
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 679: 1–18, 2021
https://doi.org/10.3354/meps13938

Published November 25

1.  INTRODUCTION

Sustained exploitation of fisheries worldwide has
left nearly half of scientifically assessed fish stocks
currently in an overfished state (Hilborn et al. 2020)
and has reduced many populations of incidentally
caught species to low abundance (Lewison et al.
2004, 2014, Beddington et al. 2007, Sims & Queiroz
2016, Pacoureau et al. 2021). In response to these
multi-species challenges, fisheries management
authorities have aimed to move towards ecosystem-
based approaches to ocean resource management
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ABSTRACT: Bycatch in commercial fisheries is a
pressing conservation concern and has spurred glo -
bal interest in adopting ecosystem-based manage-
ment practices. To address such concerns, a thor-
ough understanding of spatiotemporal relationships
among bycatch species, their environment and fish-
eries is required. Here we used a generalized linear
mixed model framework incorporating spatiotempo-
ral random effects to model abundance patterns for 3
skate species caught as bycatch in commercial fish-
eries (thorny skate Amblyraja radiata, winter skate
Leucoraja ocellata and smooth skate Malacoraja
senta), as well as 10 target species on the Scotian
Shelf, NW Atlantic. Spatiotemporal estimates of rela-
tive abundance for at-risk skates within the years
2005−2015 were modelled from research trawl sur-
vey data and overlaid with those for target species to
identify hotspots of bycatch risk. In addition, abun-
dance estimates for at-risk skates within the years
1975−1985, a period of higher stock abundance,
were used to identify areas of previously important
habitat. Historically, skate species densely occupied
areas near Sable Island and Banquereau Banks,
Georges Bank and the Bay of Fundy. Bycatch hot -
spots between at-risk skates and commercial targets
were identified in regions across the Scotian Shelf.
These hotspots were independently validated by
predicting species presence from at-sea observer
data that monitor skate bycatch directly. We discuss
spatial relationships between target and bycatch
species, highlighting limitations of at-sea observer
programmes that this method helps to address. This
framework can be applied more broadly to inform
ecosystem management and priority areas for con-
servation or fisheries regulation.
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Smooth skate Malacoraja senta photographed in the Jordan
Basin Conservation Area, Scotian Shelf.
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(Smith et al. 2007, Hegland et al. 2015, Cucuzza et al.
2021). Ecosystem-based management aims to bal-
ance resource exploitation while avoiding ecosystem
degradation and accounting for all ecosystem com-
ponents, including non-commercial species and
habitat. A primary objective of many ecosystem-
based management strategies is to identify spatial
areas of conservation priority (Pikitch et al. 2004).
These can include core areas of habitat or high abun-
dance for protected species (Williams et al. 2014), or
areas where the risk of anthropogenic impacts are
elevated, including the risk of bycatch, the incidental
catch of non-target species in a fishery (Kirby & Ward
2014). Traditional methods to mitigate deleterious
effects of fishing and protect habitat involve static
area closures, establishment of marine protected
areas and modifications to fishing gear and practices
(Cox et al. 2007, Poisson et al. 2014, Senko et al.
2014). These often result in trade-offs between pro-
tecting a species or habitat, and maintaining eco-
nomically viable fisheries (O’Keefe et al. 2014).
Another limitation is that a static approach does not
inherently account for shifting species distributions
in response to climate variability and change (Kleis-
ner et al. 2017). A more dynamic ecosystem-based
management approach, where regulations shift in
space and time in a fluid response to changes in bio-
logical and oceanographic parameters, is widely
viewed as a possible solution (O’Keefe & DeCelles
2013, Maxwell et al. 2015, Hazen et al. 2018, Welch
et al. 2020).

The basis of such dynamic ecosystem-based man-
agement is a comprehensive understanding of the
spatial domains of habitats, species and human activ-
ities. In the past 2 decades, statistical modelling of
species distributions has advanced considerably
(Fink et al. 2010, Ward et al. 2012), with the spatial
and temporal variation in abundance and correla-
tions with climate and oceanographic parameters
garnering particular interest (Lewison et al. 2009,
Ward et al. 2015). Understanding the patterns and
drivers of species distributions is critical to address-
ing broader fisheries management and conservation
issues. For example, identification and protection of
core areas for depleted species can increase popula-
tion productivity (Rodwell et al. 2003, Shackell et al.
2005). Geostatistical tools have been applied to iden-
tify discrete regions of high species density (Morfin
et al. 2012, O’Brien et al. 2012, Legare et al. 2015),
and can enhance marine management and protected
area effectiveness (Knip et al. 2012). Another key
application is mitigation of bycatch in commercial
fisheries. Bycatch is a pressing ecological threat

worldwide contributing up to 40% of total global
catch (Davies et al. 2009). Statistical modelling is
instrumental in elucidating the spatial patterns of
species and drivers of bycatch (Cosandey-Godin et
al. 2015, Breivik et al. 2016, 2017, Hazen et al. 2018,
Hurley et al. 2019, Stock et al. 2020), and co-occur-
rence between species can inform where the proba-
bility of bycatch is elevated (Ward et al. 2015, Run-
nebaum et al. 2020). For mixed-species fisheries such
as those for groundfish, many species co-occur, and a
given species may be affected by the cumulative
impacts of combined methods of fishing (Foster et al.
2015). Within multi-species fisheries complexes, a
comprehensive approach incorporating information
from multiple affected target and non-target stocks
should be taken when evaluating the spatial distri-
bution of bycatch for a depleted, threatened or pro-
tected species.

