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1.  INTRODUCTION 

First-of-their-kind mining tests on deep-sea sea -
floor massive sulfides (SMS) were recently under-
taken by the Japanese government’s Ministry of 
Economy, Trade, and Industry (METI), led by the 
Japan Organization for Metals and Energy Security 
(JOGMEC) (Matsui et al. 2018, Okamoto et al. 2019). 
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ABSTRACT: Japan undertook the first ever tests of 
deep-sea seafloor massive sulfide (SMS) excavation in 
2017 in the Okinawa Trough. This study examines 
infauna from several nearby stations before and up to 
3 yr after disturbance. Distance from excavation, cur-
rent direction, seafloor topography, and modeled and 
ob served deposition were used to classify the level of 
impact of each station. Metal concentrations were ana-
lyzed, as were nanofauna (2−32 μm), meiofauna (32−
300 μm), and macrofauna (>300 μm). Elevated Cd, Pb, 
Hg, Zn, Fe, and Cu were confirmed as indicators of 
sedimentation from the SMS extraction. Benthic com-
munities appeared altered by the disturbance test, 
with different size classes showing different levels of 
response and recovery. Nanofaunal and meiofaunal 
abundances appeared to take several weeks to show 
impacts from the disturbance and may have returned 
to pre-test levels within 1 yr, but changes to nema-
tode community structure persisted longer. In contrast, 
macrofaunal abundances and diversity appeared to 
decrease immediately, and possibly remained depressed 
compared to pre-test levels at impacted sites at least 
3  yr later. In addition, meiofaunal nematode:copepod 
ratio and macrofaunal percent composition of poly-
chaetes, along with several nematode taxa, may serve 
as useful bioindicators of SMS mining. The small scale 
of disturbance requires caution when extrapolating 
to full-scale mining, but these results suggest current 
direction and topography greatly influence the extent 
of mining im pacts; in addition, several metals may be 
useful for identifying the mining footprint. Biological 
results in dicate that larger macroinfauna may be less 
resistant and resilient to mining impacts than smaller 
meiofauna and impacts from even small-scale mining 
activities may persist for at least 3 yr. 

OPENPEN
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Impacts from sediment deposition created by deep-sea min-
ing on seafloor ecosystems and their spatial/temporal extent 
remain largely unknown.  
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The goals of these experiments included testing min-
ing technologies, creating environmental baselines, 
and exploring impacts to the surrounding deep-sea 
environment. Results from these experiments will help 
to identify and predict some of the impacts of future 
deep-sea mining on the seafloor and in the water col-
umn before commercial operations take place, and 
assist with both minimizing damages from exploitation 
and guiding regulations to include best practices. 

Deep-sea mining (DSM) has been discussed for 
over 50 years (Brooks 1968, Auburn 1970), but the 
difficulty in working at these remote habitats com-
bined with high operational costs, fluctuating metal 
prices, and uncertainty with pioneering operations 
has resulted in few real-world examples of DSM 
tests. Much of what is currently known on DSM 
impacts comes from modeling (Rolinski et al. 2001, 
Coulin et al. 2017, Gillard et al.  2019) and expert 
surveys (Washburn et al. 2019). What we have 
learned to date on actual DSM impacts comes from 
mining-simulation disturbance tests on manganese 
nodules and benthic trawling of seamount tops. 
Small-scale commercial test mining and disturbance 
tests in nodule-rich areas generally resulted in large 
decreases in both density and diversity of infauna 
(Borowski 2001, Jones et al. 2017, Vonnahme et 
al. 2020). Likewise, demersal trawling upon sea -
mounts is generally associated with de creases in 
benthic density and diversity (Gollner et al. 2017, 
Clark et al. 2019, Goode et al. 2020), although there 
is evidence that smaller organisms may be more tol-
erant (George 2013). Impacts on nodule and sea -
mount habitats can persist for at least decades; how-
ever, as these habitats can take millions of years or 
longer to form (Hein et al. 2000, 2013), it is likely 
that humans will never witness true recovery. Deep-
sea mining-test expe riments in the Japanese EEZ 
have focused on the mining of seafloor massive sul-
fides (SMS) as sociated with hydrothermal vents 
(Matsui et al. 2018, Oka moto et al. 2019), cobalt-rich 
ferromanganese crusts atop several seamounts (A. 
Suzuki, J. Minatoya, T. Fuku hara, H. Yokooka and 
others un publ.), and methane hydrates (Konno et al. 
2017), providing crucial information on relatively 
unknown habitats. 

This study is the first to explore impacts to benthic 
communities by test mining of SMS. Mining of SMS 
will likely result in many of the same impacts as other 
deep-sea resources, from removing habitat to creat-
ing sediment plumes to introducing light and noise 
(Washburn et al. 2019). Also, while formation of habi-
tats associated with SMS may take less time than 
other deep-sea mineral resources, SMS with suffi-

cient size for mining to be economically viable still 
take several thousand years or longer of hydrothermal 
activity to form (Strens & Cann 1986, Petersen et al. 
2016, Andersen et al. 2017), suggesting recovery will 
not occur on time scales relevant to humans. However, 
there are reasons to believe that exploitation of SMS 
may result in different types and levels of impact 
compared to other deep-sea habitats. Hydro thermal 
vents are generally more dynamic than abyssal sea -
floor or seamounts (e.g. high temperatures, high con-
centrations of dissolved metals, and variable concen-
trations of these metals in the surrounding sea floor 
over both space and time) which may have caused 
communities here to be more resistant and resilient 
to environmental change (Gollner et al. 2017, Wash-
burn et al. 2019). Thus, mining of SMS may impact 
benthic communities (e.g. abundance and diversity) 
less than mining in other habitats. SMS are also as -
sociated with areas of less than a few km2 but can 
require removal of many meters of sediment and 
substrate (Gwyther 2008, Van Dover et al. 2018), sim-
ilar to some land-based mining activities. This results 
in a much smaller spatial extent of im pacts but 
focused on one particular location for a much longer 
period of time compared to other deep-sea resources. 
Active hydrothermal vents host unique communities 
of endemic chemosynthetic organisms (Van Dover 
2000), and thus have been designated as vulnerable 
marine ecosystems (FAO 2009, Van Dover et al. 
2018), but little is known about habitats and commu-
nities associated with inactive hydrothermal vents 
(Van Dover 2019) which are much more likely to 
be mined. 

This paper explores benthic infaunal communities 
associated with an inactive SMS in the Okinawa 
Trough where small-scale excavations of sulfide ore 
occurred, the first in the world. The Izena Cauldron 
in the Okinawa Trough is targeted for SMS mining 
by Japan, particularly due to the high Au and Ag 
contents of minerals here (Nakamura et al. 1989, 
Urabe 1989, Halbach et al. 1993). In January of 2017, 
an excavator was used to remove material from Jade 
site within the Izena Cauldron, and sediment sam-
ples were collected immediately before and at sev-
eral points after this mining ‘test’. Sediment metal 
concentrations and infaunal communities (i.e. nano -
fauna, meiofauna, and macrofauna) were examined 
at several locations between ~10−60 m from the dis-
turbance site both upstream and downstream of 
the  prevailing seafloor current. The following null 
hypotheses were examined: (1) there were no im pacts 
of the disturbance test on sediment metal concentra-
tions; (2) there were no impacts of the disturbance test 
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on nanofaunal, meiofaunal, or macrofaunal abun-
dance, diversity, and community structure; (3) if 
im pacts were observed, there was no evidence of 
recovery for biological communities for at least 3 yr 
following the disturbance test; and (4) if impacts were 
observed, there were no differences in response 
among nanofauna, meiofauna, and macrofauna. These 
results can help to (1) understand how mining of deep-
sea SMS will alter the surrounding seafloor; (2) ex plore 
what the data from different benthic components can 
tell us about the spatial extent and magnitude of min-
ing impacts; and (3) focus efforts on mitigation strate-
gies to limit the impacts of these alterations. 

