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1.  INTRODUCTION 

Global concern about the conservation status of the 
white shark Carcharodon carcharias has afforded the 
species a relatively high degree of national and inter-
national protection, but the status of many popula-
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ABSTRACT: The present study provides the first esti-
mate of abundance for the white shark at a new ag -
gregation site in the western North Atlantic, which 
re quired the development of a novel modeling frame-
work to accommodate the species’ migratory behav-
ior. Estimates of abundance are needed to evaluate 
the performance of existing conservation measures 
for white shark populations worldwide but have his-
torically been infeasible to obtain in the region. Fol-
lowing the recent emergence of Cape Cod, Massa-
chusetts, USA, as a seasonal aggregation site, we 
con ducted a photographic capture−recapture survey 
and identified 393 individual white sharks from 2015−
2018. As conventional capture−recapture models do 
not adequately represent the species’ migratory be -
havior, we extended an existing open spatial capture−
recapture framework to allow for movements into 
and out of the surveyed area and accommodate vari-
ation in residency and habitat use among individu-
als. Using simulations, we demonstrated that failing 
to account for these processes resulted in biased esti-
mates of abundance that would be misleading if used 
as the basis for management advice. We applied the 
model developed to describe the seasonal dynamics 
of the Cape Cod aggregation site and estimated a 
superpopulation size of 800 (393−1286) individuals, 
which provides an important baseline for this species 
of conservation concern. Because it directly links 
changes in abundance over time to the demographic 
processes underpinning them, the model described 
provides a more mechanistic understanding of the 
dynamics of white shark aggregations and improves 
the applied relevance of the results for the conserva-
tion and management of the species.  
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A white shark investigates the camera during a photographic 
capture–recapture survey conducted off Cape Cod, Massa-
chusetts, USA.  

Photo: Massachusetts Division of Marine Fisheries, 
Research Supported by Atlantic White Shark Conservancy  
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tions remains unknown (Huveneers et al. 2018). One 
of the largest (reaching lengths of up to 6 m; Castro 
2012) and most feared shark species, the white 
shark is long-lived, slow-growing, late to mature, 
and consequently highly vulnerable to overexploita-
tion (Natan son & Skomal 2015). Although the species 
was never the target of large-scale directed fisheries, 
white shark populations throughout its circumglobal 
range declined as commercial and recreational fish-
eries and shark control programs expanded during 
the latter half of the twentieth century (Roff et al. 
2018). In some regions, it is estimated that white 
shark abundance decreased by as much as 70−90% 
(McPherson & Myers 2009, Reid et al. 2011, Curtis et 
al. 2014, Roff et al. 2018) before protections began to 
be put into place in the 1990s by both individual 
countries and international treaties (United Nations 
Convention on the Law of the Sea Annex I, Conven-
tion of International Trade in Endangered Species of 
Wild Fauna and Flora Appendix II, Convention on 
the Conservation of Migratory Species of Wild Ani-
mals Appendix I and II). Following the implementa-
tion of protective legislation, white shark populations 
in several regions have shown signs of recovery 
(Lowe et al. 2012, Curtis et al. 2014). However, esti-
mates of abundance, which are needed to evaluate 
the performance of existing conservation measures 
and aid in future management decisions, remain 
unavailable for many populations (Huveneers et al. 
2018). 

Efforts to estimate white shark abundance in the 
western North Atlantic (WNA) have proven particu-
larly challenging. Despite the white shark’s long and 
storied history in the region (Gudger 1950, Casey & 
Pratt 1985, Mollomo 1998), it was until recently con-
sidered an elusive species whose migratory habits 
and low natural abundance as an apex predator ren-
dered it so sparsely distributed that ‘any attempt to 
estimate … abundance can only be expressed in gen-
eral terms’ (Casey & Pratt 1985, p. 6). Trends in catch 
records indicate substantial population declines prior 
to the establishment of a fishery management plan 
that enacted commercial and recreational regula-
tions for large coastal shark species in the US At -
lantic in 1993 and the subsequent prohibition of the 
harvest of white sharks in 1997 (Curtis et al. 2014). In 
the early 2000s, the number of reported white shark 
sightings began to increase, particularly along the 
eastern coastline of Cape Cod, Massachusetts (Sko-
mal et al. 2012). This increase has largely been attrib-
uted to the local population recovery of gray seals 
Halichoerus grypus following the 1972 passage of 
the Marine Mammal Protection Act (Skomal et al. 

2012) but also likely reflects the preliminary recovery 
of the white shark population itself (Curtis et al. 
2014). During the summer and fall months, white 
sharks hunt for locally abundant pinniped prey along 
the Cape Cod shoreline and are now accessible to 
targeted research efforts for the first time in the WNA 
(Winton et al. 2021). The emergence (or more likely 
re-emergence; Skomal et al. 2012) of Cape Cod as a 
seasonal aggregation site has provided a unique 
opportunity to apply capture−recapture methods to 
generate the first robust estimate of white shark 
abundance in any portion of its WNA range. 

Capture−recapture studies are widely used to esti-
mate the size of wildlife populations and have been 
conducted in other areas where white sharks aggre-
gate (Cliff et al. 1996, Strong et al. 1996, Chapple et 
al. 2011, Sosa-Nishizaki et al. 2012, Towner et al. 
2013, Andreotti et al. 2016, Becerril-García et al. 
2020). These approaches are based on reconstructing 
encounter histories over time and require that indi-
viduals are ‘marked’ in some way that makes them 
distinguishable from other individuals in the popula-
tion. Early white shark capture−recapture surveys 
used conventional fisheries dart tags to mark individ-
uals (Cliff et al. 1996, Strong et al. 1996), but the real-
ization that individual sharks could be identified by 
their unique coloration and dorsal fin profiles revolu-
tionized researchers’ ability to efficiently and non-
invasively obtain encounter history data (Klimley & 
Anderson 1996, Strong et al. 1996, Domeier & Nasby-
Lucas 2007). Photographic identification (hereafter 
photo-ID) surveys have been used to monitor and 
estimate the size of white shark aggregations in the 
eastern North Pacific and Indian oceans (Chapple et 
al. 2011, Sosa-Nishizaki et al. 2012, Towner et al. 
2013, Andreotti et al. 2016), but the appropriateness 
of the analytical approaches used to do so has 
become the subject of some debate. 

Criticism of analytical approaches has centered on 
concerns that the models applied to estimate abun-
dance do not adequately represent the complex pro-
cesses generating the observed encounter histories 
(Burgess et al. 2014, Irion et al. 2017). Conventional 
capture−recapture models were developed for closed 
populations (i.e. no individuals are born, die, enter, 
or leave the area) and assume that all individuals 
have a constant and equal probability of en counter 
during survey periods (Otis et al. 1978). These are 
problematic constraints for species that are highly 
migratory, such as the white shark. Individual white 
sharks travel thousands of kilometers each year to 
optimize foraging opportunities but are only avail-
able to survey efforts at coastal aggregation sites that 
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constitute a small fraction of their overall range 
(Domeier & Nasby-Lucas 2013, Skomal et al. 2017). 
Although many white sharks exhibit long-term 
fidelity to aggregation sites (Anderson et al. 2011), 
short-term patterns of space use and residency at 
such sites vary widely among individuals, and not 
all  individuals visit aggregation sites every year 
(Domeier & Nasby-Lucas 2013, Skomal et al. 2017). 
Therefore, individual sharks have variable degrees 
of exposure to sampling as a function of their location 
relative to survey efforts; if ignored, this heterogene-
ity in encounter probabilities can result in biased 
population estimates that would be misleading if 
used as the basis for management advice (Burgess et 
al. 2014). To address this issue, recent estimates of 
white shark abundance from photo-ID surveys have 
applied open capture−recapture models that allow 
individuals to enter and permanently exit the sur-
veyed population and have incorporated variable 
encounter probabilities among sex and size classes 
as a proxy for differences in habitat use (Towner et 
al. 2013, Andreotti et al. 2016, Kanive et al. 2021). 
However, neither approach fully resolves the prob-
lems that have been recognized to date, which are 
largely a consequence of the lack of spatial context in 
conventional capture−recapture models. 

Spatial capture−recapture (SCR) methods were 
developed to improve abundance estimates from 
capture−recapture surveys by formally considering 
the spatial processes underpinning observed en -
counter histories. Conceptually, SCR models extend 
individual-covariate models commonly applied to 
explain variation in encounter rates among individ-
uals to account for spatial heterogeneity arising 
from individual differences in space use (Royle et al. 
2009). The probability that an individual is encoun-
tered is assumed to depend on the distance between 
the surveyed area and the individual’s center of 
activity during the survey period; individuals that 
primarily use habitats outside the surveyed area are 
less likely to be encountered and vice versa, making 
the use of SCR models for white sharks intuitively 
appealing. Furthermore, any type of georeferenced, 
individual-based data source can be formulated as 
an SCR model. Therefore, these models also provide 
a logically consistent basis for directly integrating 
telemetry data into population models (Royle et al. 
2013). Tagging studies are often conducted at aggre-
gation sites in conjunction with capture−recapture 
surveys, and the results are used indirectly to aid in 
interpretation of abundance estimates (Burgess et al. 
2014). The formal integration of telemetry data into 
population models has the potential to improve esti-

mates of abundance and other population parame-
ters (Royle et al. 2013, Tenan et al. 2017, Linden et 
al.  2018), but the application of tag-integrated ap -
proaches has been limited, in part because of the 
lack of available frameworks for incorporating elec-
tronic tagging data (Sippel et al. 2015). 

In this study, we developed and applied a telemetry-
integrated SCR model to estimate white shark abun-
dance from a seasonal photo-ID survey conducted in 
the nearshore waters along Cape Cod, Massachu-
setts, from 2015−2018. We extended an existing open 
SCR framework (Glennie et al. 2019) to allow for 
movements into and out of the survey area (i.e. tem-
porary emigration; Kendall et al. 1997) and formally 
integrated tagging data obtained from a concurrent 
acoustic telemetry array. Using our actual survey 
design and the proportion of tagged individuals, we 
conducted simulation testing to determine the im -
pact of accounting for variation in space use, tempo-
rary emigration, and integrating acoustic telemetry 
data on demographic parameter estimates. We ap -
plied the resulting model to investigate the seasonal 
dynamics of the Cape Cod aggregation and gener-
ated the first estimate of abundance for white sharks 
in any portion of their WNA range. This estimate pro-
vides a baseline from which the performance of 
current and future management measures can be 
assessed for this species of conservation concern. 