In Atlantic Canada, a complex groundfish commu-
nity has been a major target of regional fisheries for
over 500 yr (Lear 1998). Groundfish landings on the
Scotian Shelf and Bay of Fundy totaled nearly
40 000 t in 2018, with the majority of landed weight
comprised of cod, haddock and pollock (referred to
as the ‘CHP complex’), Atlantic halibut, Acadian red-
fish and silver hake. The fishery generally operates
in Northwest Atlantic Fisheries Organization (NAFO)
divisions 4VWX5, the management boundaries strad-
dling the Scotian Shelf and Bay of Fundy within
the NAFO Convention Area. The majority of catch
landed by bottom-trawl is harvested on the western
Scotian Shelf, and involves a variety of bycatch spe-
cies (Peacock & Annand 2008). Among these are sev-
eral species of skate (Family Rajidae), which have
been designated as endangered or of special concern
by the Committee on the Status of Endangered Wild -
life in Canada (COSEWIC), following substantial
declines in stock abundance (Table 1). As a whole,
skates and other elasmobranchs exhibit primarily K-
selected life-history traits, such as late age-at-matu-
rity and low fecundity relative to many bony fishes.
Because of this, they are intrinsically less resilient to
overexploitation (Stevens et al. 2000, Dulvy et al.
2008, Hobday et al. 2011). On the Scotian Shelf,
abundance of thorny skate Amblyraja radiata has
declined by upwards of 90% in and remains low.
Populations of smooth skate Malacoraja senta have
declined well below 1970s levels (DFO 2017a). Both
have been assessed by COSEWIC as endangered or
special concern in some or all of their Atlantic Cana-
dian range (Table 1). The winter skate Leucoraja
ocellata population on the Eastern Scotian Shelf has
declined by up to 98% in the past 40 yr (DFO 2017b).
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COSEWIC has assessed this population of winter
skate as endangered (Table 1). Winter skate is cur-
rently under consideration for federal protection
under the Canadian Species At Risk Act (SARA) fol-
lowing a review by COSEWIC (2015). Protection
under SARA would compel the Canadian govern-
ment to design and implement a recovery strategy
for the winter skate on the Scotian Shelf.

Our understanding of important areas of habitat
and bycatch hotspots for skates in the Scotian Shelf
groundfish community is presently poor. All 3 spe-
cies are heavily depleted and exist as remnants of
their former populations whose current distributions
may not reflect true core areas (Shackell et al. 2005,
Carson et al. 2017). Bycatch is estimated to be high
within the CHP complex, redfish and Atlantic halibut
fisheries (DFO 2017b); however, these estimates are
complicated by problems with taxonomic identifica-
tion of skates in landings records and by at-sea
observers (Benoît 2006). Furthermore, observer cov-
erage on vessels targeting groundfish is consistently
low at 5−10% of fishing trips (Clark et al. 2015), well
below the recommended 50% coverage required for

reasonable estimates of rare or depleted species
(Babcock et al. 2003).

For skate species, the most taxonomically and spa-
tially complete data come from annual research ves-
sel (RV) surveys undertaken by the Department of
Fisheries and Oceans Canada (DFO) on the Scotian
Shelf each summer. These surveys cover the Scotian
Shelf and Bay of Fundy areas (Fig. 1) and directly
sample the groundfish community by bottom trawl-
ing. The random stratified surveys account for all fish
to the genus level at minimum and have been on -
going since 1970, prior to the expansion of Cana-
dian domestic fisheries and harvest moratoria being
implemented for Scotian Shelf groundfish stocks
(Bundy 2005, Peacock & Annand 2008), and contin-
ues to the present. The RV survey dataset, containing
decades of presence and abundance data for all
groundfish, can be used to predict previous areas of
high species abundance and to evaluate species co-
occurrence. Species co-occurrence has previously
been used to predict bycatch hotspots (Ward et al.
2015, Runnebaum et al. 2020), but these predictions
have been limited to a single pair of species or single
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Species or complex     Latin name                                        COSEWIC status RV survey records with species present
                                                                                              1975−1985 2005−2015

Skates
Smooth skate              Malacoraja senta                              Endangered (Funk Island  389 335
                                                                                               Deep); special concern 
                                                                                               (Laurentian−Scotian)
Thorny skate               Amblyraja radiata                            Special concern 1088 589
Winter skate                Leucoraja ocellata                            Endangered (East SS/ 210 255
                                                                                               NFLD, GSL); not at risk 
                                                                                               (West SS)

Targets
Atlantic halibut           Hippoglossoides hippoglossus        Not at risk 281 563
Silver hake                  Merluccius bilinearis                        Not assessed 578 1375
Redfish                        Sebastes spp.                                    Threatened (S. fasciatus) 520 1153

CHP
Atlantic cod                 Gadus morhua                                  Endangered 1154 1172
Haddock                      Melanogrammus aeglefinus            Not assessed 994 1475
Pollock                         Pollachius virens                              Not assessed 404 618

Flatfishes
American plaice         Hippoglossoides platessoides          Threatened 981 1421
Witch flounder            Glyptocephalus cynoglossus           Not assessed 604 1150
Yellowtail flounder     Limanda ferruginea                         Not assessed 475 851
Winter flounder          Pseudopleuronectes americanus    Not assessed 181 511

Total sets                                                                                1595 2234

Table 1. Skate bycatch and commercial target species and their assessment status from the Committee on the Status of Endan-
gered Wildlife in Canada (by designatable unit, if applicable). CHP represents the cod-haddock-pollock fisheries complex.
Number of records where each species was present within the research vessel (RV) survey dataset are shown for each decade
of interest. Values in italics were not used in the analysis for that time period. Data collected annually in late summer by Fish-
eries and Oceans Canada in random-stratified bottom trawl survey of the Scotian Shelf (SS); NFLD: Newfoundland; GSL: Gulf 

of St. Lawrence
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fishery. In our study, we aimed to identify important
areas of habitat for 3 threatened skates, and present
an approach to use the relative abundance of indi-
vidual species to predict bycatch hotspots on the
Scotian Shelf.

