Grazing rates on bacteria: the significance of methodology and ecological factors*

Dolors Vaqué 1, Josep M. Gasol 1, 2, Cèlia Marrasé 1

1Institut de Ciencies del Mar, CSIC, Passeig Joan de Borbó s/n, E-08039 Barcelona, Spain
2Departament de Genetica i de Microbiologia, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain

ABSTRACT: Protists and viruses are recognized as the main predators on bacteria in a variety of environments. Several factors may potentially influence the grazing rates of protists on bacteria: temperature, bacterial abundance and production, and protist abundance. We inspected the relative importance of these variables in determining the specific grazing rates of flagellates (GRF), and total community grazing rates (GT) by analyzing a data set extracted from the literature. We included freshwater and marine environments, ranging from oligo- to eutrophic systems. As different methods to measure grazing rates (GRF and GT) were used by different authors, the data were also analyzed for possible differences among methods. As there were significant differences among certain methods, we classified them into 2 groups: (1) M1 methods, those that measured grazing rates (GRF and GT) through the uptake of fluorescent particles; and (2) M2 methods, those determining community grazing rates (GT) by dilution, inhibition, filtration, or the uptake of genetically marked bacteria. GT measured with M2 methods were systematically higher than those measured by M1. For studies with M1 methods, both GRF and GT were positively correlated to temperature, bacterial abundance and production. GT were also correlated to heterotrophic nanoflagellate abundance. GT and GRF showed a different pattern of change with temperature, GRF increased with temperature within the range 0 to 30°C, while GT increased only up to 18°C. We did not find any satisfactory multiple regression model that explained the variation in the GT measurements with M2 methods. For M1 methods, flagellate abundance and temperatures below 18°C were the main factors affecting GT (the model explained 78% of the variance). While bacterial and flagellate abundances were the main factors at higher temperatures, the model in this case explained only 19% of the variance. Grazing rates could be affected by other sources of variability not considered here (e.g. prey and predator size, chlorophyll). These effects could become much more conspicuous above certain temperatures (18°C in our study).

KEY WORDS: Grazing rates · Temperature · Bacteria · Heterotrophic flagellates · Ciliates · Methodology

INTRODUCTION

Loss rates of bacteria are attributed to predation by a variety of planktonic organisms including heterotrophic flagellates (Fenchel 1982a, Sherr et al. 1984, Bloem et al. 1989), ciliates (Sherr et al. 1987, 1989), rotifers (Sanders et al. 1989), cladocerans (Turner et al. 1988, Pace et al. 1990, Vaqué & Pace 1992), appendicularians (King et al. 1980) and copepods (Pedros-Alio & Brock 1983). Alternative loss processes have not been clearly defined for bacteria (Pace 1988) with the exception of the potentially significant viral mortality recorded in coastal oceans (Bratbak et al. 1990, 1992).

The main loss factor for bacteria, however, is generally assumed to be the grazing by protists, mainly heterotrophic nanoflagellates (Sanders et al. 1989, 1992). These organisms have the potential for removing entire bacterial populations at in situ concentrations (Fenchel 1982a, b), and they clearly demonstrate this potential when water samples free of protist predators are enclosed and allowed to evolve (Andersen & Fenchel 1985, Bloem & Bár-Gilissen 1989).

Ingestion rates of bacteria by protists probably respond to different environmental and biological variables (e.g. temperature, food concentration, bacterial production and even competition among predators). Changes in bacterial abundance modify protist activity (e.g. the functional response; Fenchel 1980, 1982a, b).

*This paper is dedicated to the memory of Russell T. Bell
Bacterial production, and probably abundance, increase with temperature (White et al. 1991) and these increases could favor a higher bacterial ingestion rate by the protists (Choi & Peters 1992), an increase in the overall community rates (Marrasé et al. 1992), and perhaps an increase in the abundance of bacterial consumers. However a greater abundance of consumers may be reflected in lower specific grazing rates due to competitive interference (Curds & Cockburn 1968).

In addition, the measured grazing rates on bacteria could also depend on the method used to measure the process. The most frequently used methods are those that measure grazing rates by microscopic observation of ingested tracer particles per individual protist (fluorescent microspheres, Sanders et al. 1989; fluorescently labelled bacteria, Sherr et al. 1987; minicells, Pace et al. 1990) or determining the disappearance of fluorescent or radioactive particles with time (Wikner et al. 1986, Pace et al. 1990, Marrasé et al. 1992, Vaqué et al. 1992). Other methods measure grazing by comparing the bacterial abundances in manipulated and unmanipulated samples. These methods include different methods: dilution (Landry et al. 1984, Weisse 1990), selective protist inhibition (Coffin & Sharp 1987, Scavia & Laird 1987, Caron et al. 1991), and radioactive labelling with 14C or 3H (Nygaard & Hessen 1990).