2.  MATERIALS AND METHODS 

2.1.  Mining test, sample design and collection 

The test site for this disturbance experiment simu-
lating the mining of deep-sea hydrothermal poly-
metallic sulfides was located in the Okinawa Trough, 
to the southwest of mainland Japan, on an inactive 
SMS at the hydrothermally active Jade site in the 
Izena Cauldron. This area of active hydrothermal 
venting was discovered in 1988 at ~1400 m depth 
in  the northeastern section of the Izena Cauldron 
(Halbach et al. 1989, Fig. 1A). The Jade site houses a 
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Fig. 1. Maps of the SMS mining-test site. (A) Oki-
nawa Trough, (B) Izena Cauldron and (C) Jade 
Site. Red cross in Panel C: center of the area of 
mineral extraction; red circles: locations where  

biological samples were collected 
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'black smoker' chimney, which emits fluids at ~320°C, 
as well as other chimneys and mounds emitting flu-
ids up to 220°C (Halbach et al. 1989, Nakamura et 
al. 1989, Tanaka et al. 1990). The disturbance site 
sits at ~1600 m depth to the west of previously ex -
plored active vents in the area (Ishibashi et al. 2014) 
with the closest known active vent ~200 m to the 
SW of the disturbance site itself. Sulfide ore and 
chimneys here are primarily composed of anhydrite, 
gypsum, sphalerite, barite, galena, and amorphous 
silica which are rich in Zn, Pb, and Ba. Chalcopyrite, 
rich in Cu and Fe, is also common (Nakashima et 
al. 1995). 

The disturbance test for the SMS mining simula-
tion was conducted on an inactive sulfide mound in 
the above area at a depth of ~1500 m (Fig. 1C). The 
disturbance experiment took place on January 12, 
2017, with excavations occurring over the course 
of  approximately 6 h. It is estimated that a total of 
8.58 m3 of seafloor were directly removed by excava-
tion over an area of 26 m2, which was calculated by 
estimating the depth of the excavated areas from 
seafloor photographs. During this time, the excavator 
itself was lifted and lowered to the seabed 9 times. 
The excavator is equipped with 2 crawlers, each 
~1.925 m3, and ROV images show that the depth of 
burial of each crawler was approximately one-third 
its height. The lowering and lifting of the excavator 
were estimated to displace approximately 1.28 m3 of 
material each time (~0.33 m buried × 3.85 m long × 
0.5 m wide × 2 crawlers) for a total of 11.5 m3 material 
removed over 9 lifts (Matsui et al. 2018). While the 
total volume of minerals and sediment disturbed is 
estimated at 20.2 m3, material disturbed by excavator 
liftings would likely sink in large chunks close to the 
retrieval site and would thus have less impact on the 
surrounding environment compared to the fine exca-
vated material released into the water column. 

For environmental and biological analyses, push-
core samples with an inner diameter of 8.2 cm were 
collected by the remotely operated vehicle (ROV) 
‘Kaiko’ and its support ship the R/V ‘Kairei’ at 6 sta-
tions (M3, M4, M5, M7, M10, and M11) (Fig. 1C). 
Samples were collected 1−2 wk before (except M5, 
where samples were collected 5 mo before) the test 
(i.e. ‘pre-test’), 2 wk after the test, 6 mo after the test, 
and one, 2, and 3 yr following the test. However, due 
to logistical constraints, samples were not collected, 
or some laboratory analyses were not able to be per-
formed on specific locations at specific time points. 
The 2 closest stations to the disturbance site, Stations 
M10 and M11, were not sampled before the experi-
ment as they were purposely chosen post-distur-
bance due to observations of sedimentation follow-
ing the ex periment. Stations M3 and M10 were not 
sampled 1 yr after the test experiment or beyond, and 
Station M11 was not sampled 1 yr following the 
experiment (Table 1). 

2.2.  Sediment-characteristic analyses 

Sediment characteristics examined included: total 
organic carbon (TOC), total organic nitrogen (TON), 
median and average grain size, and δ13C, δ15N, δ34S as 
well as sediment concentrations of several metals in-
cluding Cd, Pb, As, Hg, Mn, Zn, Fe, Cu, and Al. Bio-
logical components examined included: nanofauna 
(2−32 μm), meiofauna (32−300 μm), and macrofauna 
(>300 μm). Six cores were collected at each station 
and time point. Three cores were used for sediment-
characterisic analyses, and three cores were used for 
biological analyses. Sediment-characteristic or biolog-
ical analyses were performed on core samples sliced 
at 0−0.5, 0.5−1, 1−2, 2−3, and 3−5 cm depth intervals. 
Because of the large volume of material required for 
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Stn     Distance      Direction           Impact           Depth                                           Time periods 
               (m)                                   Category            (m)                Pre         2 Weeks    6 Months    1 Year      2 Years     3 Years 
 
M3           30             N – NE          Moderate             7                   X                X                X             n.d.           n.d.           n.d. 
M4           55                  E             Unimpacted           1                   X                X                X               X               X               X 
M5           20                NE              Moderate             6                   X                X                X               X               X               X 
M7           30                 SE                 Heavy                6                   X                X                X               X               X               X 
M10         15               E – SE              Heavy                7                  n.d.              X                X             n.d.           n.d.           n.d. 
M11         15             E – NE          Moderate             7                  n.d.              X                X             n.d.             X               X 

Table 1. Stations sampled for environmental and infaunal analyses for the SMS mining-test experiment, as well as time periods 
when environmental and biological samples were collected for each location. Distance, direction, and time periods are in rela-
tion to the disturbance test. Depth is in meters with only values for the Ones digit provided. Values in the Tens, Hundreds, and 
Thousands digits were identical for all stations (not shown as they are proprietary information). X denotes times when samples  

were collected and n.d. denotes times when no data are available
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the many physical and chemical analyses performed, 
sliced samples from the 3 sediment-characteristic cores 
(e.g. 0−0.5 cm) were mixed together resulting in only 
1 replicate mud mixture per station/time and sediment 
depth, while each of the 3 biological cores was treated 
as a replicate. The division of cores for different analy-
ses is shown in Fig. S1 in Supplement 1 at www.int-
articles/suppl/m712p001_supp1.pdf. 

For TOC and TON, ~5 g wet weight of the mud mix-
ture for each sliced sample was placed in plastic bags 
and frozen. The remaining mud mixture was stored at 
4°C and used for isotope, grain size, and metal analy-
ses. Total carbon and TON were measured with a 
CHN analyzer and inorganic carbon by phosphate-ni-
trogen purge and coulometer detection method using 
standard protocols, with TOC being TC − IC (Nishida 
et al. 2015), analytical errors based on replicate analy-
ses were within 1% for all analyses. Grain size was 
measured using a Horiba LA-950 laser diffraction 
particle size distribution an alyzer with standard pro-
tocols. Stable isotope ratios were measured using a 
stable isotope ratio mass spectrometer and standard 
analytical methods (Oni shi et al. 2018). Isotopic values 
are expressed using δ notation in per mille deviation 
(‰) from international reference materials (Vienna 
Pee Dee Belemnite for δ13C, atmospheric N for δ15N, 
and Canõn Diablo troilite for δ34S). Analytical errors 
associated with the overall process of these determi-
nations were less than ±0.2, ±0.3, and ±0.3‰ for δ13C, 
δ15N and δ34S isotopic compositions, respectively. 
To measure metals, 200 mg of dry sediment was di-
gested in ultrapure HF and HNO3 before being diluted 
to 100 ml with Milli-Q water. Then Cd, Pb, Mn, Zn, 
Fe, and Cu were quantified using an ICP optical emis-
sion spectro meter (ICP-OES, CAP740 Duo, Thermo-
Scientific), As was quantified using an atomic absorp-
tion spectrometer (AA280FS, Varian) equipped with 
an Agilent VGA 77 continuous-flow vapor generation 
assembly, and Hg was quantified using a mercury an-
alyzer RA-3420 (Nippon Instruments Corporation) us-
ing standard protocols. For metals, a reference rock 
standard (JSO-1, Geological Survey of Japan) was 
used to calibrate samples as well as standard solutions 
prepared from pure elemental standard solutions 
(Wako Pure Chemical Industry Ltd., Osaka, Japan). 
An alytical error for metals was estimated to be <10% 
for each elemental analysis. 