Our goal is to present a modelling approach for
identifying spatial regions of conservation concern
for data-limited or rare species. Here we used a novel
R package, ‘staRVe’ (Lawler 2020), designed for fit-
ting spatiotemporal models to research survey data
(E. Lawler et al. unpubl., preprint: https:// arxiv.org/
abs/ 2105.06902), and employed a long-standing
bottom-trawl survey of the groundfish community.
We sought to identify historical regions of high spe-
cies density for skates, indicative of important habitat
regions. In addition, we aimed to predict areas where
current bycatch risk to skates is elevated based on
a co-occurrence framework between 3 threatened
skates and 5 bottom-trawl fisheries represented by

10 target species. We then used data collected by at-
sea fisheries observers to introduce a proof-of-concept
method to validate predictions of bycatch risk.

2.  METHODS

2.1.  Data

In order to identify historically important habitat
for at-risk skate species and potential regions of high
bycatch in their present distributions, we used a fish-
ery-independent survey dataset. DFO undertakes a
bottom otter-trawl survey each summer on the east-
ern Scotian Shelf and Bay of Fundy. The survey area
corresponds to NAFO divisions 4VWX and follows a
random stratified design across depths between 50
and 500 m, where tows are conducted at a speed of
approximately 3 knots for 30 min. Onboard, trained
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Fig. 1. Study area in Atlantic Canada, showing research vessel (RV) survey trawl locations for the years (a) 1975−1985 and (b)
2005−2015. (c) Mean August sea surface temperature (SST) within and around the study area for the years 2005−2015. Tem-
perature is reported at a 0.1° resolution. (d) Depth reported at a resolution of 1 arc-minute. Contour lines represent 100 m 

intervals. Shelf features are noted for reference with results
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DFO technicians equipped with species identifica-
tion guides sample the catch and identify all fish to
the genus level at minimum. For species of conserva-
tion concern, including skates in particular, morpho-
logical differences between species are specified
using detailed photographic guides. Variables that
were extracted from the RV dataset include the start
and end latitude and longitude of the tow; the dura-
tion of the tow; and each species caught and their
total catch weight. Catch per unit effort (CPUE, kg
trawl h−1) was calculated by dividing the total weight
of the catch by the duration of the tow. Here, our
study area covers the same region as the RV survey,
extending approximately to the continental shelf
boundary. The average latitude and longitude of
each tow was used to represent the spatial locations
of each set in the survey dataset. Fig. 1 shows the
locations of all RV survey sets within each study
period.

Two decades of survey data were considered sepa-
rately in our study. To identify historically important
habitat areas for at-risk skates, we used spatiotempo-
ral models fit to RV data extracted for the years
1975−1985. These years correspond to the approxi-
mate time in Canadian fisheries governance when
foreign fisheries were expelled from the 200 nautical
mile exclusive economic zone in 1977 (UN General
Assembly 1982) but prior to the proliferation of local
fisheries, leading to an increase in the abundances of
many groundfish species (Lear 1998, DFO 2017c). To
predict current hotspots of bycatch, relative abun-
dances of skates and other groundfish species that
are targeted by bottom-trawl fleets were modelled
using RV data extracted for the years 2005−2015.
This was a period of relative stability in terms of fish-
eries legislation, but where some groundfish popu -
lations (including at-risk skates) remained at low
abundance. A list of all species considered is shown
in Table 1, with annual trends in mean CPUE across
each decade for all species shown in Fig. 2. We over-
laid the relative spatial abundances of at-risk skates
with those of 9 high-value commercially fished
ground fish species on the Scotian Shelf.

In addition to the RV set locations, 2 spatially refer-
enced environmental variables, sea surface tempera-
ture (SST) and depth, were included in the analysis
of RV data from the period 2005−2015 to explore the
degree to which these variables influence the rela-
tive abundance of a given species. These covariates
were selected as common abiotic factors that predict
distribution of demersal fishes (Mueter & Norcross
1999). Thorny skates are known to associate closely
with cooler, deeper waters (Sguotti et al. 2016), and

both thorny and winter skates have been shown to
occupy greater depths as their abundances have
declined (Nye et al. 2009). For analyses examining
the years 1975−1985, SST was extracted as a decadal
summer mean temperature from the World Ocean
Atlas (Boyer et al. 2018). For analyses of the years
2005−2015, high-resolution SST data were derived
from NOAA High-Resolution Blended Analysis of
Daily SST (NOAA/OAR/ESRL PSL, Boulder, Col-
orado, USA, https://psl.noaa.gov/). Mean August
SST (°C) was extracted within the study area at a res-
olution of 0.25° × 0.25° for each year between 2005
and 2015. Although temperature at the seafloor is a
variable in the RV survey, there were many missing
values, making interpolation unreliable. As a proxy,
depth (m) values were extracted from the NOAA
ETOPO1 Global Relief Model raster (Amante &
Eakins 2014), which is provided at a resolution of
1 arc-minute × 1 arc-minute (0.0167° × 0.0167°). Raw
values for oceanographic data in their native resolu-
tions are shown in Fig. 1. All oceanographic data
were bilinearly resampled to a common grid with a
resolution of 0.1° × 0.1° within the extent of the study
area. This spatial scale was used to maximize the res-
olution of the model output while avoiding over-
 interpolation of environmental variables and maintain-
ing reasonable computation time in later analyses.
All annual SST (°C) raster layers were stacked, and
the depth (m) raster layer was replicated for each
year in the 2005−2015 analysis (n = 11) and stacked.
SST and depth data were compiled to a common
covariates file according to ‘staRVe’ package docu-
mentation (Lawler 2020). Spatial operations were
performed using the ‘raster’ package (Hijmans 2020)
in R version 4.1.0 (R Core Team 2020).

While direct observations of bycatch are collected
by DFO through various at-sea observer pro-
grammes, observer coverage in the Atlantic ground-
fish fisheries is consistently low (Clark et al. 2015),
and at-sea observer programmes in general can
introduce ‘observer effects’ in which fishing practices
and behaviour change in the presence or absence of
observers (Benoît & Allard 2009). For some bycatch
species that may be difficult to identify, such as
skates, species-level differentiation by observers
may be lower priority during particularly large fish-
ing sets. As an added complication, at-sea observer
data in Canada are screened to protect the privacy of
individual fishing vessels. This involves spatially
aggregating the observed catch from 5 different ves-
sels or licences into 1 centroid point (Butler & Coffen-
Smout 2017) in what has been referred to as the
‘rule-of-5’. In areas where fishing activity is high, the
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spatial resolution of observer data is relatively high,
and this aggregation of catch data does not result in
a significant loss of spatial accuracy. In regions
where the rule-of-5 cannot be satisfied without los-
ing significant spatial resolution, the areas are
removed from the dataset by DFO prior to release to
the researcher.