2.  MATERIALS AND METHODS 

2.1.  Field sampling 

We conducted a seasonal photo-ID survey in the 
nearshore waters along the Atlantic coast of Cape 
Cod, known locally as the ‘Outer Cape’ (Fig. 1). Un -
like previous capture–recapture surveys of white 
shark populations (Cliff et al. 1996, Strong et al. 1996, 
Chapple et al. 2011, Nasby-Lucas & Domeier 2012, 
Towner et al. 2013, Andreotti et al. 2016), we employed 
active rather than passive (i.e. attracting sharks with 
baits) sampling techniques. Sharks were located by 
an experienced commercial spotter pilot searching 
Massachusetts state waters (which extend 3 nautical 
miles from the coast) between the northern and 
southern tip of Cape Cod, which encompasses an 
approximately 500 km2 area (Fig. 1). Prior to the sur-
vey trip, the pilot was given a starting direction but 
was not constrained to a pre-determined flight path 
in order to maximize encounter rates and survey effi-
ciency. When a shark was spotted, the pilot directed 
the research vessel to the shark’s location. A video 
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camera (GoPro models Hero3 and Hero4) mounted 
on a fiberglass telescoping painter’s pole was used to 
record underwater footage of free-swimming sharks. 

A pilot study conducted during the 
summer and fall of 2014 proved this 
approach feasible (see Section 3); 
there fore, the survey was expanded 
and conducted seasonally from 2015−
2018. Available tagging data indi-
cated clear seasonal movement pat-
terns and a high degree of variation in 
residency and habitat use (Skomal et 
al. 2017, Winton et al. 2021). There-
fore, survey trips were conducted twice 
a week when conditions allowed from 
late June through October to capture 
the aggregation’s seasonal dynamics 
and increase the chance that ‘transient’ 
individuals would be encountered. 

A handheld GPS (Garmin GPSMAP 
78sc) was used to record the boat’s 
track for the duration of each trip as a 
measure of spatial variation in survey 
effort and the location of each shark 
encountered. Because we needed to 
assign the location of videoed encoun-
ters to the survey track for model fit-
ting, we chose to use the research ves-
sel’s track as a measure of effort rather 
than that of the spotter plane. Al -
though the plane’s track may have 
provided a more appropriate measure 
of the survey’s extent, the nature of 
our field operations required concise 
communication between the research 
vessel and the pilot, which rendered 
the coordinated collection of data 
across platforms practically infeasible. 

At the time of each encounter, the 
total length (TL) of each shark was 
visually estimated to the nearest 0.3 m 
via expert consensus using the re -
search vessel’s pulpit length for scale 
(Skomal et al. 2017), unless water clar-
ity and depth precluded estimation. 
When possible, sharks that were en -
countered during the survey were 
tagged with individually coded 69 kHz 
acoustic transmitters (Models V16-4x, 
V16-6x, or V16TP-6x; Innovasea Sys-
tems). Sharks were tagged externally 
while free-swimming (see Skomal et 
al. 2017 for details) to minimize tag-

ging effects and reduce the likelihood of altered 
movement behavior following capture (Bowlby et al. 
2021), which could affect the probability of re-
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encountering tagged individuals during subsequent 
survey efforts (Burgess et al. 2014). All tagging oper-
ations were conducted under Exempted Fishing Per-
mits (SHK-EFP-11-04, SHK-EFP-12-08, SHK-EFP-13-
01, SHK-EFP-14-03) issued by the National Marine 
Fisheries Service Highly Migratory Species Manage-
ment Division and permits issued by the Massachu-
setts Division of Marine Fisheries. 

2.2.  Identification of individual white sharks 

Video collection methods resulted in a large 
amount of footage that did not contain a shark. To 
expedite video processing, a custom algorithm was 
developed using an open-source, convolutional neu-
ral network that was trained to identify portions of 
the videos containing a shark and classify the body 
region captured (C. Rillahan, University of Massachu-
setts Dartmouth; https://github.com/EminentCodfish/
White-Shark-CNN-Classifier). The resulting product 
converts a video to a set of labeled photographs. 
Sequences of photographs that contained distinguish-
ing features were post-processed in Adobe Photo shop 
Lightroom Classic (Adobe Systems) to adjust white 
balance, color contrast, and exposure to improve 
image clarity. 

Processed photographs were used to document 
and match each shark encountered with previously 
identified individuals. Full shots of both sides of the 
body were not always captured during each en -
counter, and a single feature could not be used for 
identification. Individuals were identified based on 
countershading and fin pigment patterns (Domeier & 
Nasby-Lucas 2007) as well as the dorsal fin profile, 
which is unique to each shark (Anderson et al. 2011). 
We modified the criteria developed by Domeier & 
Nasby-Lucas (2007) for white sharks at Guadalupe 
Island, Mexico, to define pigment pattern types for 
the gill flaps, the dorsal fin, the pelvic fin region, and 
the caudal fin. The sex of the shark, presence of tags, 
and scars or evidence of major injuries (e.g. propeller 
wounds, damaged fins, scoliosis) were used to con-
firm identifications. Unless claspers were visible, sex 
was only assigned if clear ventral footage of the 
pelvic fins was captured to definitively determine 
that the shark was female. 

For each video, all features visible in the footage 
were classified, and the combination of scores were 
used to determine potential matches. Because pig-
ment patterns are not identical on both sides of the 
body (Domeier & Nasby-Lucas 2007), each feature 
was scored on the right and left sides. In all, 9 fea-

tures were scored (see ‘White Shark Catalog’ at https://
shiny.atlanticwhiteshark.org/logbook/ for examples). 
Unique characteristics were then used to match the 
individual to previously identified sharks. If only par-
tial footage of a shark was obtained and it could not 
be matched to a previously identified individual, it 
was cataloged as a ‘potential’ individual until ad -
ditional footage was captured on subsequent trips. 
Only sharks with a minimum of 6 scored features 
were included in the final data set to ensure that indi-
viduals were not included as multiple sharks. Given 
the slow growth rate of the species (Natanson & Sko-
mal 2015) and relatively short survey timeline, the TL 
of each identified shark was assigned as the mean of 
the TL estimates recorded during all encounters of 
that individual. Based on previously published esti-
mates of size-at-maturity, 3 sex-specific maturity 
stages were assigned as defined by Bruce & Bradford 
(2012): ‘juvenile’ (≤3.0 m); ‘subadult’ (males > 3.0−
3.6 m; females > 3.0−4.8 m); and ‘adult’ (males > 3.6 m; 
females > 4.8 m). In cases where the sex of tagged 
individuals could not be determined, maturity stage 
was only assigned if the estimated TL was ≤3.6 or 
>4.8 m. 

2.3.  Seasonal monitoring for the presence of 
tagged sharks 

Omnidirectional acoustic receivers (Models VR2W, 
VR2Tx, and VR2C; Innovasea Systems) were de -
ployed along the Outer Cape from the late spring 
into the following winter in each year (Fig. 1). 
Though the exact dates of deployment and retrieval 
varied depending on weather conditions and logis-
tics, deployments spanned the survey period in each 
season. Over the course of the study, the number of 
receivers increased with available funding (Fig. 1). 
Receivers were deployed at a depth of 1.3 m on sur-
face buoys in water depths ranging from 4.5 to 12.0 m 
beyond the surf zone, where high ambient noise 
levels can dramatically reduce receiver detection 
ranges (Kessel et al. 2014); extensive range tests con-
ducted in a portion of the array suggested that 
receivers had an average detection range of 400−
500 m (B. Legare pers. comm.). Here, we considered 
only detection data collected during survey periods 
in each year. Acoustic detection data were down-
loaded following receiver retrieval, time-corrected, 
and scanned for false detections based on the criteria 
outlined by Pincock (2012) using the manufacturer’s 
software (VUE v.2.4.0; https://support.fishtracking.
innovasea.com/s/downloads). 
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2.4.  Model description 

Our goal was to investigate the seasonal dynamics 
and estimate the overall size of Cape Cod’s white 
shark population while accounting for movement-
related sources of bias characteristic of white shark 
aggregations. To do so, we extended the open SCR 
model developed by Glennie et al. (2019) to account 
for temporary emigration and to integrate acoustic 
telemetry data, as described below. As with conven-
tional capture−recapture models, SCR models are 
formulated in terms of individual encounter histories 
that specify whether an individual was encountered 
on each survey or not but also extend them to ac -
count for variation in space use. We begin by describ-
ing the SCR approach for a single survey period and 
build upon that model to describe how movements 
into and out of the area are accounted for between 
survey periods using an open formulation. 

Conceptually, SCR approaches consider observed 
encounters as the realization of a latent spatial point 
process that is biased by the observation process 
(here, the location and duration of survey efforts; 
Royle et al. 2014). The underlying point process is 
assumed to describe the distribution of individual 
activity centers during the sampling period, which 
cannot be directly observed but must be inferred 
from the observed encounters and so are modeled as 
latent variables (i.e. random effects). The location of 
the activity center of individual i during each sam-
pling period t, sit, is typically modeled as the realiza-
tion of a homogeneous Poisson point process: 

                               sit ~ Uniform(S )                           (1) 

where S is the sampled area (often referred to as the 
‘state-space’ in SCR models; Royle et al. 2014). The 
estimated distribution of activity centers can then be 
used to estimate the population size in S in each 
period, Nt, as: 

                            Nt ~ Poisson(μt ||S ||)                        (2) 

where μt is the density of the point process and ||S || is 
the area of S. The resulting point pattern is informed 
by the observed encounters and can differ markedly 
from uniformity when individuals aggregate in rela-
tion to unmeasured factors (Royle et al. 2014), such as 
the dynamic distribution of seal haulout sites (Mox-
ley et al. 2017). 

