as river
diversions that aim to deliver sediment-rich but
 nutrient-laden freshwater to adjacent delta marshes
(Morris et al. 2013a), may be contingent on the
genetic composition of resident ecosystem engineers
as much as, or more so, than prevailing environmen-
tal conditions. Thus it would be prudent to assess
heritable and non-heritable responses of plants at
candidate outfall locations to better understand po -
tential outcomes of river diversions. Similarly, though
we did not find evidence that cultivation of S. alterni-
flora for targeted traits has resulted in functional
trade-offs that diminish erosion resistance, coastal
restoration programs should nonetheless take pre-
caution and evaluate whether cultivars achieve per-
formance goals at sites targeted for use.

Data archive. Data for plant traits, soil characteristics, as
well as microsatellite data: Dryad Digital Repository
doi:10.5061/dryad.898t03g.
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