Because the RV survey employs a bottom trawl,
we used data provided from at-sea observer pro-
grammes from 2 bottom trawl fisheries: 4X5Y

groundfish bottom trawl (CHP directed) and Unit 3
redfish bottom trawl (Fig. 3). Observed catch data for
each species, including the total catch weight, mean
catch weight and total count, were provided aggre-
gated into 2 intervals of 5 yr (2005−2009, 2010−2014)
and across a 2 arc minute hexagonal grid. The cen-
troid of each grid cell was extracted to represent the
spatial location of the catch (Fig. 3). For each hexa-
gon, the number of fishing trips was approximated
from the summed total weight of catch divided by the
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mean weight of catch of the primary target species.
The total counts (kept and discarded) for each spe-
cies of skate, number of fishing trips and correspon-
ding latitude and longitude were extracted from the
shapefile at each centroid point for each time interval
and each fishery. Data extraction was completed in
QGIS version 3.12.0 (https://QGIS.org), and subse-
quent operations were performed in R. The kept and
discarded counts were summed and bycatch data
were compiled into a data-frame, containing the lati-
tude and longitude for each centroid point, the total
number caught for each skate species and the re -
spective time interval. Species presence (0 = absent,
1 = present) was defined as a count ≥1 for each skate
species at each centroid point. Although bycatch risk
hotspots were analysed for the Atlantic halibut and
silver hake fisheries, we chose to validate our predic-
tions using only data from comparable bottom-trawl
fisheries to reduce uncertainty due to differences
in catchability between gear types. Because the At -
lantic halibut fishery employs long-lines and the
4VWX silver hake fishery mandates the use of 40 mm
separator grates on trawls (Showell et al. 2010),
observer data from these fisheries were not included
in the analysis.

2.2.  Statistical analyses

Generalized linear mixed models (GLMMs) with
spatiotemporal random effects were used to individ-
ually predict the distributions of skates and ground-

fish species on the Scotian Shelf. Models were fit
individually for each species considered using the
‘staRVe’ package (Lawler 2020) in R. ‘staRVe’ uses a
GLMM framework, assuming univariate spatiotem-
porally referenced point data in continuous space s
and time t. A description of the model and discussion
of the statistical considerations attendant with spatio-
temporal GLMMs is provided in Text S1 in the Sup-
plement at www. int-res. com/ articles/ suppl/ m679 p001
_ supp .pdf. Our analysis comprises 2 components, the
first of which is the process model describing the of
presence (or abundance) of a species in space. The
second component is the observation model which
captures the RV survey sampling data-generating
process. The realized model is interpreted as a time-
series of spatial processes, for which a nearest-neigh-
bour Gaussian process gives spatial structure to the
data while maintaining reasonable computation time.

We used a 2-stage hurdle model for relative spe-
cies abundance. The first part models species pres-
ence (P) probability using a Bernoulli distribution
and logit link function. Where oceanographic para -
meters are included in the analysis, they are denoted
by the term Xi,t,P(s) β, where i is the ith observation at
location s at time t, and β is the vector of covariate
effects.

The second part of the hurdle model involves a
Gaussian distribution and identity link function for
logCPUE, where only observations with a non-zero
catch are included.

Fitted models were then used to generate pre -
dictions for presence probability and logCPUE indi-
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Fig. 3. Subset of the study area, with point locations for at-sea observations of catch from cod-haddock-pollock (CHP)-directed
groundfish and Unit 3 redfish bottom-trawl fisheries for the years (a) 2005−2009 and (b) 2010−2014. Each point represents the
spatially aggregated observed catch from 5 different vessels following Fisheries and Oceans Canada privacy screening
 requirements. Data were temporally aggregated into 5 yr intervals to reduce privacy screening effects and preserve spatial 

resolution
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vidually for each species. In each analysis and for
each species of interest, presence probabilities were
 predicted across the study area on a 0.1° × 0.1° raster
grid for all given years as a function of observed val-
ues for SST and depth (Fig. 1c,d). logCPUE was pre-
dicted for each year on the same grid. Yearly pre-
dicted presence (Pr) and predicted logCPUE in each
grid cell were multiplied to create annual predictions
for total density (Dsp,t) for each species sp in year t:

Dsp,t = Prsp,t × elogCPUE sp,t (1)

Annual estimations of standard error for species
density (SED) were calculated using Eq. (2). This for-
mula for standard errors follows from statistical first
principles on the variance of products of independent
random variables (for example, see Dekking et al.
2005). Pr represents presence probability as pre-
dicted from the presence part of the model, CPUE
represents log CPUE as predicted from the positive
catch part of the model, and SEPr and SECPUE repre-
sent the estimated standard errors of each:

SED = [(SEPr × SECPUE)+(SEPr × CPUE)+(SECPUE × Pr)] (2)

Mean species density (D
—

sp) in each grid cell was
calculated from annual predictions in each grid cell
for all species examined in each analysis.