Given our irregular search pattern, we used a 
model developed to infer density from encounter his-
tories collected using similarly opportunistic searches 

by detector dogs (Russell et al. 2012, Thompson et al. 
2012). The approach involves gridding S and using 
the location of grid cells visited in each survey as 
conceptual ‘traps’ that can shift between sampling 
periods, which are often termed primary occasions 
(Pollock 1982). For each survey, individual encounter 
histories were specified as 1 if individual i was 
encountered in grid cell (‘trap’) j and 0 if it was not 
encountered. We summed the number of surveys 
that each individual was encountered in each grid 
cell, yijt, over the sampling period t and modeled it as 
the outcome of a binomial random variable: 

                         yijt  ~ Binomial(Kjt, pijt)                      (3) 

where Kjt is the number of individual survey trips in 
which grid cell j was visited during t, and pijt is the 
occasion-specific probability of encountering each 
individual in each grid cell visited. 

The premise of the SCR approach is that any indi-
vidual with an activity center in S during survey 
period t may have been encountered, but was more 
likely to have been encountered if survey efforts 
overlapped the core area used by the individual dur-
ing t. For our unstructured survey, we expected 
higher encounter rates for individuals with core use 
areas close to grid cells with high sampling intensi-
ties (Thompson et al. 2012). To accommodate varia-
tion in survey effort, we modeled pijt using the com-
plementary log−log (‘cloglog’) link function, which 
relates the number of expected encounters under a 
Poisson model λijt to the probability of encountering 
an individual at least once as: 

                   Pr(yijt > 0) = pijt = 1 − exp(–λ ijt)               (4) 

which implies that: 

           cloglog(pijt) = log[–log(1– pijt)] = log(λ ijt)       (5) 

and allows for effort to be included as an offset term. 
Using functions available in the ‘sf’ (Pebesma 2018) 
and ‘analyzeGPS’ (Plesnik 2015) packages in R version 
4.0.1 (R Core Team 2020), we assigned vessel tracks 
and individual encounters to grid cells in each sam-
pling occasion. We calculated the length of the ves-
sel’s survey path through each grid cell in each sam-
pling period as a measure of effort (Thompson et al. 
2012). When environmental conditions were not ideal, 
survey track lengths were shorter because movements 
were restricted (e.g. by sea state) or because sharks 
were not being spotted (e.g. when water turbidity 
was high); therefore, we considered survey effort as 
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a cumulative proxy for environmental conditions im -
pacting encounter rates (i.e. sea state, cloud cover, 
water clarity) rather than including individual terms 
for additional covariates that would be confounded 
with effort. Prior to model fitting, all georeferenced 
data sets and the gridded state space were projected 
into the Massachusetts State Plane Coordinate Sys-
tem (EPSG 26986, which has units of meters) and 
scaled by 10 km to reduce run times. 

In addition to accounting for variation in effort, we 
were interested in determining if encounter rates 
changed over the course of the survey. We modeled 
variation in the expected number of encounters as:  

                                                                       (6) 

where β0 is the year-specific baseline encounter rate, 
or the number of encounters that would be expected 
at the individual’s activity center (i.e. at a distance of 
zero); σ is the standard deviation of a bivariate nor-
mal distribution that describes the decrease in 
encounter probability with the Euclidean distance 
between the grid cell center xj and the individual’s 
center of activity sit during occasion t; and β1 repre-
sents the multiplicative effect of survey effort on 
encounter rates (Thompson et al. 2012). Because not 
all grid cell traps were visited in every survey month, 
we added 1 km to survey track lengths in each grid 
cell to avoid convergence issues associated with tak-
ing the log of zero; we also centered effort so that the 
base encounter rate corresponded to mean survey 
effort. As specified, the model allowed activity cen-
ters to move independently between primary periods 
to reflect the high mobility of the species in the 
region (Gowan et al. 2021). 

2.4.1.  Open population model 

Open SCR models link a time series of closed SCR 
models to account for demographic processes that 
influence surveyed populations over time and space, 
and assume that encounter probabilities depend not 
only on space use but also on the state that an indi-
vidual is in at a given point in time (Glennie et al. 
2019). We formulated an open SCR model using a 
robust design approach (Pollock 1982) to ensure 
enough data for estimating variation in encounter 
rates and population size over time. Individual sur-
veys were grouped by survey month into 19 ‘pri-
mary’ occasions, which included between 3 and 13 
individual surveys (often termed ‘secondary’ occa-
sions). In each primary occasion, we assumed that 

white sharks were in one of 3 states (‘before’, ‘pre-
sent’, and ‘away’) that would impact their encounter 
probability as described below. Individuals could 
transition among states between primary periods but 
were assumed to remain in a given state within them 
(Pollock 1982). 

Prior to visiting the Cape Cod aggregation site, 
white sharks would not be available to sampling 
efforts and were considered to belong to the ‘before’ 
state. Fisheries catch data do not suggest white 
sharks pup in the nearshore waters off Cape Cod 
(Curtis et al. 2014); therefore, we assumed that all 
sharks that were not yet part of the surveyed popula-
tion were recruited from outside the area, with pri-
mary occasion-specific probability γt. We note that γt 
represents the probability that an individual enters 
the surveyed population at primary occasion t given 
that it had not entered the population prior to that 
occasion, not the overall probability of entry in each 
period, αt, which was derived following Glennie et al. 
(2019). Once they entered the surveyed population, 
white sharks were considered ‘present’ and would be 
encountered (or not) depending on their space use 
and the location of survey efforts as described above. 
An individual that was present during a primary 
occasion remained in the surveyed area with proba-
bility φt or emigrated (entering the ‘away’ state) with 
probability 1 − φt. Individuals that were previously part 
of the surveyed population but ‘away’ either returned 
to the area between primary occasions with probabil-
ity ηt or remained away with probability 1 − ηt; we 
note that permanent emigration of an individual is 
confounded with mortality (Pollock 1982). Following 
Glennie et al. (2019), we assumed the state of an indi-
vidual depended only on its state during the previous 
primary period and formulated the ‘open’ component 
as a non-homogeneous hidden Markov model (Zuc-
chini & MacDonald 2009) with time-varying transi-
tion probability matrix: 

                                                                  (7) 

where the first, second, and third rows and columns 
correspond to the states ‘before’, ‘present’, and 
‘away’, respectively. An individual’s state in primary 
occasion t was modeled as the outcome of a Bernoulli 
random variable that depended on their state in 
occasion t − 1. Because individuals could only be in 
the ‘before’ or ‘present’ states in the first primary 
occasion, the initial distribution of the Markov chain 
depended only on the probability of entry and corre-
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sponded to the first row of Γt. Given the progression 
of states, individuals could first move into the ‘away’ 
state during the second primary occasion and could 
not return until the third occasion; therefore, ηt was 
specified as 0 for Γ1. 

Our survey was designed to target months when 
white sharks seasonally aggregate in the nearshore 
waters along Cape Cod, so we did not sample during 
every month of the year. Consequently, our use of a 
monthly time step for primary occasions resulted in 
irregular time steps between the last primary occa-
sion in one year and the first occasion in the next. 
Continuous time versions of hidden Markov models 
exist but assume that transition probabilities remain 
constant over the time steps spanned by the gaps 
(Glennie et al. preprint https://doi.org/10.48550/arXiv.
2106.09579). For our application, this would imply 
that γt, φt, and ηt were constant from the end of Octo-
ber through the beginning of June, which is unrea-
sonable given the species’ seasonal use of the site 
(Skomal et al. 2017, Winton et al. 2021). Therefore, 
we chose to use the discrete time parameterization 
described above, but note that the interpretation of 
transition probabilities between seasons is different 
from those within a given season. Between seasons, 
γt represents the probability of a new individual enter-
ing the surveyed population from the late fall into the 
early spring, φt is the probability that an individual 
that was present in October and presumably migrated 
for the winter was back again the subsequent June, 
and ηt is the probability an individual that was not 
present in October had returned in June. 

The probability of encountering an individual in 
each primary occasion depended on its state. Individ-
uals in the ‘before’ and ‘away’ states were not avail-
able to survey efforts and therefore had an encounter 
probability of zero. Any individual that was ‘present’ 
was detected with marginal probability p̄ t which was 
computed following Dupont et al. (2021). First, we 
calculated the probability that an individual with an 
activity center si was encountered in any of the sam-
pled grid cell ‘traps’ X during primary occasion t as: 

                                                                           (8) 

Then, we computed the marginal probability of 
encounter as the area-weighted average over all grid 
cells G: 

                                                                           (9) 

The resulting time-varying, state-dependent en -
counter probability matrix was: 

 

                                                                   (10) 

where the first column corresponds to the probability 
of encounter and the second to the probability of not 
being encountered, and the 3 rows correspond to the 
same states as specified for Γt in Eq. (7) above. 

2.4.2.  Integrating acoustic telemetry data 

While the states of most individuals could only be 
partially observed (i.e. during occasions when they 
were encountered) and therefore were inferred 
based on observed encounter histories, the states of 
tagged individuals could be assigned with reason-
able certainty. To incorporate ‘known’ states for 
tagged individuals, we integrated data collected dur-
ing a concurrent acoustic telemetry study into the 
open component of the model. Acoustic detection 
data for each tagged individual were binned by sur-
vey month and used to determine if individuals were 
present in the study area in each primary occasion. 
Because tagged sharks cannot be detected prior to 
transmitter deployment or after battery expiration or 
transmitter loss, we used tag deployment dates and 
individual detection histories to determine the time 
period during which a tagged shark was ‘available’ 
to be detected by a receiver. Tag shedding rates are 
currently unknown for our program but are likely 
non-negligible (Chapple et al. 2016); therefore, we 
conservatively defined the effective monitoring period 
for each shark tagged as the time between tagging 
and the last valid detection in any receiver array 
along the eastern coast of the USA or Canada until 
31 October 2018, the end of the survey period (G. B. 
Skomal & M. V. Winton unpubl. data). Sharks that 
were detected anywhere in our array during primary 
occasion t were considered ‘present’ and those that 
were only detected outside of the array were consid-
ered ‘away’ and unavailable to survey efforts. Given 
the nature of acoustic telemetry data, tagged sharks 
were not necessarily detected each month; individu-
als that were not detected were not assigned a state. 
In other words, the state of tagged sharks was con-
sidered known if an individual was detected during 
that primary occasion and unknown if it was not 
detected. 