2.3.  Biological analyses 

Each sediment slice (e.g. 0−0.5, 0.5−1 cm) of each 
biological core was first divided in half, with half 

being used for microbial, nanofaunal, and genetic an -
alyses and the other half for meiofaunal/macrofaunal 
taxonomy and biomass (Fig. S1). For the microbial/
nanofaunal/genetic core half, first a 1 ml syringe was 
used to subsample each sediment slice of the 3 bio-
logical cores for nanofaunal counts. These nano -
faunal samples were then preserved in 1% glutaral -
dehyde/2% formalin seawater and refrigerated at 
4°C. In the laboratory, pyrophosphoric acid was added, 
nanofauna were separated using sonication, and DAPI 
(4’,6-diamidino-2-phenylindole 2 hydro chloride, final 
concentration 1 μg ml−1) and Zdan black were added 
to the supernatant for staining. Nanofaunal count 
samples were filtered through a 0.8-μm-pore Nucle-
opore filter, and nano faunal sized cells with a well-
defined nucleus were counted by direct counting 
using an epifluorescence microscope with a blue exci-
tation filter (Table S2a–f in Supplement 2 at www.int-
res.com/articles/suppl/m712p001_supp2.xlsx). 

For the meiofaunal/macrofaunal half of each bio-
logical core (~26.4 cm2), each sediment slice was sieved 
on stacked 32, 300, 500, and 4000 μm sieves. Material 
from each sieve was preserved in 10% buffered for-
malin and stained with rose Bengal. Because of limited 
resources, material retained on the 32 μm sieve (i.e. 
meiofauna) was subsampled for community analyses. 
Meiofaunal samples were placed in test tubes, tubes 
were thoroughly mixed/stirred, and 1/8 of this volume 
was removed using a pipette for community identifi-
cations (equivalent to ~3.3 cm2 sample area). Animals 
captured on the 300, 500 and 4000 μm sieves were 
collectively considered macrofauna. Meiofaunal and 
macrofaunal organisms were identified morphologi-
cally to class or order for most taxa and family for 
polychaetes (Table S2a–f). Meiofaunal nematodes 
from the entire material on the 32 μm sieve were iden-
tified by an outside specialist (Ryuta Yamamoto, Doris 
Japan Co., Ltd) to genus when possible (Table S2g) 
(Platt & Warwick 1983, Platt & Warwick 1988, Warwick 
et al. 1998). For all meiofauna (except nematodes iden-
tified to genus) and macro fauna, biomass was also esti-
mated. Sizes of individuals were measured, and the 
amount of carbon present was calculated by first esti-
mating the volume of each organism as a spheroid 
and converting this volume to carbon content with the 
conversion formula: 

               C = 4/3 × a/2 × b2/2 × π × α × β × γ           (1) 

where C = carbon content (pg), a = length of the in -
dividual, b = width of the individual at its widest 
point, α = is the specific gravity (1; Taniguchi 1986), 
β  = dry weight:wet weight ratio (0.4; Nishizawa 
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1989), and γ = carbon wet weight:dry weight ratio 
(0.4; Takahashi & Hoskins 1978). Because only a sub-
set of each taxon was measured, the total biomass of 
each taxon and size class (e.g. nematodes 32−300 μm 
in size or paraonids 500−4000 μm in size) was summed 
across all stations and time periods and divided by 
the total number of individuals to get one estimated 
biomass value per individual of a given taxon and 
size class (Table S2h–i). 

2.4.  Classification of stations into disturbance 
impact categories 

Sample stations were divided into impact cate-
gories based on proximity to the disturbance site, 
current direction measured during the disturbance 
using an acoustic Doppler current profiler (ADCP), 
and topography, as well as observations of particle 
flux from sediment traps and sedimentation thick-
ness from re-sedimentation markers. Station M4 was 
the furthest station sampled from the disturbance 
site, perpendicular to the prevailing current, and ele-
vated (~5 m up a slope) compared to all other stations 
(Fig. 1C). It also had the lowest levels of particle flux 
measured via sediment traps and re-sedimentation 
thickness measured via re-sedimentation markers of 
all stations examined in this study (Matsui et al. 
2018). Thus, Stn M4 was likely to be least affected by 
the excavation test and classified as a control or 'un -
impacted' station. The classification of M4 as less 
impacted than other stations is also supported by a 
re-sedimentation model created for an ore lifting test 
at SMS in the Okinawa Trough which estimated that 
re-sedimentation thickness > 2 mm remained within 
50 m of discharge. Finally, actual measurements from 
an ore-lifting test in the area found increased sedi-
mentation along an isobath and to the SE of the dis-
turbance site, neither of which applied to M4 in this 
study (Okamoto et al. 2019). 

Station M7 was further from the disturbance site 
than several other stations, but it was directly down-
stream of the prevailing current (which was to the 
southeast; Matsui et al. 2018), and along an isobath 
with all stations but M4. Re-sedimentation thickness 
was more than twice as high at this site compared 
to other stations examined (M7 = 5 mm, M5 = 2 mm, 
M4 = 1 mm; Matsui et al. 2018) and so M7 was de -
signated as being ‘heavily’ impacted from the distur-
bance site. Station M3 was also further from the dis-
turbance site than several other stations and was 
almost directly upstream of the prevailing current. 
However, peak particle flux during the disturbance 

test was 20 times greater at M3 compared to M4 
(Matsui et al. 2018), and M3 was designated as being 
‘moderately’ impacted. Station M5 was one of the 
closest stations to the disturbance but was perpendi-
cular to the prevailing current. Because re-sedimen-
tation thickness at M5 was also less than half of M7, 
M5 was designated as ‘moderately’ impacted. Sta-
tion M10 was in the same direction as M7 but much 
closer to the disturbance site with visible signs of re-
sedimentation; thus, M10 was designated as being 
‘heavily’ impacted. Station M11 was also close to the 
disturbance site but perpendicular to the prevailing 
current; thus, M11 was designated as ‘moderately’ 
impacted (Table 1). 

2.5.  Sediment-characteristic and biological  
statistical analysis 

Elevated concentrations of Cd, Pb, Hg, Zn, Fe, and 
Cu peaked in settling particles immediately after the 
disturbance test and decreased with time. These met-
als were derived from excavated minerals and sedi-
ments making them valid indicators to determine 
impacts from the disturbance test (Matsui et al. 2018). 
Concentrations of these ‘mining-indicator metals’ were 
examined in sediments to confirm assigned im pact 
classification categories of stations and examine the 
amount of time metal concentrations would be useful 
as indicators of disturbance following the test. Metal 
concentrations of sediments were examined using 
principal component analysis (PCA) plots and simi-
larity profile analysis (SIMPROF) in PRIMER 7 (Clarke 
& Gorley 2015). Sediment concentrations of the 6 
mining indicator metals (i.e. Cd, Pb, Hg, Zn, Fe, and 
Cu) at each location and sampling period were first 
normalized. To explore natural temporal variability 
in communities, we examined TOC — a measure of 
food availability. Food availability heavily influences 
deep-sea benthic community abundance (Rex et al. 
2006, Wei et al. 2010), along with diversity and 
community structure. 