The predictive ability of the models was studied
through K-fold cross-validation; however, due to
computational burden the study is limited to winter
skate with relatively few folds. Presence/absence
models used a 3-fold cross-validation scheme, while
the CPUE models used a 10-fold cross-validation
scheme. We note that an ideal cross-validation scheme
would have more than 3 (or 10) folds, preferably
using leave-one-out cross-validation. Predictive abil-
ity of the presence/absence models was measured by
the area under the receiver operator characteristics
curve (AUC) and the average probability score of the
observations in the testing set. Higher values of AUC
correspond to better predictive ability, where predic-
tive models that are perfectly able to classify new
observations into their correct classes (presence vs.
absence) have an AUC score of 1. The average prob-
ability score measures the ability of the predictive
model to assign high probabilities of presence to new
presence observations and low probabilities of pres-
ence to new absence observations, with values closer
to 1 being better. Predictive ability of the CPUE mod-
els was measured through root mean square error
(RMSE) and median absolute error (MAE). Both
measure the average deviation of predictions from

the observed values. MAE is a measure of the typical
deviation and is not greatly affected by a small num-
ber of large errors, while RMSE is a measure of the
overall deviation and is more affected by a small
number of large errors.

2.3.  Identification of historical space use

We fit separate GLMMs for each species of skate to
RV data from the years 1975−1985 using the ‘staRVe’
package. Oceanographic covariates were not speci-
fied for this analysis. The models were used to gener-
ate annual predictions of presence probability and
relative abundance for each species across a 0.1° ×
0.1° grid over the defined spatial extent. Predicted an-
nual presence and relative abundance was multiplied
(Eq. 1), and mean predicted density was calculated for
each skate species for the years indicated. The top
10% of density values were extracted to show impor-
tant habitat areas for each species. Standard errors for
predictions were calculated using Eq. (2).

2.4.  Identification of bycatch hotspots

Separate models were constructed for each species
of skate and commercial target to predict their distri-
butions for the years 2005−2015. Models were fit to
RV data, and depth and SST were specified as
oceanographic covariates in the presence stage of
the model. Annual predictions of presence probabil-
ity and CPUE were generated across a 0.1° × 0.1°
grid over the study area and annual predicted den-
sity was calculated using Eq. (1). Standard error for
species densities were calculated using Eq. (2).
To compare between species, we standardized pre-
dicted species density between 0 and 1. Annual
bycatch risk (BRsp,t) hotspots were then identified by
the multiplicative overlap of estimated relative spa-
tiotemporal abundance of at-risk skates with com-
mercial targets. For species that are targeted as
multi-species complexes (such as CHP or flatfishes;
Table 1), annual density estimates for each species in
the complex were summed together before being
scaled and treated as a single target. Scaled annual
density rasters were then summed for all at-risk
skates (‘Skates’), as well as for all targets (‘Targets’).
Hotspots were defined in 2 ways: first, a species-at-
risk centric approach was taken in order to examine
regions of high bycatch risk for one at-risk skate
within multiple fisheries. The predicted scaled rela-
tive abundance raster of a single skate species was
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multiplied by the summed scaled relative abun-
dances rasters for all fisheries targets. For example, a
species-at-risk approach to identify bycatch risk (BR)
hotspots for winter skate is:

(3)

A fisheries-centric approach was secondarily used
to generate maps of bycatch risk areas particular to
high-value fisheries targets. Here, the relative abun-
dance of the target species was multiplied by the
summed relative abundance of all at-risk skates. For
example, a fisheries-centric approach to identify
bycatch risk hotspots for all threatened skates that
are particular to the Atlantic halibut fishery is as
follows:

(4)

Mean bycatch risk for each skate species (BR—sp)
was calculated from annual predictions of bycatch
risk in Eqs. (3) and (4). High values in resulting maps
indicate where co-occurrence is greater between one
or more at-risk skate, and one or more commercial
fishing target. All output maps for both approaches
were then scaled between 0 (low bycatch risk) and 1
(high bycatch risk).

2.5.  Proof of concept to validate bycatch hotspot
predictions using at-sea observer data

To validate our predictions of relative bycatch risk,
we constructed a spatiotemporal model fit to skate
presence data from at-sea observers over a subset of
the initial study area (Fig. 2). This model included
spatial bycatch risk as a covariate in order to estimate
its effect size on predicted skate presence in ob -
served fishing sets. Annual bycatch risk predictions
for each species of skate were averaged over 2 time
intervals (2005−2009, 2010−2014), and the 5 yr mean
value for bycatch risk at that location was extracted
for each point in the observer dataset.

A spatiotemporal model was fit to records of skate
catch from observer data to model the presence
probability of skates as a function of predicted by -
catch risk. The time-series contained only 2 steps, i.e.
2005−2009 and 2010−2014, as data were provided
by DFO aggregated over these intervals. Bycatch
risk as predicted from RV data was included as a
covariate for each respective skate species. Species
presence was modelled using the ‘staRVe’ package
in R. Estimated presence probability was corrected

for the number of observed fishing trips and was
modelled using the ‘atLeastOneBinomial’ distribu-
tion implement ed in the ‘staRVe’ package with a
logit link function to estimate the probability of an
encounter in one fishing trip. The parameter esti-
mate for by catch risk and its 95% lower bound of
confidence were estimated at increasing values of
the spatial range parameter. Where the 95% lower
bound is >0, bycatch risk is indicated to have a pos-
itive effect on predicting species presence in ob -
served fishing sets.

In addition to computing the parameter estimate
values for RV-predicted bycatch risk against ob -
server-predicted species presence, centroid points of
observed skate catch for the years 2005−2014 were
overlaid with predicted multi-fishery bycatch hot -
spots for each skate species to qualitatively evaluate
the similarities in overall patterns between predicted
and observed areas of bycatch.

3.  RESULTS

3.1.  Identification of historical space use

A total of 1595 RV survey trawl sets were completed
between 1975 and 1985. Within these sets, the
number of sets with at least one individual of each
skate species is recorded in Table 1. Models fit to
these data were used to predict the distribution and
density (kg trawl h−1) of each skate species within the
study area during this time period of high groundfish
abundance. Polynomial parameter estimates for SST
and depth within each model are shown in Fig. 4.
Thorny and smooth skates show negative, concave
relationships with depth, while winter skate presence
probability shows a positive convex relationship with
depth. Winter skate presence probability declines
linearly with SST, while smooth skate exhibits a nega-
tive and concave relationship with SST (Fig. 4).