We emphasize that we used acoustic detection data 
only to determine if an individual visited the sur-
veyed area at some point in each primary occasion 
and not to determine the length of residency or 
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whether a tagged shark remained within the sur-
veyed area throughout the entire period. Given the 
movement capabilities of the species, many individ-
ual white sharks would move in and out of the sur-
veyed area over the course of a given month (Skomal 
et al. 2017). However, the central premise of SCR 
models — that individual encounter probabilities de -
pend on an animal’s center of activity during each 
primary period — provides an intuitive solution for 
accounting for such transient individuals. Conceptu-
ally, transient individuals are considered as individu-
als that primarily used regions beyond the surveyed 
area during occasion t and were, therefore, infre-
quently encountered (Royle et al. 2016). 

2.4.3.  Parameter estimation and simulation testing 

We used maximum likelihood methods to estimate 
parameters using custom functions implemented in 
the software Template Model Builder (TMB; Kris-
tensen et al. 2016), a recently developed R package 
(R Core Team 2020) that uses the Laplace approxi-
mation and automatic differentiation to efficiently 
fit complex hierarchical models to large data sets. As 
it is easily customizable and much less computation-
ally demanding than the Bayesian approaches that 
have been used to fit most open SCR models devel-
oped to  date (see Royle et al. 2014 for a review, 
Gowan et al. 2021), TMB makes it feasible to fit and 
conduct model selection for applications with many 
primary occasions, such as that described here. 
Code for fitting the model described in TMB can be 
found on the Atlantic White Shark Conservancy’s 
publicly available GitHub page (https://github.com/
AtlanticWhiteSharkConservancy). 

As formulated, the likelihood consists of 2 compo-
nents relating to the ‘open’ and ‘closed’ portions of 
the model that are estimated jointly. For the hidden 
Markov model describing transition probabilities be -
tween states, we used the forward algorithm to eval-
uate the likelihood (Zucchini & MacDonald 2009). To 
incorporate known states for tagged individuals, we 
constrained encounter probabilities when the state of 
the individual was considered known to limit transi-
tions between survey periods to the known states. 
For the SCR model describing variation in encounter 
probabilities within each primary period, we imple-
mented the Poisson-integrated version of the likeli-
hood (Borchers & Efford 2008) to estimate the mar-
ginal likelihood and abundance in each primary 
occasion. As for the calculation of the marginal en -
counter probability, conditional likelihoods for each 

grid cell were weighted by area to account for dif-
ferences in the size of grid cells bordered by the 
habitat mask or the boundary of the state-space S, 
which typically extends beyond the surveyed area in 
order to encompass the activity centers of all individ-
uals potentially exposed to sampling (Royle et al. 
2014). 

In the case of white sharks, we expected S would 
need to be quite large given the movement capacity 
of the species (Skomal et al. 2017). We conducted a 
series of exploratory fits using the closed portion of 
the model (i.e. the model estimating population size 
in each primary occasion) to determine the appropri-
ate buffer and grid cell area (Royle et al. 2014, Glennie 
et al. 2019). Starting with a 5 km buffer and a 100 km2 
grid cell size, we iteratively expanded the survey 
area at 5 km increments (masking out portions of 
grid cells to prevent activity centers from occurring 
on land) until density estimates for each primary 
occasion stabilized. We also plotted the effective 
sampled area of subsequent buffer sizes to determine 
the buffer width that would encompass the activity 
centers of all individuals potentially exposed to sam-
pling (Royle et al. 2014); this was achieved with a 
buffer width of 25 km2, which corresponded to an 
area of 6811 km2 for S (Fig. S1 in the Supplement at 
www.int-res.com/articles/suppl/m715p001_supp.pdf). 
We then did the same for grid cells, decreasing the 
grid cell area in 25 km2 increments to evaluate the 
relative influence of grid resolution on density esti-
mates. Parameter estimates were relatively constant 
at grid cell sizes from 100 down to 25 km2; therefore, 
we used a grid cell size of 100 km2 for model fitting to 
reduce computation time. 

To determine the impact of accounting for variation 
in space use, movements into and out of the survey 
region, and integrating acoustic telemetry data on 
demographic parameter estimates, we conducted 
simulation testing. We used the distribution of actual 
survey effort in each monthly primary occasion and 
parameter estimates from preliminary model fits to 
generate encounter histories for a superpopulation 
(Nsuper) of 1000 individuals assuming constant β0 = 
−3.0, σ = 1.5, β1 = 0.5, φt = 0.6, and ηt = 0.2 for ease of 
interpretation. We used a multinomial distribution to 
generate the number of individuals entering the sur-
veyed population prior to each occasion, with α0 = 
0.200 and all other αt = 0.047. For simulations, we 
assumed that untagged individuals encountered dur-
ing each sampling occasion were tagged with proba-
bility = 0.12; this value was based on the mean ratio 
of sharks tagged to those that were not tagged in 
each survey trip. 
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To evaluate the impact of integrating acoustic 
telemetry data, we made several simplifying assump-
tions regarding tagged individuals. We assumed that 
tagged individuals did not shed their tags and that 
their state could be definitively determined in each 
subsequent time step. We also assumed that tagged 
individuals were representative of the broader popu-
lation. While these assumptions represent an ideal-
ized scenario that is unlikely achievable in practice, 
they were necessary to disentangle the impact of the 
additional information available provided by tagged 
individuals from factors that complicate the interpre-
tation of any acoustic telemetry study. 

We fit 5 versions of the model to assess their per-
formance and the implications of assumptions often 
applied in white shark capture−recapture studies: (1) 
the telemetry-integrated open SCR model allowing 
for temporary emigration as described above; (2) a 
standard (i.e. non-telemetry-integrated) version of 
the same model; (3) a standard open SCR model that 
did not allow for temporary emigration (similar to 
the model formulated by Glennie et al. 2019); (4) a 
non-spatial version of the model allowing for tempo-
rary emigration that did not account for individual 
variation in space use or survey effort; and (5) a 
closed SCR model that estimated Nt independently 
and did not account for movements between primary 
periods. To assess performance, we fit all 5 models 
to 100 simulated data sets and calculated the differ-
ence be tween the estimated and true value for each 
estimated model parameter as well as the derived 
Nsuper size. 

2.5.  Estimating white shark abundance and  
seasonal dynamics 

Our integration of telemetry data implies that 
tagged and untagged animals transitioned between 
states at the same rates. This assumption may not be 
appropriate for white sharks, which exhibit varying 
degrees of residency at seasonal aggregation sites 
(Jewell et al. 2013, Winton et al. 2021). ‘Resident’ 
sharks that regularly use and return to a site would 
be more available to tagging efforts than transient 
individuals that are only brief visitors (Hewitt et al. 
2018), which could bias estimates of movement prob-
abilities as well as the resulting estimates of abun-
dance. To determine if the movements of tagged 
individuals were consistent with those of the broader 
population, we used the Akaike information criterion 
(AIC; Akaike 1973) to compare the fit of the model 
described above with and without a tagging effect on 

φt and ηt. To do so, we included an additional para -
meter for each term representing variation among 
tagged and untagged individuals: 

                          logit(φt,tag) = μt + μ1tag                    (11) 

and 
                          logit(ηt,tag) = ρt + ρ1tag                    (12) 

where tag = 0 for individuals that were not tagged 
during the course of the study and 1 for those that 
were. 

We also aimed to characterize the temporal dyna -
mics of the aggregation and used AIC values to com-
pare the fit of models with various types of time-
specific parameters. In particular, we were interested 
in determining (1) if there was evidence of a change 
in baseline encounter rates over the course of the sur-
vey, which could suggest changes in activity patterns 
of white sharks at the aggregation site over time or 
changes in survey efficiency, and (2) if immigration 
and emigration rates were constant over time, varied 
between each primary occasion, or varied predictably 
over the course of the season, reflecting ‘pulses’ of 
immigration and emigration into and out of the area. 
For (1), we compared the fit of models that included 
and did not include the year-specific baseline en -
counter rate in Eq. (6). For (2), we compared models 
with the encounter model selected in (1) with pri-
mary occasion-specific, month-specific, or constant φ 
and η. We inspected the final gradient value for 
parameters and confirmed the models had con-
verged prior to model selection. 

Based on the selected model, the total number of 
white sharks using the Cape Cod aggregation site 
over the survey period (Nsuper) was derived by 
dividing the estimated abundance in the first pri-
mary occasion, N1, by the probability of entering 
the surveyed population prior to that occasion, α0 
(Schwarz & Arnason 1996). The full list of esti-
mated and derived parameters can be found in 
Table 1. 

2.6.  Model evaluation 

As residual diagnostics associated with open SCR 
models can be difficult to interpret, we used a para-
metric bootstrapping approach to assess the fit of the 
selected model (Russell et al. 2012). We used the 
selected model to generate 100 data sets and refit the 
model to simulated values. To evaluate whether the 
assumption of uniformly distributed activity centers 
was sufficient, we computed the Freeman-Tukey 
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(FT) fit statistic for the estimated number of activity 
centers occurring in each grid cell g in each primary 
occasion as: 

                                                                        (13) 

where E(Cgt) is the mean count of activity centers in 
each grid cell (Royle et al. 2014). To assess the fit of 
the observation model, we calculated the same statis-
tic using the observed and expected number of 
encounters for each individual in each grid cell ‘trap’: 

                                                                        (14) 

Both fit statistics were calculated for the selected 
model fit to the observed data set, and compared to 
the distribution of the value for data sets simulated 
under the correct model to determine if the statistical 
model applied in the analysis could generate the 
observed data (Royle et al. 2014). 

3.  RESULTS 

During the 137 survey trips conducted during the 
summer and fall of 2015−2018, we encountered 
white sharks 2295 times and collected a total of 2803 
videos. Sharks were encountered along the entirety 
of Cape Cod’s Atlantic-facing coastline (Fig. 2) in 
water temperatures ranging from 8.7 to 20.9°C 
(mean ± SD: 15.6 ± 2.1°C) and at depths ranging from 
1.2 to 12.2 m (mean ± SD: 3.9 ± 1.4 m). In total, 361 of 
the videos collected (13%) did not contain footage of 
a shark; this typically occurred when sharks were in 
water deeper than the length of the camera pole 

(~4.5 m). Of the 2442 videos that contained footage 
of  a shark, 130 (5%) were not of sufficient quality 
for  identifying features to be classified. Similar to 
Domeier & Nasby-Lucas (2007), we found that pig-
ment patterns were stable across years, though slight 
changes in gill and caudal pigment patterns did 
occur in a few individuals. During some periods, 
patches of algal growth on the pelvic fins or gills 
obscured markings; however, given our use of multi-
ple features, this did not affect our ability to identify 
individuals. 