Abundances of nanofauna, meiofauna, and macro-
fauna, and the biomass and number of taxa for meio-
fauna and macrofauna, were summed among sedi-
ment sections within a core to get a total abundance, 
biomass, or taxa richness per core for analyses. Taxa 
captured on 300 μm or larger sieves but which are 
generally considered meiofauna (i.e. Foraminifera, 
Copepoda, Ostracoda, nauplius larva, and Nema-
toda) or sessile or mobile epifauna (i.e. Pycnogonida, 
Holothuroidea, and Ascidiacea) were excluded from 
macrofaunal analyses. The nematode:copepod ratio 
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(N:C ratio) and percentage of the community com-
prised of polychaetes (% Poly) were calculated by 
dividing the abundance of meiofaunal nematodes 
by the abundance of meiofaunal harpacticoids (harp -
acti coid copepods generally dominate deep-sea meio -
faunal crustaceans; Coull & Bell 1979, Wilson & 
 Ahyong 2015) or dividing the abundance of macro-
faunal polychaetes by the total macrofaunal abun-
dance and multiplying by 100, respectively. Nema-
todes are generally considered to be more tolerant 
than copepods to pollution, hence the creation and 
use of the N:C ratio (Raffaelli & Manson 1981). For 
cores with no meiofaunal copepods, the N:C ratio 
was calculated by dividing the nematode abundance 
by 1 individual (3 individuals 10 cm−2), while for 
cores with no macrofauna whatsoever, the % Poly 
was set at 100% as both higher polychaete composi-
tion and complete lack of organisms are considered 
indicative of heavily impacted areas (Table S2a–f). 
Analyses were also performed on the top 0−0.5 cm 
section of sediment independently as this is the area 
most likely to be affected first and most strongly. 

A 2-way ANOVA was performed with impact cate-
gory and sampling time as the independent variables 
and abundance (for nanofauna, meiofauna, and 
macro fauna), biomass and taxon richness (for meio-
fauna and macrofauna), meiofaunal N:C ratio and 
macrofaunal % Poly as dependent variables in R.  
Dependent variables (except % Poly) were first nat-
ural log-transformed. For analyses, the significance 
level was set at α = 0.05. A significant interaction 
term was used to indicate that communities responded 
differently to the disturbance test among impact cat-
egories, and thus that communities may have been 
im pacted. Due to unequal sample sizes among im -
pact categories and the small number of samples at 
many time periods, non-parametric analyses were 
used to test for differences in abundances, biomass, 
and richness among impact categories at each time 
to examine significant interaction terms in R version 
4.1.2. A Kruskal-Wallis test, package ‘stats’ (R Core 
Team 2013), was used to compare each variable 
across im pact categories (unimpacted, moderately 
impacted, heavily impacted) in each time period 
(pre-test, 2 wk, 6 mo, 1 yr, 2 yr, and 3 yr after). A 
power analysis was also performed in R ‘pwr’ (Cham-
pely 2020). Power analysis showed that 3 categories 
with 3 replicates per category (the number for the 
unimpacted category) only resulted in 0.7 probability 
of finding a genuine difference, even if the distur-
bance represented the strongest effect size possible, 
which is 1, using a significance level of 0.1. Thus, 
while 0.05 was considered significant, 2-way ANOVA 

interaction terms and 1-way non-parametric ANOVAs 
with a p-value < 0.1 were still explored with pair-
wise comparisons. For pairwise post-hoc comparisons 
among impact categories, the Dunn test (Dunn 1964), 
package ‘PMCMR’ (Pohlert 2016), was used. Low 
faunal abundances per core made statistical exam-
ination of patterns in abundance and richness 
across sediment depths uninformative. In general, 
patterns ob served in surface sediments matched 
those for the entire core in this study. 

For multivariate analyses, a PCA was performed 
in Primer using the 6 indicator metals as independ-
ent variables. Finally, non-metric multidimensional 
scaling (nMDS) plots and similarity percentage 
(SIMPER) analysis were performed on meiofaunal 
and macrofaunal phyla/classes as well as meiofaunal 
nematode genera, with abundances first square-root 
transformed. To identify nematode genera for use as 
possible future indicators of mining impacts or unim-
pacted areas, cores within the nMDS cluster identi-
fied with SIMPROF that included all samples from 
station M4, as well as all pre-test samples, were con-
sidered representative of ‘unimpacted’ (n = 51) nem-
atode communities, while all other cores were con-
sidered ‘impacted’ (n = 30). A 1-way ANOVA was 
then performed on nematode taxa found in more 
than 10 cores (13 taxa total) after being ln-transformed. 
If abundances were significantly higher in the unim-
pacted stations with more than twice as many indi-
viduals per core in unimpacted cores compared to 
impacted cores, then the taxon was classified as ‘sen-
sitive’ to mining disturbance and possibly indicative 
of undisturbed conditions; if abundances were sig -
nificantly higher in the impacted stations, then the 
genus was considered ‘tolerant’ to mining distur-
bance and a possible indicator of deep-sea mining. 

3.  RESULTS 

3.1.  Impacts of the disturbance experiment  
to sediment characteristics 

When examining sediment concentrations of met-
als considered indicators of the disturbance test (i.e. 
Cd, Pb, Hg, Zn, Fe, and Cu), multivariate analyses 
indicated that there were differences among impact 
categories. The 2 data points collected at Stn M10 
(within 15 m and downstream of the test site) at 2 wk 
and 6 mo were very different to the other locations 
and grouped on the far left of the PCA in Fig. 2, with 
higher values of these metals (sometimes an order of 
magnitude) than any other location/time (Fig. S2 in 
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Supplement 1). Be sides M10, stations and time points 
were largely grouped into 4 clusters supported by 
SIMPROF. The cluster on the left was comprised of 
samples at Station M7 collected 2 wk to 1 yr after and 
had the highest metal concentrations, supporting the 
classification of this site as ‘heavily’ impacted. The 
cluster in the middle was comprised of Stations M5 
and M11 after 2 wk and 6 mo, as well as Station M7 
after 2 and 3 yr, supporting the classification of M11 
with M5 as ‘moderately impacted’. The cluster on the 
right included all pre-test samples, except at Station 
M7 and all time points for Station M4, supporting 
classification of M4 and pre-test samples as ‘unim-
pacted’. The placement of samples from M5 and M11 
in this unimpacted cluster 1 and 2 yr after combined 
with the placement of samples from M7 in the mod-
erately impacted cluster 2 and 3 yr after also suggests 
different levels of impact between these 2 groups 
over time. The 4th group was comprised of M7 pre-
test and moderate stations 3 yr after, suggesting it also 
represented relatively unimpacted conditions. Finally, 
Station M3 was grouped with the unimpacted cluster 
2 wk after but in a group of its own at 6 mo (Fig. 2). In 
the PCA analysis, the first principal component ex -
plained 80% of all variability in metals across sam-
ples, while the second principal component explained 

~10%, indicating high correlations among concen-
trations of these indicator metals. 

Since sediment TOC would likely not increase 
from sediment deposited by the mining test, variabil-
ity of TOC over time was used to estimate natural 
temporal variability. Sediment TOC ranged ~1.2−
2.7% among stations but differed by <0.3% among 
all time points for any given station, suggesting little 
temporal variability at the sites examined. Sediment 
TOC was also lowest at the unimpacted Station M4 
for all time points, suggesting that decreases in abun-
dance at impacted sites compared to the unimpacted 
site were due to impacts from the mining test rather 
than changes in food supply (Fig. S3 in Supplement 1). 
No discernable patterns were observed among im -
pact categories and time periods for TON, isotope 
analyses, and sediment grain size. 