The top 10% of density values are shown to indi-
cate abundance hotspots and important areas of
habitat (Fig. 5). Standard errors for annual pre-
dicted historical density are shown in Figs. S1–S3.
All species exhibited spatiotemporal variation in
abundance. Thorny skate was concentrated on Ban-
quereau Bank, with a small additional hotspot in the
Bay of Fundy. Winter skate hotspots were present
along Sable Island and Banquereau Banks and in the
Bay of Fundy. Smooth skate hotspots occurred in sev-
eral areas along Sable Island and Emerald Banks,
Georges Bank and in the Bay of Fundy (locations for
reference in Fig. 1d).

∑= ×D DW Skate t W Skate t Targets tBR  . , . , ,

∑= ×D DHalibut t Halibut t Skates tBR  , , ,
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Cross-validation for winter skate gave promising
results, particularly for the predictions of presence
probability. The AUC was measured as equal to +1
for all 3 folds, meaning that all of the presence test
cases were given higher probabilities than all of the
absence cases, and the model exhibited perfect dis-
criminatory ability between presences and absences.
The average probability score in all 3 folds was
approximately +0.82. Thus in addition to perfect dis-
criminatory ability, the model predicts fairly high
probabilities for new presence cases and fairly low
probabilities for new absence cases. The RMSE and
MAE measures for CPUE predictions were essen-
tially equal to 0 for all 10 folds, which is highly sus-
pect. We triple checked the code for the cross-valida-
tion but could not find any reason why the predictions
were so accurate. Taken at face value, the cross-val-
idation results suggest that the predictive ability of
the fitted winter skate model is quite high.

3.2.  Identification of bycatch hotspots

The number of records of each species within the
RV survey dataset for the years 2005−2015 are shown
in Table 1. Spatiotemporal models fit to RV data were

used to generate predictions of CPUE for skates and
target species across the study area (Fig. S4). First-
and second-order polynomial effects of environ-
mental covariates on species presence varied be -
tween species by magnitude and significance (Fig. 6).
Time-effect parameter estimates (ar1) are shown in
Table S1, and standard errors for annual predicted
species density are shown in Figs. S5–S17.

The spatiotemporal distribution for each species
was predicted (Fig. S4) and multi-species co-occur-
rence trends were mapped to show predicted poten-
tial bycatch hotspots. Yearly means of abundance for
each species are shown in Fig. S18. A species-at-risk
approach to evaluating bycatch risk for thorny skate,
winter skate and smooth skate revealed spatially
explicit bycatch risk hotspots for each species, where
co-occurrence with one or more fisheries targets is
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Fig. 4. Point estimates and 95% confidence intervals for
parameter estimates of first- and second-order polynomial
environmental covariates (sea surface temperature [SST] and
depth). Covariates included in presence models were fit to

research vessel survey data for the years 1975−1985

Fig. 5. Historical mean species distributions of 3 at-risk
skates (thorny skate, winter skate and smooth skate) within
the study area for the years 1975−1985. Important habitat
 areas are shown by the top 10% of density values (outlined 

in red)
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high (Fig. 7). Thorny skate bycatch hotspots were de -
tected on Banquereau Bank and in the Bay of Fundy.
Winter skate bycatch risk was concentrated in an
area near the Fundian Channel and Brown’s Bank.
Smooth skate bycatch risk was high in the Bay of
Fundy and on the western Scotian Shelf, with a small
additional hotspot near The Gully, an extensive sub-
marine canyon east of Sable Island (location refer-
ences in Fig. 1d).

Bycatch risk hotspots in particular target fisheries
were identified (Fig. 8). Skate bycatch hotspots
within the distribution of Atlantic halibut were iden-
tified in the Bay of Fundy, Fundian Channel and The
Gully. Within the distribution of CHP, hotspots for
skate bycatch were identified on Brown’s Bank and

Georges Bank and in the Bay of Fundy. For redfish,
1 skate bycatch hotspot was identified north of
Brown’s Bank. Within the distribution of the flatfish
complex, skate bycatch risk was concentrated on
Banquereau Bank. A cumulative map of co-occur-
rence between all skates and all fisheries targets
shows overall hotspots on Browns Bank near the
Fundian Channel, in the Bay of Fundy and along
Banquereau Bank (location references in Fig. 1d).

The cross-validation for winter skate again gave
promising results, and the cross-validation for the
CPUE predictions are more believable. The AUC
measure averaged +0.96 across the 3 folds, which is
still very good if not perfect. The average probability
score in all 3 folds was approximately +0.86, which
agrees with the results seen from the historical analy-
sis. The RMSE for CPUE predictions average 8.45
across the 10 folds, with a minimum value of 4.09 and
a maximum value of 16.63. The MAE measure aver-
aged 1.02, with a minimum value of 0.4 and a maxi-
mum value of 1.7. The mean ± SD of the CPUE data
was 10.03 ± 15.07. The low MAE values compared to
the CPUE SD suggests that on the whole, the fitted
model produces accurate predictions, although the
large RMSE values suggest that the predictions can-
not predict some outlier values.

3.3.  Proof of concept to validate bycatch hotspot
predictions using at-sea observer data

A total of 1578 spatially- and temporally aggre-
gated records of skate species presence or absence
were represented in the at-sea observer dataset
(Table 2). Spatiotemporal models fit to at-sea ob -
server records of skate bycatch were used to validate
predicted bycatch risk values on the Scotian Shelf.
To account for spatial confounding, we estimated the
bycatch risk effect with a different assumed value of
the spatial range parameter. Smooth, winter and
combined skates each exhibited a significant effect
when the assumed spatial range was relatively small,
but with large spatial range values, the effect dimin-
ished. Thorny skate exhibited the opposite behaviour
where the estimated effect increased with increasing
spatial range; however, the effect never becomes
 significant. Parameter estimates and corresponding
95% one-sided confidence intervals are plotted as a
function of the spatial range in Fig. 9.