We identified a total of 408 individual white sharks 
from underwater video footage collected from 2014−
2018. Of those individuals, 393 were encountered 
over the course of the survey and included in the 
model used to estimate abundance. The other 15 
individuals were identified during the 2014 pilot 
study and were not resighted in subsequent survey 
years. An additional 103 ‘potential’ individuals were 
cataloged but did not have the minimum number of 
features documented to definitively determine that 
they were not included as multiple sharks. Sharks 
that were only encountered during the pilot study or 
identified as potential individuals were omitted from 
the data set used to estimate abundance and are not 
included in the summaries that follow. Identified 
sharks had estimated TLs ranging from 1.8 to 4.9 m 
(Fig. 3), with more males encountered (n = 189) than 
females (n = 143), though the difference is likely in 
part due to the visibility of claspers in larger males. 
Based on sex-specific estimates of size-at-maturity, 
the majority of the individuals identified were imma-
ture (n = 315; 119 juveniles and 196 subadults), with 
a larger number of mature males (n = 52) encoun-
tered than females (n = 2). We were unable to deter-
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Parameter                                                                                                            Symbol                                 Indexed by 
 
Spatial capture−recapture model                                                                                                                            
Baseline encounter rate                                                                                           β0                                     Survey year 
Survey effort                                                                                                             β1                                       Constant 
Standard deviation of bivariate normal detection function                                  σ                                        Constant 
Individual activity center (random effect)                                                              sit                       Individual, primary occasion 
Abundance                                                                                                               Nt                                Primary occasion 

Open population model                                                                                                                                             
Probability of entering surveyed population given not yet entered                    γt                                 Primary occasion 
Probability of remaining in surveyed area                                                             φt                                 Primary occasion 
Probability of returning to surveyed area                                                              ηt                                 Primary occasion 

Derived                                                                                                                                                                       
Probability of entering surveyed population                                                         αt                                 Primary occasion 
Superpopulation size                                                                                            Nsuper                                    Constant

Table 1. Estimated and derived parameters for the open spatial capture−recapture model described in the text
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mine the sex of 61 individuals, and, con-
sequently, the maturity stage of 16 indi-
viduals with estimated TLs between 3.6 
and 4.8 m. TL was not estimated for 6 
individuals due to the depth of the shark 
or poor visibility. 

Of the 393 individuals encountered 
during the survey, 53 were first encoun-
tered during the pilot study in 2014, 62 in 
2015, 72 in 2016, 92 in 2017, and 114 in 
2018. In total, 106 individuals were docu-
mented in 2015, 135 in 2016, 177 in 2017, 
and 242 in 2018. Roughly two-thirds (n = 
261 individuals) were encountered on 
more than one survey trip (Fig. 4a) and 
almost half (n = 167, 43%) were encoun-
tered in multiple survey years (Fig. 4b). 
While the majority of individuals were 
encountered fewer than 5 times (n = 328) 
and in only one year of the survey (n = 
226), some individuals were sighted on 
more than 10 survey trips (n = 25). Of 
those 25, all but one individual were 
encountered in 3 or more years. The ob -
served encounter histories suggest a mix 
of transient individuals that are only brief 
visitors and more resident sharks that 
regularly use the nearshore waters along 
Cape Cod. 

We tagged 79 white sharks with 
acoustic transmitters over the course of 
the survey and encountered 8 individu-
als that had been tagged in previous 
years. Of those 87 individuals, 84 (97%) 
were detected in the waters along Cape 
Cod in at least one survey month. Indi-
vidual detection histories spanned 1−19 
survey months (Table S1), with an accu-
mulated total of 709 monitored months 
across all tagged sharks. Tagged individ-
uals were detected in our array and con-
sidered ‘present’ in 60% of monitored 
months (n = 425) but were only encoun-
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Fig. 2. Location of white shark encounters dur-
ing all 4 years of the photographic identifica-
tion survey. Cross marks: white shark loca-
tions; blue lines: research vessel tracks, which 
were used as a measure of survey effort. The 
number of encounters in each survey season 
(which does not equate to the number of indi-
viduals encountered) is indicated in the bottom  

left-hand corner of each panel
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tered during survey trips in roughly half of those 
months (n = 212, 50%). No individuals assigned to 
the ‘away’ state were encountered on survey trips, 
but 5 individuals were encountered during months in 
which they were not detected in any array and were 
not assigned a status, which suggests not all tagged 
sharks that were present in the area were detected 
by our receiver array. While the number of tagged 
individuals ‘available’ to be detected increased over 
the course of the survey (n = 26 in 2015, 38 in 2016, 57 
in 2017, and 67 in 2018), the proportion of available 
individuals detected in our array remained high 
among years (92% in 2015, 82% in 2016, 77% in 
2017, and 87% in 2018). Tagged individuals were 
present in all survey months and exhibited a high 
degree of variation in their occurrence in our array, 
both within and among years (Table S1). On average, 
individual tagged sharks were detected in our array 
and considered ‘present’ for 2.7 mo (range: 0−5 mo), 
‘away’ for 1.4 mo (range: 0−4 mo), and could not be 
assigned a state for 2.4 mo (range: 0−5 mo) within a 
given survey season. Of the sharks that were tracked 
in at least 2 survey seasons (n = 56), all but 11 (19%) 
were detected in multiple years. 

3.1.  Simulation testing 

Our study-specific simulations indicated that the 
telemetry-integrated open SCR model generated 
the  most reliable abundance estimates (Model 1 in 
Fig. 5h). As expected, integrating known states for 
tagged individuals improved estimates related to 
movements into and out of the surveyed area 
(Fig. 5f,g), which, in turn, reduced bias in parameter 
estimates related to the encounter process (Fig. 5a,b,c) 
due to the link between the closed and open compo-
nents of the model. However, it did not completely 
negate bias in all parameter estimates, likely reflect-
ing the complexity of our unstructured sampling 
scheme and the large number of primary occasions. 
In particular, the model underestimated the proba-
bility that an individual entered the surveyed popu-
lation prior to the first primary occasion (Fig. 5d), 
which consequently inflated the resulting estimate of 
the number of individuals visiting the aggregation 
site over the duration of the survey (Fig. 5i). It seems 
plausible that increasing the proportion of individu-
als tagged would further reduce bias; however, this 
would not have been reflective of our sampling pro-
cess and so was not investigated further here. 

Even in the absence of telemetry data, all model 
parameters were identifiable and were reasonably 

well recovered by the open SCR model used to gen-
erate simulated data sets, though estimates exhibited 
some degree of bias (Model 2 in Fig. 5). Estimates of 
φt and ηt were generally lower than the true value 
(Fig. 5f,g), implying this model estimated fewer in -
dividuals that entered the surveyed population would 
remain in or return to the area between primary 
occasions. In other words, the open SCR model that 
did not incorporate known states for tagged individ-
uals assumed that fewer individuals that were ‘pre-
sent’ remained or that were ‘away’ returned to the 
surveyed area than did in the simulated scenario. 
Consequently, fewer individuals were assumed to 
be ‘present’ and available for sampling in each pri-
mary occasion, inflating individual encounter rates 
(Fig. 5a,b) and underestimating the impact of survey 
effort (Fig. 5c). While overall bias was non-negligi-
ble, it was low and did not dramatically impact esti-
mates of Nt or Nsuper in comparison to the telemetry-
integrated model (Fig. 5h,i). 

When temporary emigration and spatial variation 
in individual habitat use and survey effort were not 
accounted for, estimates of most parameters were 
biased. Under the model without temporary emigra-
tion (Model 3 in Fig. 5), individuals were assumed to 
remain within the state space until they permanently 
left the surveyed population, resulting in substantial 
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white sharks identified from footage collected off the coast 
of Cape Cod, Massachusetts, between 2015 and 2018. The 
length of 6 additional individuals could not be estimated. 
Cyan dashed line: total length at which individuals transi-
tion from juveniles to sub-adults; blue dashed line: median 
size-at-maturity for males; magenta dashed line: median  

size-at-maturity for females (Bruce & Bradford 2012)



Mar Ecol Prog Ser 715: 1–25, 2023

overestimation of φt. Because the model assumed that 
individuals that did, in fact, temporarily migrate out 
of the area remained but were not encountered, 
more individuals were estimated to be ‘present’ and 
available for sampling in each primary occasion than 
in the true simulated scenario, resulting in deflated 
individual encounter rates (Fig. 5a) and, consequently, 
overestimates of abundance (Fig. 5h,i). In contrast, 
the model ignoring spatial variation in individual 
habitat use and survey effort (Model 4 in Fig. 5) 
underestimated abundance (Fig. 5h) as well as the 
probability that ‘present’ individuals would remain 
(Fig. 5f) or ‘away’ individuals would return (Fig. 5g). 

Because Model 4 assumed that all 
individuals were equally likely to be 
encountered in all grid cell ‘traps’, the 
model could not account for individu-
als that primarily used habitat beyond 
the surveyed area despite producing 
an unbiased estimate of β0 (Fig. 5a). 
However, the resulting estimate of 
Nsuper was only slightly more biased 
than the models that accounted for 
spatial variation in encounter rates. 
The closed SCR model (Model 5 in 
Fig. 5) produced nearly unbiased esti-
mates of all parameters related to the 
encounter process (Fig. 5a,b,c) but 
could not account for movements be -
tween primary periods and so could 
not be used to estimate Nsuper (Fig. 5i). 

3.2.  Estimates of abundance and 
seasonal dynamics 

Comparison of the telemetry-inte-
grated open SCR models that did and 
did not include a term for tagged indi-
viduals indicated evidence of differ-
ence in state transition probabilities (φt 
and ηt) between tagged and untagged 
sharks (Table 2), with tagged sharks 
more likely to remain in (μ1 = 2.42; 
95% CI = 1.85−3.04) and return to 
(ρ1  = 0.27; 95% CI = −0.13−0.66) the 
surveyed area between primary occa-
sions, though we note the confidence 
limits for ρ1 included 0, indicating lim-
ited evidence of difference. This sug-
gests that movements of tagged indi-
viduals into and out of the surveyed 
area were not representative of the 

broader population; therefore, we used the standard 
(i.e. non-telemetry-integrated) version of the open 
SCR model for model selection and inference. 