3.2.  Infaunal abundance and biomass responses  
to the mining experiment 

3.2.1.  Nanofauna 

The 2-way ANOVA for nanofaunal counts found a 
significant interaction effect between impact cate-

Fig. 2. Principal Component analysis (PCA) plots using the 6 ‘mining indicator’ metals (Cd, Pb, Hg, Zn, Fe, and Cu) as inde-
pendent variables. Different colors denote different stations and impact categories (blue: unimpacted, yellow/orange: mod-
erately impacted, red/dark red: heavily impacted) while different shapes denote different time periods. The relationship 
of each metal to the principal components is shown in blue. Green outlines around stations: significant clusters identified  

using SIMPROF
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gory and time period (F10,63 = 2.55; p = 0.012), mean-
ing that impact categories behaved differently over 
time, as expected if the communities responded dif-
ferently to the disturbance test at different sites. 
Nanofaunal abundances were significantly lower at 
the unimpacted station compared to other locations 
pre-test and were not different at other time points 
(Table S1 in Supplement 1). However, the unim-
pacted Station M4 had a >100% increase in abun-
dance at 2 wk while moderately and heavily im -
pacted stations had little change. Furthermore, 
heavily and moderately impacted stations had a 
50−100% decrease from 2 wk to 6 mo after, while the 
unimpacted station remained the same. The biggest 
difference occurred 1 yr after, with the unimpacted 
and moderately impacted stations having a 3-fold 
increase in abundance, while the heavily impacted 
station increased by ~100%. By 2 yr nanofaunal 
abundances at all stations had decreased to similar 
levels with similar decreases to 3 yr (Fig. 3). The per-
centage of nanofaunal abundance found in the sur-
face 0.5 cm of sediment ranged between ~40 and 
65% of the unimpacted and moderately impacted 
stations at all time periods. However, it was below 
30% at the heavily impacted Stations M7 and M10 
2 wk after and quickly rebounded. 

3.2.2.  Meiofauna 

The 2-way ANOVA for total meiofaunal counts 
found a significant interaction effect between impact 
category and time period (F10,63 = 2.76; p = 0.007) as 
did the 2-way ANOVAs for meiofaunal nematode 
(F10,63 = 2.98; p = 0.004) and arthropod (F10,63 = 2.22; 
p = 0.028) abundances. No meiofaunal components 

were significantly different pre-test. Arthropod abun-
dances were significantly higher in the unimpacted 
station 2 wk after, while nematodes and total meio-
fauna were not different. All meiofaunal components 
were significantly lower in the heavily impacted sta-
tions 6 mo after but not at 1 or 2 yr (Fig. 4, Table S1). 
The percent of meiofauna in the surface sediments 
showed the same patterns as communities through-
out the sediment discussed above, except for 2 wk 
after when ~40% of individuals were in the 0−0.5 cm 
section in unimpacted and moderately impacted sites 
while ~15% were in these surface sediments at the 
heavily impacted sites. 

Meiofaunal biomass had similar trends across 
impact categories and sampling times as abundance. 
Because only 1 biomass value was assigned for nem-
atode individuals, nematode biomass mirrored abun-
dance. There were 5 different arthropod taxa for 
which biomass estimates were calculated; however, 
results of pairwise analyses were still the same 
between arthropod abundances and biomass. When 
looking at biomass of all meiofauna, results were dif-
ferent from meiofaunal abundance 2 wk after, with 
biomass significantly higher in the unimpacted site 
(Table S1, Fig. S4 in Supplement 1). 

3.2.3.  Macrofauna 

The 2-way ANOVA for macrofaunal counts also 
found a significant interaction effect between im -
pact category and time period (F10,63 = 1.99; p = 
0.0495) as did the ANOVA’s for macrofaunal poly-
chaetes (F10,63 = 2.26; p = 0.025) and non-polychaetes 
(F10,63 = 2.46; p = 0.015). Total macrofaunal and poly-
chaete abundances were significantly different pre-

test; however, this was due to moder-
ate stations having lower abundances 
than unimpacted and heavily im -
pacted stations with no difference 
between these two. Two weeks after 
the mining test, total macrofaunal and 
polychaete abundances decreased in 
the heavily impacted stations but 
were still not significantly different 
to  unimpacted stations, while abun-
dances of non-polychaete macrofauna 
were significantly higher in the unim-
pacted station compared to moder-
ately and heavily impacted locations. 
After 6 mo, total macrofaunal abun-
dances were significantly different be -
tween unimpacted and heavily im -
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Fig. 3. Average nanofaunal abundances of all cores collected within an impact 
category and time period. The interaction term of the 2-way ANOVA (impact 
category × time period) was significant (p = 0.012). Error bars: SE; asterisks:  

significant pairwise differences (p < 0.05)
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pacted stations, and total macrofaunal and non-
polychaete abundances remained significantly higher 
in the unimpacted station compared to heavily and/
or moderately impacted stations at least 3 yr after 
the disturbance test, except for 1 yr after when only 
3  stations were examined. In contrast, polychaete 
abundances were not significantly different between 
unimpacted and heavily impacted categories through-
out the study (Fig. 5, Table S1). The percentage of 
macrofauna in the surface sediments was signifi-
cantly higher in the unimpacted station compared to 
moderately and heavily impacted stations 2 wk after; 
however, there were no differences in surface sedi-
ments at any other time point. 

Macrofaunal biomass results were very different 
to macrofaunal abundance; however, this was likely 
due to extremely low abundances of very large ani-
mals (Fig. S5 in Supplement 1). 

3.3.  Infaunal diversity responses to the  
mining experiment 

3.3.1.  Meiofauna 

Meiofauna were comprised of 12 higher taxa in this 
study. Nematodes were found in all samples while 
foraminiferans, harpacticoids, and nauplius larva were 
each found in over 80% of samples. There was no 

significant interaction term for meiofaunal richness 
(F10,63 = 1.27; p = 0.268), and richness was higher at 
the unimpacted station compared to moderately and 
heavily impacted stations at all times (Fig. S6 in Sup -
plement 1). The interaction term for the nematode:
copepod ratio (N:C ratio) was not significant, but the 
p-value was less than 0.1 (F10,63 = 1.94; 0.056). There 
was no difference in the N:C ratio among impact cat-
egories pre-test, while ratios were significantly higher 
in the heavily im pacted stations compared to unim-
pacted station 2 wk after. By 6 mo after, N:C ratios 
were again similar among impact categories and 
remained similar throughout the rest of the study 
(Fig. 6). Finally, there was a significant interaction 
term for nematode genera richness. There were no 
significant differences in the number of nematode 
genera among impact categories pre-test, 2 wk, or 
6 mo following the dis turbance test. There were sig-
nificantly more nematode genera in the unimpacted 
site compared to moderately and heavily impacted 
sites 1 and 2 yr after, while 3 yr after, the unimpacted 
site was only different from the heavily impacted site 
(Table S1 in Supplement 1). 

3.3.2.  Meiofaunal nematodes 

PERMANOVA results found a significant interac-
tion term (Pseudo-F10,63 = 2.42; p <0.001) between 
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Fig. 4. Average counts for all meiofauna (Total), meiofaunal nematodes (Nem), and meiofaunal arthropods (Arth) for all repli-
cate cores within an impact category for each time period. Error bars: SE; asterisks above a time period: significant dif -
ference among impact categories (p < 0.05); different letters above bars: significant pairwise differences; letters without 
an as terisk: analyses where the p-value for the ANOVA was between 0.05 − 0.1, but pairwise comparisons found signifi- 

cant differences
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time and impact category for genus-level nematode 
community structure. Pre-test, communities were not 
significantly different among impact categories, with 
all pre-test samples grouped together in one large 
cluster along with all other time periods for the unim-
pacted station in the nMDS plot, except M5 which 
was unique (Fig. 7). Two wk and 6 mo after, commu-
nities were significantly different between heavily 
impacted stations and other stations, although all sta-
tions (except M10) 2 wk after were also within this 
large ‘unimpacted’ cluster as were the moderately 
impacted stations 6 mo after. However, 1 and 2 yr 
after, moderately and heavily impacted communities 
were similar, and different to unimpacted communi-
ties, with all groups significantly different 3 yr after. 

These differences were observable on the nMDS 
plot, with the 2 heavily impacted stations forming 
their own group 6 mo after the disturbance, while the 
heavily/moderately impacted stations formed sepa-
rate groups 1 yr, 2 yr, and 3 yr after. PERMANOVA 
results were nearly identical for each time period 
using nematodes at the family level, although there 
was higher overlap among groups in nMDS space 
(Fig. S7 in Supplement 1). 