Point-referenced data indicating total count of
each skate species from at-sea observer data for the
years 2005−2014 were overlaid onto predicted by -
catch risk hotspots. In general, point data generally
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Fig. 6. As in Fig. 4, for the years 2005−2015
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aligned well with mean predicted bycatch hotspots
for each species over the 10 yr period, particularly
given the spatial aggregation of observations (Fig. 10).

4.  DISCUSSION

Our study aimed to present a modelling framework
to identify spatial areas of conservation priority for
depleted species affected as bycatch by multiple
fisheries. We used a longstanding scientific RV sur-
vey dataset and GLMMs to evaluate the distribution
of skates prior to heavy exploitation in order to map
important habitat areas for each species. Bycatch risk
hotspots were identified by overlaying spatial distri-
bution patterns between skates and fisheries targets
(Table 1). We then independently validated predicted
bycatch risk using similar spatiotemporal models fit
to records of skate bycatch from at-sea observer data.
The framework we present builds on efforts to incor-
porate data-driven and ecosystem-based fisheries

management practices in response to the global
overexploitation of fish stocks (Hilborn et al. 2020).
Our results demonstrate a widely applicable frame-
work to identify areas of conservation priority for
depleted or rare species and support growing inter-
est in employing data-driven, ecosystem-based tools
in fisheries management.

4.1.  Identification of historical space use

For all 3 species of at-risk skate, historical patterns
of high abundance (Fig. 5) differed from current
high-density areas (Fig. S4), suggesting that skates
may have been fished out of those areas during the
height of the fishery, or that environmental condi-
tions have changed. Our results show that the rela-
tionships of skate species with SST and depth have
changed between the periods1975−1985 and  (Figs. 4
& 6), which may support hypotheses that conditions
in their preferred habitats have become un favourable.
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Fig. 7. Mean relative bycatch risk (2005−2015) for 3 at-risk skate species(thorny skate, winter skate and smooth skate) within
the distributions of all target fisheries. High bycatch-risk areas, or ‘hotspots’ (red) indicate a high degree of co-occurrence
 between the at-risk skate and one or more target fisheries. Cumulative bycatch risk for all threatened skates within all
target fisheries’ distributions is also shown. Low-risk areas (blue) indicate low co-occurrence between at-risk skates and 

fisheries targets
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For both thorny skate and winter skate, however, his-
torically dense habitat was identified on Banquereau
Bank, a region which has been heavily impacted by a
surf-clam dredge fishery since 1986 (Roddick et al.
2007). Both species were also affected heavily as

bycatch on the eastern Scotian Shelf following the
expansion of Canadian in shore fisheries. Thorny
skates were highly co-occurrent with cod around
Banquereau Bank from the late 1970s to the early
1990s, and areas occupied by thorny skates on Ban-
quereau Bank were eroded due to directed fishing
effort (Shackell et al. 2005). Al though harvest mora-
toria for groundfish on the eastern Scotian Shelf were
introduced in 1993 (Bundy 2005), thorny skate and
winter skate abundance remains low on Banquereau
Bank. Several causes for a lack of recovery of skates
on the eastern Scotian Shelf have been investigated,
including increased predation by a recovering popu-
lation of grey seals (Swain et al. 2019). However, the
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Fig. 8. Mean relative bycatch risk (2005−2015) for all
threatened skate species within the distribution of 5
target fisheries: cod-haddock-pollock (CHP) complex,
Atlantic halibut, redfish (Sebastes spp.), flatfishes (in-
cludes witch flounder, yellowtail flounder and Ameri-
can plaice) and silver hake. Bycatch high-risk hotspots
(red) indicate a high degree of co-occurrence between
the fisheries target and any at-risk skate species. Low-
risk areas (blue) indicate low co-occurrence between 

the fisheries target and at-risk skates

Target fishery 2005−2009 2010−2014

4VWX Groundfish 424 528
Unit 3 Redfish 198 428

Table 2. Number of aggregated records (i.e. centroid points)
from at-sea observers in each directed fishery aggregated
June−October for each year in 2005−2009 and 2010−2014
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Fig. 9. Bycatch risk validation results, showing parameter estimates for bycatch risk with 95% lower bound as a function of in-
creasing values for spatial range parameters. Estimates and 95% lower bounds >0 indicate that estimated relative bycatch risk 

has a positive effect on the response variable at that range parameter value

Fig. 10. Observed bycatch vs. predicted bycatch risk,
based on count data for 3 threatened skate species
recorded by at-sea fisheries observers (2005−2014)
within cod-haddock-pollock (CHP)-directed and Unit 3
redfish-directed bottom-trawl fisheries. Symbol size 

represents the number of each species caught



Jubinville et al.: Species distributions inform conservation hotspots

ongoing surf clam dredge fishery reduces the forage
base and greatly alters the affected seabed (Gilkin-
son et al. 2003). As such, core habitat for thorny and
winter skates may have been altered in a significant
way irrespective of temperature, particularly for 2
species that prey largely on benthic invertebrates.

4.2.  Bycatch hotspot identification

There are increasing efforts to identify the spatial
patterns and drivers of bycatch using spatiotemporal
distributions of co-occurring species (Ward et al.
2015, Hazen et al. 2018) This was recently high-
lighted by Runnebaum et al. (2020) who used fish-
ery-independent data to generate pre dictions of
habitat suitability, and bycatch hot spots were in -
ferred from overlapping suitable habitat between
American lobster Homarus americanus and cusk
Brosme brosme. In multi-species groundfish com-
plexes, species at risk may be ex ploited in multiple
target fisheries; therefore, a more comprehensive
approach to identification of bycatch hotspots is nec-
essary. It was our goal in this study to present a
framework to evaluate spatial patterns of bycatch
risk for a data-limited species exploited by multiple
fisheries in a given region. Our results demonstrate a
framework that can be applied on a dynamic tempo-
ral basis to identify and address changes in bycatch
risk be tween fishing seasons and evaluate the effi-
cacy of spatial fisheries closures or protected areas.
This framework can provide an additional tool to
fisheries managers and conservation authorities to
examine relative bycatch pressure and protect vul-
nerable species within multiple fisheries.