During AIC-based selection for the encounter com-
ponent of the model, we found that dropping the 
year-specific baseline encounter rate improved rel-
ative fit (Table 2). In contrast, simplifying the tempo-
ral structure of the open component of the model 
reduced relative fit (Table 2). The selected model 
suggested no evidence of change in baseline individ-
ual encounter rates over the years the survey was 
conducted and that movements into and out of the 
region did not vary predictably over the course of the 
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season. The estimated baseline encounter rate (β0 = 
−2.87; −3.09 to −2.66) translated into a relatively low 
baseline probability of encounter in each grid cell 
(p0  = 0.05; 0.04−0.07) that increased with survey 
effort (β1 = 0.30; 0.23−0.38). As expected, the esti-
mated spatial scale parameter that described the 

decline in encounter rate with distance from an in -
dividual’s activity center was large (σ = 14.7 km; 13.5−
15.9 km), reflecting the high mobility of the species. 

Parameter estimates for the open component of the 
model varied among primary periods, suggesting 
that individuals did not enter and exit the surveyed 
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Fig. 5. Performance of 5 capture−recapture models applied to 100 data sets simulated using the distribution of monthly survey 
efforts off Cape Cod, Massachusetts. Model 1: a telemetry-integrated open spatial capture−recapture (SCR) model allowing 
for temporary emigration. Model 2: a standard (i.e. non-telemetry-integrated) version of the same model. Model 3: a standard 
open SCR model that did not allow for temporary emigration. Model 4: a non-spatial version of the model allowing for tempo-
rary emigration but that did not account for individual variation in space use or survey effort. Model 5: a closed SCR model 
that estimated Nt independently and did not account for movements between primary periods. For each boxplot, the thick 
black line in the middle: median difference between the estimated and true value; top of the box: first quartile; bottom of 
the box: third quartile; whisker bars: 1.5 times the interquartile range from the median; points: outliers. Individual panels (a–i) 
represent the estimated and derived parameters defined in Table 1 and described in the text. Note that not every parameter  

was estimated in every model as described in the text 
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population predictably (Table 3). However, across 
survey years, monthly estimates were generally 
indicative of northward migration into the region in 
the summer and a reverse southward migration in 
the fall. ‘New’ sharks entered the surveyed popula-
tion throughout the monitoring period each year but 
were most likely to enter the surveyed population 
in July or August (Table 3). Although φt varied sub-
stantially over time, once ‘present’, individual 
sharks were roughly equally likely to remain in 
the region between primary occasions (φ̄ = 0.55 for 
June through September) until October (φt ≤ 0.08). 
Estimates of φt were highest but most variable in July 
and August (Table 3), which was indicative of differ-
ing degrees of residency for sharks visiting the 
aggregation site over time. The probability that a 
shark that was present in October (and presumably 
migrated for the winter) had returned the subse-
quent June was low (φt ≤ 0.08). This was likely reflec-
tive of inter-annual and inter-individual variation in 
migratory patterns, as was variation in the probabil-

ity that an individual that was previously part of the 
surveyed population returned to the area between 
primary occasions; there were no apparent trends in 
estimates of ηt across survey years (Table 3). The low 
probability of encounter resulted in a high degree of 
uncertainty in parameter estimates for several pri-
mary occasions (Table 3) that was also indicative of 
variation among individuals not accounted for by 
space use alone. 

Monthly trends in abundance were also reflective 
of the species’ seasonal migration into and out of the 
region (Table 3, Fig. 6). In all years, abundance was 
lowest at the beginning of the survey season (July in 
2015 and June in 2016−2018) and increased during 
mid- to late summer (August or September). Monthly 
abundance decreased following the mid-season peak 
as individuals be gan to migrate south in all years 
other than 2017, when abundance decreased in Sep-
tember but increased again in October, perhaps as 
individuals that migrated further north returned to 
the area during their southward migration. While 
seasonal trends were generally similar among survey 
years, peak monthly abundance estimates increased 
over the survey period. We estimated a peak monthly 
population size of 190 individuals (95% CI = 144−
237) in August 2015; 158 (110−206) in July 2016; 297 
(229−365) in October 2017; and 519 (385−652) in 
September 2018. Based on the open and closed com-
ponents of the model, we estimated 800 (393−1286) 
white sharks visited the Cape Cod aggregation site 
over the entire survey period. We note that the lower 
limit of the estimated 95% CI was 314 individuals, 
which extended be low the number of individuals 
documented during the survey. Therefore, we in -
creased the lower limit to the number of individuals 
encountered (Otis et al. 1978). This would imply that 
over half of the individuals in the Nsuper were present 
in September 2018, which seems unlikely.  

When we compared the 2 goodness-of-fit statis-
tics for the observed data set to the reference distribu-
tions from the simulated data sets, we found that the 
assumption of uniformly distributed activity centers 
and the fit of the observation model were adequate 
for most, but not all, primary occasions (Figs. S2 & 
S3). The value of FT1 for the observed data set fell 
within the distribution of the simulated data sets in 
all but 4 primary periods: September and October 
2015 and September and October 2018, though it 
also fell near the extreme ends of the range in other 
occasions (Fig. S2). This suggests that the assump-
tion of spatial randomness did not represent the 
observed data well in those months. Values of FT2 for 
the observed data set mostly fell within the distribu-
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Model                                           k      nLL     AIC    ΔAIC 
 
Tagging effect 
 β0: year                                       81    2633    5427     359 
 φ: primary occasion + tagging 
 η: primary occasion + tagging 

 β0: year                                       79    2684    5528     460 
 φ: primary occasion 
 η: primary occasion 

Baseline encounter rate                                                  
 β0: constant                                76    2458    5068       0 
 φ: primary occasion 
 η: primary occasion 

Probability of remaining and returning 
 β0: constant                                51    2502    5106      38 
 φ: month 
 η: month 

 β0: constant                                43    2575    5236     168 
 φ: constant 
 η: constant

Table 2. Model selection summary for open spatial cap-
ture−recapture models applied to estimate the abundance of 
white sharks off Cape Cod, Massachusetts. Only parameters 
that varied during model selection are indicated here for 
ease of interpretation; the full model specification is pro-
vided in the text. The model selected to estimate abundance 
is indicated with bold text. k: number of parameters; nLL: 
negative log likelihood; AIC: Akaike information criterion; 
ΔAIC: the difference in AIC relative to the best-fitting 
model; β0: baseline encounter rate; φ: probability an individ-
ual that was ‘present’ during a primary occasion remained 
in the surveyed area in the next; η: probability an individual 
that was previously part of the surveyed population but  

‘away’ returned to the area between primary occasions
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tion of simulated data sets except for 3 months in 
2018 (July, August, and September; Fig. S3), indica-
ting the observation model did not describe individ-
ual encounters in each grid cell ‘trap’ well in those 
periods, potentially resulting in biased estimates of 
abundance in those primary occasions. 

4.  DISCUSSION 

We have generated the first estimate of abundance 
for the white shark at a new seasonal aggregation 
site in the WNA, which required the development of 
a novel modeling framework to accommodate the 
species’ migratory behavior. The highly migratory 
habits of white sharks have complicated previous 
efforts to estimate abundance at seasonal aggrega-
tion sites (Burgess et al. 2014) but have been difficult 
to account for explicitly in conventional capture−
recapture models given their lack of spatial context. 
In this study, we extended an existing open SCR 
model fit in a computationally efficient maximum 
likelihood framework (Glennie et al. 2019) to allow 
for movements into and out of the surveyed area and 
accommodate variation in residency and habitat use 
among individuals. Our simulation testing demon-
strated that models failing to account for either 
movement-related source of heterogeneity produced 
biased estimates of abundance that would be mis-

leading if used as the basis for management advice. 
We applied the model to describe the seasonal 
dynamics of the white shark aggregation off Cape 
Cod from 2015−2018 and estimated an Nsuper size of 
800 (393−1286) individuals. This represents the first 
estimate of abundance for the species in any portion 
of its WNA range and provides an important baseline 
from which the performance of current and future 
management measures can be assessed for this spe-
cies of conservation concern. In addition, by directly 
linking changes in abundance over time to the demo-
graphic processes underpinning them (i.e. recruit-
ment, emigration, immigration), our model provides 
a more mechanistic understanding of the dynamics 
of white shark aggregations, improving the applied 
relevance of the results for the conservation and 
management of the species. 