Specific nematode taxa were explored as indica-
tors of disturbance from SMS mining activities or 
undisturbed conditions using SIMPROF clusters. 
Communities in the large central group (Fig. 7) of the 
nMDS plot which included all cores from the unim-
pacted Station M4 and moderately impacted M3, all 

stations after 2 wk except M10, and 
moderately impacted stations M5 
and M11 after 6 mo and 3 yr were 
con sidered representative of unim-
pacted conditions. Other SIMPROF 
groups were considered representa-
tive of impacted communities and in -
cluded all M10 cores; M11 and M7 
after 6  mo; M5, M11, and M7 after 
1  and 2  yr, and M7 after 3 yr. Ex -
amining nematode genera only found 
in 10  or more cores, taxa which may 
serve as indicators of  areas un im -
pacted by SMS mining include 
Halala imus, Mol golaimus, Sphaero -
laimus, Oxystomina, Di plo pel toides, 
Halichoano laimus, Pselionema, and 
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Fig. 5. Average counts for all macrofauna (Total), macrofaunal polychaetes (Poly), and macrofaunal non-polychaetes (Other)  
for all replicate cores within an impact category for each time period. Other details as in Fig. 4

Fig. 6. The average nematode:copepod (N:C) ratio for all replicate cores 
within an impact category for each time period. The interaction term of the 
2-way ANOVA (impact category × time period) was significant (p = 0.021). 
Error bars: SE; asterisks above a time period: significant pairwise differences  

(p < 0.05) 
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Leptolaimus. High abundances of Mon hystera, Dap -
to nema, and Des modora may be indicative of envi-
ronments impacted by SMS mining, while Des mo -
scolex and Actinonema appear to be abundant in 
most locations (Table 2). Monhystera was responsible 
for the largest amount of similarity within communities 
at the moderately and heavily impacted sites 6 mo, 1 yr 
and 2 yr after, while Molgolaimus was responsible for 
the largest amount of similarity of communities within 
the ‘un impacted’ cluster. 

3.3.3.  Macrofauna 

There was a total of 28 macrofaunal 
taxa identified in this study: 2 mollusc 
classes, 4 crustacean orders, 19 poly-
chaete families, and 3 other (Nemertea, 
Sipuncula, and Oligochaeta). No taxon 
was found in  all samples, although 
polychaetes were present in  90% of 
samples. Nemerteans, sipunculans, 
oli gochaetes, and gastropods were 
each only found in 3−4 cores, while 
each crustacean class was found in 
~15−30 cores. Macrofaunal diversity 
was mostly dominated by polychaetes 
and crustaceans. The interaction term 
for macrofaunal taxa richness was not 
significant, but the p-value was <0.1 
(F10,63 = 1.93; p = 0.057), so pairwise 
comparisons were ex plored. Pre-test, 
richness was significantly higher in the 

unimpacted station compared to moderately impacted 
stations, but not different from the heavily impacted 
stations. There was also no difference between un -
impacted and heavily impacted richness 2 wk to 1 yr 
after; however, 2 and 3 yr after, richness at the unim-
pacted station was significantly higher than the 
heavily impacted station (Fig. S8 in Supplement 1). 

The percent of the macrofaunal community com-
prised of polychaetes (% Poly), like the meiofaunal 
N:C ratio, may serve as a useful indicator of deep-sea 
mining impacts. There was a significant interaction 
term for % Poly composition (F10,63 = 2.28; p = 0.024) 
with no difference between unimpacted and either 
heavily or moderately impacted stations pre-test. The 
% Poly was significantly lower in the unimpacted 
vs heavily and moderately impacted stations 2 wk to 
2 yr after disturbance. The heavily impacted station 
continued to have higher % Poly 3 yr after, while the 
moderately impacted stations were similar to unim-
pacted; however, differences were not significant 
(Fig. 8; Table S1). 

4.  DISCUSSION 

4.1.  Identifying areas impacted by SMS mining 

Distance from the mining site is obviously critical 
in determining the extent of environmental impacts. 
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Table 2. Bioindicator classification of nematode genera based on p-values from 
1-way ANOVAs and abundance ratios between unimpacted and impacted 
cores performed on each taxon found in 10 or more cores. N: number of cores 
with taxon present; unimpacted mean: average abundance 10 cm−2 in all cores 
at stations/time periods unimpacted by the mining disturbance; impacted 
mean: average abundance 10 cm−2 in all impacted cores; c-p value: colonizer-
persister (c-p) value from Bongers et al. (1991) classifying taxa as tolerant or per-
sistent (with 1 being the most tolerant and 5 being the most persistent) to envi-
ronmental changes from shallow-water studies (NA is not available). Green 
represents taxa classified as ‘Sensitive’, yellow represents ‘Cosmopolitan’, and  

red represents ‘Tolerant to impacts of the SMS excavation test’ 

Fig. 7. nMDS plot of nematode genera. Different colors denote 
different stations and impact categories (blue = un impacted, 
yellow/orange = moderately impacted, red/dark red = heav-
ily im pacted) while different shapes denote different time 
periods. Green outlines around stations: significant clusters  

identified using SIMPROF
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Infaunal communities within 15−30 m of the distur-
bance site were heavily to moderately influenced 
by the experiment, while the one station > 50 m from 
the disturbance site appeared to be relatively unim-
pacted in this study; however, based on the asymmet-
rical observational data, impacts were likely more 
confined than this range in some directions and more 
extended in others. Current direction appears to be a 
large driver in the spatial extent of impacts from the 
disturbance test. Stations M5, M10, and M11 are all 
nearly equidistant from the disturbance site; how-
ever, M10 had much higher concentrations of indi -
cator metals and was the only one of the 3 stations 
south, along the prevailing current. Furthermore, M7 
was twice the distance from the disturbance site as 
some moderately im pacted stations, but again was 
directly downstream of the disturbance site and had 
more than twice the re-sedimentation of the moder-
ately impacted M5 station (Matsui et al. 2018). These 
results suggest that heavy impacts were almost en -
tirely limited to areas down-current of the distur-
bance site, extending at least 30 m, while moderate 
impacts occurred in other directions and extended at 
least 30 m as well. A different SMS disturbance test 
in the area found the largest impacts to the southeast 
of the disturbance site (Okamoto et al. 2019). Sediment 
de position from deep-sea disturbances in nodule areas 
was also focused in the direction of the prevailing 
current (Trueblood 1993, Sharma et al. 2001). 

Seafloor topography (measured via AUV surveys at 
depth) likely plays a role in the spatial extent of 
impacts as well. Station M4 was the only unimpacted 
site and the furthest from the disturbance site, and it 
was 5 m shallower than all other stations (Fig. 1C). 

Stations located ~25 m west, ~50 m 
northwest, and ~50 m south of the dis-
turbance site (where no biological sam-
ples were collected for this study) had 
no detectable re-sedimentation (Mat-
sui et al. 2018), suggesting that impacts 
were isolated to an area from the north 
to southeast which fell along an iso-
bath at 6–7 m. All stations with meas-
ured re-sedimentation were also on the 
same side (east) of a 10 m tall mound 
at the disturbance site, highlighting 
the importance of sea floor topo graphy 
as a driver of the spatial ex tent of im -
pacts from deep-sea mining (Fig.  1C). 
The lack of impacts at an elevation of 
as little as 5 m highlights the need to 
understand fine-scale topo graphy when 
planning mining operations. Mitigation 

of impacts may thus include mining of areas that are 
situated in localized seafloor depressions. 

Finally, the distance of re-sedimentation from 
mining may be much larger than the distance of in -
creased metal fluxes, with 1 mm of re-sedimentation 
observed at stations in some directions > 100 m away 
from the mining test (Matsui et al. 2018). The ore lift-
ing test in the Okinawa Trough found 4 mm of re-
sedimentation 130 m from the disturbance site (Oka -
moto et al. 2019). There is a need to extend monitoring 
efforts beyond 50 m and in multiple directions to 
identify areas outside of the zone of mining influ-
ence, although the highly heterogeneous nature of 
SMS habitats will likely, unfortunately, introduce 
more confounding factors (such as nearby active vent-
ing or different sulfide structures) with additional 
distance between stations. 