Both a species-at-risk approach and a fisheries-
centric approach were taken to identify bycatch risk
hotspots for threatened skates. Alongside spatial pre-
dictions, realized bycatch risk for a species and
fishery should be interpreted within the full context
of the fishery. For example, smooth skate shares a by-
catch hotspot with silver hake in the outer Bay of
Fundy (Figs. 6 & 7). In reality, harvesters in the 4VWX
silver hake bottom trawl fishery are required to affix
separator grates with 40 mm spacing bars to their
gear intended to reduce bycatch, and skates repre-
sented less than 0.05% of observed bycatch from
2000 to 2009 (Showell et al. 2010). Similarly, although
bycatch hotspots were identified in areas of the east-
ern Scotian Shelf for some skates and fisheries, com-
mercial fishing effort in these areas is greatly limited
since the introduction of harvest moratoria in the
1990s and realized bycatch risk is likely small.

The information that fisheries managers can extract
from these methods has broad applications, from
near-real time direction of fishing effort away from
high-risk areas (O’Keefe & DeCelles 2013) to inform-
ing and evaluating the efficacy of static or dynamic
fisheries closures (Hazen et al. 2018). Employing a
method such as this could provide complementary in-
formation to other planning and/or monitoring efforts
to assess the species-specific benefits of the spatial
placement of this protected area, such as the reduction
of harvesters’ access to bycatch hotspots.

4.3.  Proof of concept to validate bycatch hotspot
predictions using at-sea observer data

Many fisheries management jurisdictions employ
at-sea observer programmes to directly record kept
and discarded species; however, these data can be
limited in coverage and taxonomic resolution (Benoît
2006, Clark et al. 2015). Nonetheless, it is important
to examine the relationship between predicted regions
of high bycatch and points where bycatch was empir-
ically recorded, and we present here a proof-of-
concept analysis to validate predictions of bycatch
risk against observed records of skate bycatch using
the ‘staRVe’ package.

Bycatch risk as predicted from fishery-indepen-
dent data was included as a spatiotemporal covariate
in order to determine the size of its effect on predict-
ing species presence in an at-sea observer dataset.
Due to spatial confounding concerns, as well as un -
certainties inherent to at-sea observer data, it is diffi-
cult to interpret the parameter estimates. The posi-
tive estimates, when they exist, indicate that the
probability of catching a skate increases in areas
where bycatch risk is predicted to be higher from RV
survey data. However, spatial confounding concerns
prevent us from claiming whether or not the true
effects are significant.

Predicted bycatch hotspots and point-referenced
observer records of skate bycatch for each species
of interest generally matched well with each other
(Fig. 10), particularly when considering the coarser
scale introduced by aggregation of catch records per
5 vessels or licences (Butler & Coffen-Smout 2017).
Despite the limitations and uncertainties associated
with observer data, qualitative validation of predicted
bycatch hotspots with observed bycatch provides fur-
ther support for our results. For these reasons, we
currently present this analysis as a proof-of-concept
to validate bycatch risk predictions from at-sea ob -
server data.
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4.4.  Limitations and conclusions

In our study, we made use of data from a long-
standing RV survey occurring annually in the sum-
mer; therefore, our results do not reflect seasonality
of species distributions and therefore seasonal
changes in bycatch risk patterns. Several groundfish
species on the Scotian Shelf undergo seasonal migra-
tions to deeper waters (Swain et al. 1998, Methratta &
Link 2006). While the majority of observed fishing
trips occur in May through July (Themelis & den
Heyer 2015), the groundfish season is open year-
round. Predictions of bycatch hotspots along with
observations based on a single season may not fully
reflect the annual patterns of bycatch. This caveat
may be addressed in regions or jurisdictions in which
seasonal surveys are conducted. The availability of
comprehensive data for a given fishery or region may
improve over time, but likely not until bycatch miti-
gation becomes a priority for fisheries regulatory
agencies.

An additional limitation of this study is the degree
to which bycatch risk predictions can be confidently
validated given the state of the at-sea observer data-
set. Because of consistently low observer coverage in
bottom-trawl fisheries in combination with DFO har-
vester privacy policies, the spatial resolution of
observed fishing sets available for analysis is quite
coarse. Bycatch risk predictions on the eastern por-
tion of the Scotian Shelf were not validated, as at-sea
observations in this area were limited and did not
satisfy the DFO ‘rule-of-5’ vessel aggregation policy
(Butler & Coffen-Smout 2017). Therefore, observa-
tions in this region were removed from the dataset
prior to release to researchers. The temporal aggre-
gation of 10 years of observer data (2005−2009 and
2010−2014) was done to reduce the spatial area
affected by the ‘rule-of-5’. Points in the dataset are
representative of the midpoint between 5 individual
vessels, but the distance of each vessel to the cen-
troid point is unknown. The spatial and temporal
aggregation of the data introduces unknown uncer-
tainty; thus we present this analysis as a proof-of-
concept only.

Furthering our understanding of the spatiotempo-
ral distribution of bycatch can support conservation
efforts for many species at risk and help support eco-
nomically viable fisheries. In addition to exploring
the cumulative impacts of fisheries that exploit multi-
species complexes, managers can incorporate fluid
environmental parameters to support dynamic ocean
management strategies. Oceanographic processes
and their associations with species are non-station-

ary (Myers 1998), and the waters of the northwest
Atlantic around the Scotian Shelf in particular are
warming rapidly (Saba et al. 2016). Making use of
dynamic tools that incorporate near-real time envi-
ronmental data will be critical in engaging in eco -
system-based fisheries management in the face of
climate change. While no model is perfect, these
frameworks are adaptable to the advancement of sta-
tistical techniques and the availability of new data.
The methods presented in this study can be used to
support ongoing efforts to include more dynamic
approaches to ecosystem management and may
thereby help to ensure the long-term sustainability of
fisheries in a changing climate.
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