By explicitly accounting for space, our open SCR 
model provides a biologically intuitive framework 
that is flexible enough to accommodate several sources 
of bias common to white shark capture−recapture 
surveys. In particular, we were able to account for 3 
processes that influence individual encounter proba-
bilities that have not been previously ad dressed in 
white shark photo-ID studies: (1) spatial variation in 
survey effort; (2) individual variation in habitat use; 
and (3) individual movements into and out of the sur-
veyed area. Spatial variation in survey effort has 
received the least consideration in previous studies 
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Occasion       Year-month                      Nt                                    αt                                        φt                                        ηt 
 
1                        2015-07                 97 (54−139)                 0.12 (0.07−0.17)                0.74 (0.47−1.00)                            − 
2                        2015-08               190 (144−237)               0.15 (0.09−0.20)                0.36 (0.20−0.52)                0.07 (0.00−0.63) 
3                        2015-09                 95 (56−133)                 0.02 (0.00−0.05)                0.55 (0.25−0.85)                0.00 (0.00−0.00) 
4                        2015-10                109 (66−151)                0.06 (0.02−0.09)                0.00 (0.00−0.00)                0.08 (0.00−0.19) 
5                        2016-06                  39 (12−66)                  0.03 (0.00−0.06)                0.51 (0.00−1.00)                0.32 (0.18−0.47) 
6                        2016-07               158 (110−206)               0.07 (0.03−0.12)                0.43 (0.28−0.58)                0.15 (0.03−0.26) 
7                        2016-08                 96 (68−123)                 0.02 (0.00−0.04)                0.55 (0.37−0.74)                0.31 (0.18−0.43) 
8                        2016-09               157 (115−199)               0.05 (0.02−0.09)                0.65 (0.41−0.90)                0.06 (0.00−0.19) 
9                        2016-10                137 (90−184)                0.02 (0.00−0.05)                0.08 (0.00−0.20)                0.00 (0.00−0.00) 
10                      2017-06                   25 (3−47)                   0.02 (0.00−0.04)                0.24 (0.00−0.66)                0.19 (0.11−0.26) 
11                      2017-07                 91 (61−121)                 0.03 (0.00−0.06)                0.95 (0.71−1.00)                0.20 (0.10−0.30) 
12                      2017-08               204 (157−252)               0.10 (0.06−0.14)                0.46 (0.25−0.66)                0.12 (0.00−0.25) 
13                      2017-09                117 (75−159)                0.02 (0.00−0.06)                0.64 (0.33−0.95)                0.41 (0.25−0.57) 
14                      2017-10               297 (229−365)               0.06 (0.02−0.11)                0.00 (0.00−0.00)                0.07 (0.00−0.14) 
15                      2018-06                   17 (3−30)                   0.00 (0.00−0.01)                0.21 (0.00−0.60)                0.23 (0.16−0.30) 
16                      2018-07               160 (122−199)               0.10 (0.06−0.14)                0.55 (0.40−0.70)                0.29 (0.21−0.37) 
17                      2018-08               250 (200−299)               0.08 (0.04−0.12)                1.00 (1.00−1.00)                0.13 (0.00−0.31) 
18                      2018-09               519 (385−652)               0.04 (0.01−0.08)                0.47 (0.36−0.58)                0.19 (0.08−0.29) 
19                      2018-10               279 (215−343)               0.00 (0.00−0.00)                            −                                        −

Table 3. Parameter estimates for each monthly primary sampling occasion from an open spatial capture−recapture model applied 
to estimate the abundance of white sharks off Cape Cod, Massachusetts; 95% CIs are indicated in parentheses; –: a parameter that 
was not estimated for that primary occasion. Parameters that did not vary by primary occasion (Table 1) are presented in the text; 
see Table 1 for definition of parameters. Gray shading distinguishes estimates corresponding to the different years of the survey
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of white shark aggregation sites, but the location and 
intensity of sampling effort influence an individual’s 
probability of encounter in a fashion similar to other 
sources of heterogeneity (Otis et al. 1978, Royle et al. 
2009, Thompson et al. 2012). Ideally, researchers 
would control for this source of bias by following sys-
tematic survey designs, but standardized surveys 
would be unlikely to generate sufficient encounters 
to yield reliable abundance estimates due to the spe-
cies’ mobility and dynamic habitat use at aggrega-
tion sites. Because of this, many white shark monitor-
ing programs are unstructured or opportunistic in 
nature and, in several regions, primarily rely on en -
counters recorded by ecotourists (Domeier & Nasby-
Lucas 2007, Towner et al. 2013). Provided some 
measure of effort is recorded, our modeling framework 
can be generalized to accommodate data collected 
opportunistically using static (e.g. cage diving sites; 
Domeier & Nasby-Lucas 2007) or mobile (e.g. boat-

based tours) unstructured approaches. Although addi-
tional simulation testing and alternative data collection 
scenarios should be further ex plored, our approach 
appears to perform well for unstructured surveys 
with variable sampling effort in space and time, even 
when individual encounter probabilities are low and 
the resulting uncertainty in the estimates is high. 

Our findings reinforce the results of previous stud-
ies that have highlighted the importance of account-
ing for the movement ecology of the species when 
estimating white shark abundance from capture−
recapture data (Burgess et al. 2014). Individual white 
sharks vary widely in their migratory behavior and 
use of aggregation sites (Jorgensen et al. 2010, Jew-
ell et al. 2013, Kock et al. 2013, Francis et al. 2015, 
Hoyos-Padilla et al. 2016, Skomal et al. 2017, Winton 
et al. 2021); as our simulation testing demonstrated, 
this induces heterogeneity in encounter probabilities 
that non-spatial and closed capture−recapture mod-
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els cannot accommodate. By adopting an open SCR 
approach, we were able to model individual hetero-
geneity related to habitat use, which likely subsumes 
many sources of variation previously considered for 
white sharks. However, as with any model, ours in -
volves several simplifying assumptions. The implica-
tions and potential ramifications of violating the core 
assumptions in non-spatial capture–recapture models, 
including those re lated to movement, have been dis-
cussed in detail elsewhere (Otis et al. 1978, Burgess 
et al. 2014), as have those related to the functional 
relationships used to describe variation in en counter 
probabilities and space use in SCR models (Royle et 
al. 2013). Therefore, we do not discuss them further 
but comment on two potentially important sources of 
movement-related heterogeneity at white shark ag -
gregation sites that our model does not ac count for 
here. 

Standard SCR models, which we used to estimate 
abundance during primary periods, assume that indi-
vidual activity centers are independent and uni-
formly distributed over the state space and that σ 
(which governs the decay in encounter probability 
with distance from an individual’s center of activity 
and therefore reflects the scale of movement) is sym-
metric and constant among individuals and over the 
time step. This is almost certainly not the case for 
white sharks; individuals interact with conspecifics in 
agonistic (Domeier & Nasby-Lucas 2007) and possi-
bly associative (Papastamatiou et al. 2022) ways, and 
larger, more dominant individuals typically patrol 
smaller areas and exhibit higher degrees of resi-
dency at aggregation sites than smaller individuals 
(Goldman & Anderson 1999, Jewell et al. 2013). In 
addition, the space use and distribution of white 
sharks at coastal sites varies in response to prey spe-
cies and environmental conditions and are likely 
asymmetrically distributed along the coastline (Gold-
man & Anderson 1999, Brown et al. 2010, Kock et al. 
2013, Hoyos-Padilla et al. 2016, Santana-Morales et 
al. 2021). These types of interactions were likely the 
cause of the relatively poor fit of the model applied to 
the Cape Cod aggregation in some time steps but 
would require additional data sources and further 
model development to address (Royle et al. 2013, 
Sutherland et al. 2015). Provided sufficient data were 
available (e.g. sex, stage, or class status available for 
every individual; remotely sensed environmental data 
at the appropriate resolution), both processes could 
be included in our model to answer questions related 
to the social and environmental dynamics of white 
shark aggregations (Russell et al. 2012, Royle et al. 
2013, Reich & Gardner 2014, Sutherland et al. 2015, 

McLaughlin & Bar 2021). However, this additional 
complexity may require the integration of other data 
types given the typically low number of individual re -
captures achieved in white shark photo-ID studies. 

Acoustic telemetry data can be directly incorpo-
rated into our model to inform abundance and demo-
graphic estimates. The relatively straightforward in -
tegration of georeferenced data sources, such as 
telemetry data, is an additional advantage of the spa-
tial nature of our framework. Tagging studies are 
often conducted in conjunction with photo-ID sur-
veys at aggregation sites (Delaney et al. 2012), and 
the data that are collected are used indirectly to aid 
in interpretation of the resulting abundance estimates 
and to assess the validity of model assumptions 
(Chapple et al. 2011, Burgess et al. 2014). Telemetry 
data have been directly integrated via additional 
likelihood components in closed SCR models for ter-
restrial carnivores to inform relationships with envi-
ronmental covariates and the scale of the movement 
process via σ (Royle et al. 2013, Sollmann et al. 2013, 
Tenan et al. 2017, Linden et al. 2018) but have not 
previously been used to inform parameters related to 
movements into and out of the state space in an open 
SCR model. Our formulation allowed us to integrate 
‘known’ states for almost 100 acoustically tagged 
individuals to jointly estimate probabilities of moving 
into and out of the state space from both data sources.  

However, like all telemetry-integrated models 
developed to date, our model assumes that the move-
ments and habitat use of tagged individuals can be 
considered representative of the broader population. 
This would require that individuals are randomly 
sampled from the population, which is difficult to 
achieve in any tagging study. Our results indicated 
inconsistency in the movement patterns of tagged 
and untagged white sharks, which is ultimately why 
we chose not to use the integrated model in our 
application to the Cape Cod aggregation site. In gen-
eral, tagged individuals in our study had much 
higher encounter rates than expected given the dis-
tribution of all individuals encountered (Table S1, 
Fig. 4a), suggesting that tagged individuals exhibited 
a higher degree of fidelity to Cape Cod than is typical 
of the broader population. Because sharks that spend 
more time at aggregation sites are more available to 
tagging efforts (Hewitt et al. 2018), it seems likely 
that the subsample of tagged individuals at most sites 
is  skewed towards more resident individuals. This 
makes applying telemetry-integrated approaches 
much more difficult than the simple addition of com-
ponents to the likelihood and presents challenges 
beyond the scope of the work presented here (see 
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McClintock et al. 2022 for a review). We believe that 
the integration of telemetry data and more explicit 
models for movement into abundance estimates for 
white sharks is an exciting and important area of 
future research. 

Applying our model to the encounter data col-
lected along Cape Cod from 2015−2018, we gener-
ated monthly estimates of abundance and move-
ments into and out of the surveyed area to characterize 
the seasonal dynamics of this new aggregation site. 
Consistent with previous tagging studies conducted 
in the region, we found that the number of sharks 
present peaks in the late summer and early fall as 
white sharks move into the waters along Cape Cod to 
feed on the locally abundant gray seal population 
(Skomal et al. 2012). While gray seals occur along 
Cape Cod year-round (Moxley et al. 2017), white 
sharks are seasonal visitors (Skomal et al. 2017), which 
supports the results of previous studies that suggest 
that water temperature limits their occurrence in the 
region (Curtis et al. 2014, Skomal et al. 2017). 