4.2.  Metals as indicators of mining impacts  
and persistence 

Elevated concentrations of Cd, Pb, Hg, Zn, Fe, and 
Cu appear to be useful indicators of mining of sul-
fides at the Jade site (Figs. 2 & S2). Material settling 
during this disturbance test had elevated concentra-
tions of Cd, Pb, Hg, Zn, Fe, and Cu (Matsui et al. 
2018), and we found higher concentrations with 
closer proximity to the disturbance site as well as 
along the prevailing seafloor current. Metal data 
grouped stations in the same manner as their desig-
nated impact categories using distance and direction 
from the disturbance site and local topography (i.e. 
highest metal concentrations in heavily impacted sta-
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Fig. 8. Average percent of the macrofaunal community comprised of poly-
chaetes (% Poly) for all replicate cores within an impact category for each time 
period. The interaction term of the 2-way ANOVA (impact category × time 
period) was significant (p = 0.021). Error bars: SE; asterisks above a time period:  

significant pairwise differences (p < 0.05) 
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tions and lowest in the unimpacted station) (Figs. 2 & 
S2). While concentrations of these metals are natu-
rally high in areas of hydrothermal venting, a previ-
ous study found sediments in the area contained 
maximum concentrations of Cu up to 8500 ppm, Zn 
up to 11200 ppm, Cd up to 115 ppm, Hg > 100 ppm, 
and Pb up to 9000 ppm (Marumo & Hattori 1999), 
several times lower than concentrations observed at 
Stations M7 and M10 in the present study. 

While the above metals are useful to determine the 
extent of mining impacts immediately after activities 
have ceased, metal concentrations will likely de -
crease over time. Understanding temporal changes 
in metal concentrations after mining activities cease 
is thus extremely important. Elevated metal concen-
trations in surface sediments appeared to return to 
pre-disturbance levels at moderate stations within 
1 yr while at the heavily impacted station concentra-
tions had decreased to moderate levels after 2 yr but 
remained elevated at least 3 yr after the disturbance 
test. The one outlier was Station M3, which was the 
only impacted station within the unimpacted group 
2  wk after, but was very different to other stations 
6 mo after (Fig. 2). Due to its location in the opposite 
direction of the prevailing current during the test, 
one hypothesis is that re-sedimentation following 
the test may have resulted in delayed impacts here. 
Re-sedimentation from bottom currents should be 
explored in future mining tests well after mining 
activities cease. 

It is hypothesized that metal oxidation was largely 
responsible for decreases in metal concentrations 
during this experiment. As sedimentation rates in the 
area are estimated to be < 1 mm yr−1 (Feng-ye & Yu-lan 
1996, Xiong et al. 2005) metal removal by sedimenta-
tion burial is unlikely. Bioturbation is a possibility as 
the deeper sediments had higher metal concentra-
tions in the later years. However, total concentrations 
of indicator metals throughout the surface 0−5 cm of 
sediment decreased 2−4 fold from immediately after 
the disturbance to 1−2 yr after the disturbance at all 
moderately and heavily impacted sites, likely driven 
by oxidation in surface sediments. These temporal 
changes highlight the possibility of rapid metal oxi-
dation following sulfide mining, at least for small 
particles. Similar to our observations, particles of 
pyrrhotite and chalcopyrite had residence times of 
1.5 and 11 mo, respectively, but for particles 1 μm in 
diameter. For particles ~10 μm in diameter, residence 
times were years to decades (Bilenker et al. 2016). 
Importantly, while the return of metal concentrations 
to pre-test levels may indicate that some recovery of 
environmental conditions has occurred, this is not to 

say that other alterations to the environment do not 
persist longer. Also, alterations in benthic communi-
ties, either due to previous increases in metals or 
other factors like sedimentation, may persist for 
longer periods of time. 

4.3.  Infaunal responses to the mining experiment 
and bioindicators 

There were interesting patterns in benthic abun-
dances and diversity following the SMS mining test. 
There were no significant differences in nanofaunal 
abundances, although the increase in abundances at 
the unimpacted site over time compared to other 
locations is an interesting result that should be fur-
ther explored (Fig. 3). It is unclear if meiofaunal 
abundance and N:C ratio were altered at the moder-
ately impacted sites (Figs. 4 & 6), although it appears 
that meiofaunal nematode diversity and macrofaunal 
abundance/diversity may have been (Figs. 5, 7 & 8). 
All components of the meiofaunal and macrofaunal 
community appear to have been altered at the heav-
ily impacted sites (Figs. 4−8). Thus, macrofauna may 
be affected by deep-sea mining over a larger spatial 
extent than smaller organisms. 

It may have taken several weeks to months for the 
mining test to alter nanofaunal and meiofaunal abun-
dance (Figs. 3 & 4), and recovery of abundances 
largely occurred by 2 yr following the disturbance. 
On the other hand, the N:C ratio increased dramati-
cally immediately after the test but returned to back-
ground numbers by 6 mo after. This suggests that 
meiofaunal copepods may be more quickly influ-
enced by mining than meiofaunal nematodes. Often, 
organic enrichment or toxicity is associated with an 
increase in nematode abundances and/or a decrease 
in copepod abundances, meaning that higher N:C 
ratios may be associated with more polluted condi-
tions (Raffaelli & Manson 1981, Baguley et al. 2015). 
Macrofaunal abundance and richness appear to have 
been altered more quickly, with recovery possibly 
taking 3+ yr (Figs. 5 & S7), while the percent of 
macrofauna comprised of polychaetes has potential 
as an indicator of mining disturbance (Fig. 8). Many 
polychaetes are often considered tolerant to pollu-
tion/stress, and high dominance of polychaetes can 
indicate environmental impacts from other activities 
such as offshore oil production (Andrade & Renaud 
2011, Dauvin et al. 2016). These results suggest that 
mining impacts on nanofaunal and meiofaunal com-
munities will not only be more limited spatially but 
also temporally compared to macrofaunal commu-
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nities. Larger animals are often affected by distur-
bance more than smaller animals (Pearson & Rosen-
berg 1978); however, following natural disturbance 
at hydrothermal vents, macrofaunal communities 
may recover more quickly than meiofaunal commu-
nities, due to higher mobility (Gollner et al. 2017). 

The underlying mechanisms behind specific nema-
tode taxa being useful indicators of pristine or im -
pacted locations are less clear. Much of this uncer-
tainty may be due to the almost complete lack of 
toxicological tests on deep-sea animals in general, 
making it necessary to examine shallow-water stud-
ies. Nematode genera Monhystera, Daptonema, and 
Desmodora are all possible indicators of areas im -
pacted by the mining disturbance test, while taxa 
including Molgolaimus, Halalaimus, and Sphaero-
laimus appeared indicative of unimpacted areas in 
this study (Table 2). Other studies have also found 
that Halalai mus is likely a genus sensitive to stress in 
shallow waters, while Daptonema and Monhystera 
are indicative of stressful conditions (Bongers et al. 
1991, Danovaro et al. 1995, Semprucci et al. 2015). 
However, classifications in this study do not always 
match current literature. For example, Molgolaimus 
and Oxy stomina have been considered indicators of 
stressful conditions in shallow-water systems, while 
Des moscolex and Desmodora have been considered 
indicators of good environmental quality (Mirto et 
al.  2002, Semprucci & Balsamo 2012), the opposite 
of  results from the present study. Thus, the taxa 
classifications in our study should be treated as a 
starting point, with future work needed concerning 
toxicological studies of specific nematode genera 
to  confirm their use as bioindicators of deep-sea 
mining. 