Variation in month-specific abundance estimates 
across years likely reflects interannual variability in 
the suitability of thermal habitat but also suggests a 
possible increase in the annual abundance of white 
sharks over the course of the survey. Peak monthly 
estimates increased in each year of the survey, as did 
the number of individuals documented. This may 
indicate a true increase in the number of white 
sharks visiting the aggregation site over time but 
may also reflect better coverage of the northern 
extent of the Cape Cod coastline over the course of 
the survey (Fig. 2). White shark sightings were rarely 
reported along the northern stretch of the Cape Cod 
coastline prior to 2017 but became more common as 
the survey progressed. Whether this reflects distribu-
tional changes along Cape Cod as local densities 
increased or intensified sighting effort related to the 
growing shark ecotourism industry in the area is 
unclear. Regardless of the cause, because of the in -
crease in sightings, considerably more survey effort 
was expended to the north in the last 2 yr of the sur-
vey. Though our model did account for variation in 
survey effort, persistent non-randomized sampling 
can lead to bias in abundance estimates, particularly 
if effort is concentrated in areas where densities are 
high (Russell et al. 2012, Moqanaki et al. 2021). The 
high estimated abundance for September 2018 (as 
well as the high persistence probability estimated for 
the previous month) may be indicative of this. Due to 
poor weather and water conditions, we were only 
able to conduct 3 surveys during that primary period, 
all of which were restricted to small stretches of the 

coastline with high shark activity. Though there was 
no evidence of changes in baseline encounter rates 
over the course of the survey, it is also possible that 
the efficiency of our survey methods increased over 
time with experience, and that the same amount of 
effort in later years yielded more encounters than in 
early years of the survey. We assumed that the length 
of the research vessel’s survey track provided a suffi-
cient measure of effort as well as a cumulative proxy 
for environmental conditions impacting encounter 
rates. A more mechanistic understanding of how var-
ious factors influence survey encounter rates could 
be used to disentangle these types of effects in future 
studies. Despite our inability to fully resolve issues 
with model fit, we found that the observation model 
adequately described the observed data in most pri-
mary occasions, and it seems plausible the lack of fit 
that remains could be remediated if additional data 
sources were available. Therefore, we consider the 
abundance estimates presented here the best avail-
able given the existing data. 

Our Nsuper estimate of 800 (393−1286) individuals 
for the 4 yr survey period is comparable to but larger 
than most previous estimates for other white shark 
aggregation sites near pinniped colonies conducted 
over similar time frames. Capture−recapture studies 
conducted over multiple years off South Africa (Cliff 
et al. 1996, Towner et al. 2013), central California 
(Chapple et al. 2011), South Australia (Strong et al. 
1996), and Guadalupe Island, Mexico (Sosa-Nishi zaki 
et al. 2012, Becerril-García et al. 2020), have esti-
mated aggregation sizes from 78 to 1279 individu-
als. This suggests that Cape Cod is among the 
larger aggregation sites worldwide, especially con-
sidering that our estimate is likely an underestimate 
given our omission of ‘potential’ individuals (sharks 
that could not be matched to previously identified 
individuals but did not have the minimum number 
of features documented for inclusion in the analysis). 
Most sharks classified as ‘potentials’ were encoun-
tered less than 3 times (97%) and were likely tran-
sient individuals that did not spend much time in the 
waters along Cape Cod. Frameworks developed for 
such ‘partial’ identities could and should be used in 
future studies to account for this source of bias, but 
typically require Bayesian estimation approaches 
that can be computationally difficult to implement 
(McClintock et al. 2013, Augustine et al. 2018). The 
inability to fully document all individuals and 
account for known sources of heterogeneity in 
encounter probabilities is a persistent problem in 
white shark photo-ID studies (Burgess et al. 2014, 
Irion et al. 2017). As a result, all previous estimates 
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have been subject to similar but unquantifiable 
degrees of bias, complicating the comparison of esti-
mates between sites. Even if variation among studies 
could be corrected for, earlier studies applied con-
ventional capture−recapture models that required no 
clear definition of the area corresponding to abun-
dance estimates. This means it is not straightforward 
to derive estimates of density at other sites, which 
would be a more informative metric for direct com-
parison than abundance (Royle et al. 2014). 

We emphasize that our estimates only correspond 
to the individuals exposed to sampling during our 
survey along Cape Cod and are not representative of 
the entire WNA population. The Cape Cod aggrega-
tion site represents a small fraction of the species’ 
overall range in the region (Curtis et al. 2014), and 
the extent of its importance to the broader population 
remains unclear. As is typical of white shark aggre-
gations near pinniped colonies, the majority of the 
individuals we encountered were large juvenile and 
subadult white sharks, which reflects ontogenetic 
shifts in diet and habitat use (Francis et al. 2015). 
Young-of-the-year and small juvenile white sharks 
(<2.5 m TL) primarily feed on fish and small elasmo-
branchs (Hussey et al. 2012) and are more thermally 
restricted than larger individuals due to their smaller 
body mass (Curtis et al. 2014, Skomal et al. 2017, 
Shaw et al. 2021). During the summer and fall 
months when white shark activity off Cape Cod 
peaks, these size classes primarily occur south of the 
region in the New York Bight (Casey & Pratt 1985, 
Curtis et al. 2018, Shaw et al. 2021). As they grow 
larger and begin incorporating marine mammals into 
their diet (Hussey et al. 2012), white sharks are capa-
ble of migrating into cooler waters and undertake 
extensive migrations into more northern and off-
shore habitats to optimize foraging opportunities. 
Many of these larger individuals frequent areas near 
pinniped colonies, but not all individuals visit aggre-
gation sites every year, if at all (Jorgensen et al. 2010, 
Skomal et al. 2017, Franks et al. 2021). Although 
their distribution is seasonally concentrated in the 
productive coastal waters along the northeastern 
USA and Canada, large juvenile, subadult, and adult 
white sharks are broadly dispersed along the entire 
Atlantic continental shelf during the summer and 
fall, with larger individuals, particularly mature 
females, regularly using offshore habitats (Skomal et 
al. 2017, Franks et al. 2021, Bowlby et al. 2022). If the 
proportion of the broader population visiting the 
waters off Cape Cod during the survey period was 
known, we could potentially account for the number 
of individuals ‘available’ to our survey to extrapolate 

an estimate of overall population size. However, this 
would require stratified-random tagging and/or 
survey efforts throughout the species’ range, which 
would be infeasible. While we recognize that the 
absolute size of the WNA population is likely far 
larger than that presented here (Burgess et al. 2014, 
Hillary et al. 2018), our results do provide a baseline 
estimate of abundance for the only known aggrega-
tion site in the region, where the species can be reli-
ably encountered and monitored year after year. 

Without historic abundance estimates, it is impossi-
ble to definitively determine if our estimates are 
indicative of population recovery, but the results of 
this and previous studies (Curtis et al. 2014) provide 
evidence that management measures implemented 
in the WNA in the 1990s have been effective. How-
ever, continued conservation concern seems reason-
able given the species’ inherent vulnerability to even 
low levels of mortality (Natanson & Skomal 2015, 
Bowlby & Gibson 2020). Current threats to the popu-
lation have not been quantified, but white sharks 
observed off Cape Cod often bear evidence of inter-
actions with fishing gear and boat strike wounds (M. 
V. Winton & G. B. Skomal unpubl. data). Therefore, 
even this relatively well-protected population may be 
ex periencing substantial anthropogenic impacts. Con-
tinued monitoring of the aggregation could provide 
insights into the fitness implications and magnitude 
of these types of interactions and aid in the develop-
ment of more targeted conservation strategies for the 
WNA population (Harvey-Carroll et al. 2021). 

5.  CONCLUSIONS 

In one of the earliest studies describing the popula-
tion dynamics of a white shark aggregation site, 
Strong et al. (1996, p. 401) stated ‘…there is clearly a 
need to develop a consistent means of assessing 
white shark population size.’ Over 25 yr later, that 
need remains. A recent survey of 43 white shark sci-
entists identified ‘assessing the size and status of 
white shark populations’ as the number one research 
priority for the species (Huveneers et al. 2018), but 
the white shark scientific community has yet to come 
to a consensus on how best to do so. Fierce debate 
surrounding two recent estimates (Chapple et al. 2011, 
Burgess et al. 2014, Andreotti et al. 2016, Irion et al. 
2017) highlights the need for a more unified approach 
to enable regional comparisons, assess the perform-
ance of conservation measures for white sharks 
worldwide, and progress the field. We hope that the 
open SCR model developed here is a step towards 
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that goal. The hierarchical, spatial nature of our 
model provides a flexible framework that accounts 
for the movements of the species at aggregation sites 
and can be extended to intuitively account for other 
sources of bias (e.g. differences in the quantity or 
quality of baits or chum used to attract sharks to sta-
tionary sites, trap ‘happiness’ or ‘shyness’, domi-
nance effects; Anderson et al. 2011, Chapple et al. 
2011, Bruce & Bradford 2013, Towner et al. 2013). 
Importantly, the spatial aspect of the model provides 
a straightforward pathway for integrating other geo-
referenced data sources, such as telemetry and stan-
dardized survey data, which could improve the 
robustness and extend the geographic scale of esti-
mates beyond aggregation sites to tie local dynamics 
to those of the broader population. We recognize that 
approaches for assessing abundance throughout the 
species’ range are needed (Hillary et al. 2018, Huve-
neers et al. 2018), but it seems likely that photo-ID 
surveys conducted at ag gregation sites will remain 
the most logistically feasible approach for obtaining 
population data and the basis for monitoring white 
shark populations for the foreseeable future. 

While it may seem counterintuitive, the need for 
reliable abundance estimates is more important than 
ever given that white shark populations in several 
regions, including the WNA, are seemingly recover-
ing as a result of several decades of protection (Lowe 
et al. 2012, Curtis et al. 2014). As recovering popu -
lations return to regions where they have long been 
rare or absent, increased interactions between 
sharks and humans can create conflict and under-
mine public support of conservation policies (Ferretti 
et al. 2015, Carlson et al. 2019). Although the overall 
risk posed to recreational water users remains low 
even at aggregation sites (Ferretti et al. 2015), the 
sensational media coverage that typically accompa-
nies white shark sightings and attacks on humans 
generates fear and can skew perceptions of risk (Neff 
& Hueter 2013). A lack of quantitative population 
information can heighten this sense of risk by raising 
doubt about the scientific basis for management 
decisions and eroding public trust (Artelle et al. 
2018). Therefore, we view reliable abundance esti-
mates as not only critical for management but also for 
navigating the complex societal conflicts that will 
arise when and where white shark populations 
recover, which will likely present the next major con-
servation challenge for this iconic species. 
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