4.4.  SMS mining impacts on benthos:  
sedimentation, toxicity, habitat alteration,  

and future directions 

Likely one of the most immediate impacts from 
deep-sea mining on the nearby benthic communi-
ties will be the re-sedimentation of, and burial by, 
material disturbed during mining (Gwyther 2008, 
Boschen et al. 2013, Washburn et al. 2019). Unfor-
tunately, re-sedimentation markers were not de -
ployed or did not work at Stations M3, M10, and 
M11 while sedimentation traps were only deployed 
at Stations M3 and M4. However, re-sedimenta-
tion from this 6 h test resulted in burial of some 
areas at least 0.5 cm thick (at M7) (Matsui et al. 
2018). Burial at rates of ~2 cm mo−1, especially fine 

sediment, can greatly decrease infaunal densities 
(Turk & Risk 1981), while deeper communities may 
be more susceptible to burial (Gallucci & Kawa ra -
tani 1975). Unfortunately, thresholds of sensitivity 
to turbidity, sedimentation, and burial are currently 
based on data from shallow-water eco systems which 
experience sedimentation rates orders of magnitude 
higher than the deep sea (Smith et al. 2020), and 
even at these shallow environments, ef fects of 
sedimentation and thresholds of impacts are rela-
tively unknown (Airoldi 2003). Re-sedimentation 
has also been suggested to increase organic carbon 
on the seafloor (Sharma et al. 2001, Ingole et al. 
2005), further complicating the projection of mining 
impacts. 

Another likely impact of deep-sea mining on 
nearby benthic communities is toxicity from heavy-
metal deposition (Gwyther 2008, Narita et al. 2015, 
Washburn et al. 2019). The fact that nanofauna, 
meiofauna, and macrofauna behaved differently 
among moderately and heavily impacted stations 
may suggest different susceptibilities to toxicity 
amongst the different benthic-community compo-
nents from mining that should be explored in future 
studies. There is evidence to suggest that toxicity 
from metals released by mining may cause limited 
harm to the surrounding communities in SMS habi-
tats. The addition of sulfide can ameliorate metal 
toxicity by forming metal-sulfide complexes and pre-
cipitates (Edgcomb et al. 2004). Several benthic 
animals associated with hydrothermal vents use 
metallothionien-like proteins to help in detoxifica-
tion as well (McMullin et al. 2000). Likewise, the 
actual concentrations of metals calculated for sedi-
ments in this study likely do not represent the level 
of risks posed to communities (Chapman et al. 1998, 
Simpson & Batley 2007, Simpson & Spadaro 2016) 
since metals in sulfides often have low bioavailabil-
ity (Morse 1994, Lee et al. 2000, USEPA 2005). How-
ever, these sulfides may transform into forms with 
higher bio availability through oxidation, dissolution, 
and partitioning to food sources such as particulate 
organic carbon (Morse & Luther 1999, Campana et 
al. 2012, Simpson et al. 2012). There have been some 
experiments testing metal toxicity of sulfides to 
communities (e.g. Simpson & Batley 2007, Fuchida 
et  al.  2017), but these have concentrated on metal 
concentrations in pelagic or bottom waters rather 
than pore-waters and sediments. Thus, research is 
needed to understand (1) the bioavailability of sul-
fide metals to infaunal communities, (2) how concen-
trations of metals in sediments deposited from min-
ing will af fect these communities and (3) the extent 
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of these effects. While the potential toxicity of 
material released into the water column from deep-
sea mining remains largely unknown, deep-sea min-
ing experts consider toxicity from the mining of sul-
fides to be one of the greatest risks (Washburn et 
al. 2019). 

While the SMS mound targeted for test mining in 
this study was inactive, the Jade site includes several 
active hydrothermal vents (Halbach et al. 1989). 
Drilling activity at an inactive deposit in another field 
within the Okinawa Trough, resulted in reactivation 
of hydrothermal activity there, in essence creating 
hydrothermal vent habitat (Kawagucci et al. 2013). 
This resulted in the appearance of microbial mats 
and vent-endemic species and converted soft-sedi-
ment habitat to hardened substrate for at least 3 yr 
following disturbance (Nakajima et al. 2015), all of 
which would greatly impact infaunal communities. In 
this study, mining activities did not appear to reacti-
vate hydrothermal activity in the area, although sub-
strate was only removed up to ~1 m in depth. 

The findings from this study are unfortunately lim-
ited by the low numbers of sampling sites and times. 
The main results and conclusions in this paper are 
well-supported by the data acquired; however, these 
data are not sufficient to fully explain natural spatial 
or temporal variability, nor completely represent the 
benthic communities sampled for some components 
(e.g. the small core size was not able to characterize 
macrofaunal communities as evidenced by their very 
low abundances). Deep-sea benthic communities are 
well known to be highly heterogenous over both 
space and time. In order to estimate the impacts of 
mining in their entirety, we recommend sampling 
around any disturbance site in a classic ‘bulls-eye’ 
pattern. This entails collecting samples along tran-
sects at several distances from the disturbance (e.g. 
20, 50, 100 m) in multiple directions (e.g. north, 
south, east, and west). The inclusion of more repli-
cates per site (e.g. 5) and more pre-test sampling 
would also aid in capturing natural spatial and tem-
poral variability. This of course requires additional 
time and expense for both collection and processing, 
and truly adequate sampling designs are often not 
logistically possible given limited resources. Hope-
fully our work will help provide a template for using 
current direction and topography so that future stud-
ies are designed to use available resources in the 
most efficient way possible. In spite of the lack of 
adequate baseline data to fully describe natural 
variability, the impacts of the SMS mining trial 
were still large enough to demonstrate significant 
differences. 

5.  CONCLUSIONS 

First-of-their-kind experiments involving mining 
activities of SMS are taking place in the Okinawa 
Trough under the auspices of the government of 
Japan. At an inactive sulfide mound, removal of a 
small amount of substrate over a short time frame 
resulted in physical, chemical, and biological impacts 
within at least 30−40 m of the disturbance site. Phys-
ical impacts of mining included re-sedimentation, 
while chemical impacts included increased con -
centrations of metals: Cd, Pb, Hg, Zn, Fe, and Cu. 
Current direction and slope appeared to influence 
the extent of impacts. While elevated metal concen-
trations may be used to determine the spatial extent 
of mining impacts during mining and immediately 
after activities cease, they may not show the full 
extent of the footprint within 1−2 yr. 

Benthic communities of different size classes were 
impacted differently by the mining experiment. Nano -
faunal abundances were not significantly altered, 
although they did increase at the unimpacted site 
after the mining test compared to impacted locations. 
Meiofaunal arthropod abundances and nematode 
community structure appeared to be impacted by the 
mining experiment almost immediately after it took 
place, while observable changes to meiofaunal nem-
atode abundances did not occur until several weeks 
later. Meiofaunal abundance and nanofaunal com-
munities may have largely recovered within 1−2 yr, 
but nematode community structure remained altered 
at the heavily impacted site 3 yr later. In contrast, 
macrofaunal communities appeared to be impacted 
almost immediately after the mining test with im -
pacts possibly persisting at 3 yr, even at moderately 
impacted sites. 

Results from this mining disturbance test suggest 
that while toxicity from heavy metals may be an 
important risk from SMS mining, re-sedimentation 
will likely have a larger areal footprint. It also sug-
gests that larger benthic components are more sus-
ceptible to impacts from mining. Finally, it reinforces 
the need for extensive sampling, both spatially and 
temporally, to distinguish impacts of deep-sea min-
ing from natural variability at highly heterogeneous 
sulfide habitats. Future studies needed include ex -
amining natural spatial and temporal variability at 
SMS of both environmental and biological character-
istics, studying the extent to which currents and sea -
floor slope affect re-sedimentation following deep-
sea mining activities, determining the bioavailability 
of various metals released during SMS mining, test-
ing the tolerance of deep-sea infaunal communities 
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to different heavy metals and sediment burial, ex -
ploring species-level changes in benthic communi-
ties caused by deep-sea mining, and determining 
mechanisms of community recovery. Our research 
will aid in guiding the design of future studies by 
showing the importance of current direction and 
topography on mining impacts, providing data on 
metals likely to be elevated from sulfide mining, and 
showing that impacts will likely need to be moni-
tored beyond 50 m. As nematode community struc-
ture and macrofauna are affected for longer periods 
of time than other benthic metrics, a focus on these 
parameters in the future may help to determine 
when full recovery has occurred. 
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