We collected a data set from published field studies in order to examine the relative importance of biological, environmental, and methodological variables in the measurements of specific and community grazing rates of protists at in situ concentrations. Variables like protist predator and bacterial size were not analyzed, despite the potential of being extremely useful (Mooney & Field 1989, Peters 1994) as they are rarely reported in field studies. Furthermore, there is considerable variation in bacterial size measurements among researchers (Cole et al. 1993).

Table 1. Data sources used in the analysis. System, variables obtained, number of individual points obtained (n), and method used to measure grazing rates. Variables: T, temperature; BN, bacterial abundance; GT, community grazing rates; GRF, flagellate-specific grazing rates; HNF, heterotrophic nanoflagellate abundance; BP, bacterial production. Methods: 1, uptake of inert particles; 2, uptake of fluorescently labelled bacteria (FLB); 3, uptake of fluorescently labelled minicells; 4, dilution; 5, selective inhibition; 6, radioactively labelled bacteria; 7, selective filtration; 8, long-term disappearance of minicells or FLB.
In this study we seek to (1) identify the factors that are relevant in controlling bacterial carbon flux through protists, (2) identify differences among methods, and (3) provide empirical tools to predict grazing rates on bacteria which could be useful in cases where rates need to be estimated for budgeting and theoretical studies.

METHODS

We collected all simultaneous observations of grazing rates, temperature, and additional biological variables that we could find in the literature from the last decade (Table 1). We examined a total of 28 independent studies, involving 10 lakes, 3 rivers, and 10 marine environments. A total of 310 observations formed the core of the data set. Some reports had to be complemented with others that included variables of interest not available in the main report. We gathered 202 observations for total community grazing rates (GT), and 186 observations for specific grazing rates of heterotrophic nanoflagellates (GRF). We considered studies of both freshwater and marine systems ranging from oligotrophy (e.g. Lake Michigan, Sargasso Sea) to eutrophy (e.g. Lake Vechten, The Netherlands; Delaware Estuary, USA) with the only restriction being the availability of simultaneous measurements of at least 3 of the variables of interest. The bacterial and heterotrophic nanoflagellate abundance measurements were based on epifluorescence counts using standard methods (AODC or DAPI staining). Bacterial production was measured by thymidine incorporation or with the dilution method (in those reports that analyzed grazing on bacteria with this method). Six reports measured grazing via uptake of fluorescently labelled latex particles, 6 reports with fluorescently labelled bacteria (FLB), 3 with fluorescently labelled minicells, 3 used the disappearance of FLB or minicells, 4 with the dilution and filtration methods, 4 with inhibitors, and 4 with the genetically labelled minicells (Table 1).

We focused our analysis on the following dependent variables:

\[GT = GRF \times HNF + GRC \times CIL \]

where \(GT = \) total community grazing rate; \(GRF = \) flagellate-specific grazing rate; \(HNF = \) heterotrophic nanoflagellate abundance; \(GRC = \) ciliate-specific graz-

![Bacterial standing stock removed by predation per day](image)
ing rate; and CIL = ciliate abundance. In these studies performed using short-term experiments (1 to 2 h), it is assumed that the 2 most important predators are ciliates and flagellates. Although grazing by ciliates is frequently reported, only a few studies reported ciliate abundances. For this reason we could not consider this variable in our statistical analysis (see 'Results').

Except for temperature, all other variables were loglo-transformed before the analysis to equalize variance and meet the assumptions of least square regression analysis. The data were analyzed with the general linear model hypothesis module of Systat (Wilkinson 1989). We used multiple regression, controlling for the addition or removal of predictor variables. Best models were considered to be those that maximized the r^2 and minimized the standard error of the estimate, with the minimum number of predictive variables possible. β-coefficients (standardized partial regression coefficients) were used to compare the relative impact of each predictor variable in the independent variable.

RESULTS

Methodological considerations

A variety of methods have been used to measure protist grazing rates on bacteria. Significant differences exist among the percentages of the bacterial standing stock grazed per day depending on the different methodologies used by different authors (Fig. 1). This percentage was always lower when fluorescent particles (latex, minicells or FLB) were used than when grazing measurements were conducted using inhibition, radiolabelled particles, or filtration-dilution methods (1-way ANOVA, $F = 42.1, p < 0.0001$). Measured rates by fluorescent particle methods were not significantly different among themselves ($F = 0.03, p = 0.86$). Therefore, we decided to include all these methods in 1 group (M1 methods). This group included grazing rates on bacteria estimated through the microscopic observation of the ingestion of labelled particles plus the estimates based on the long-term disappearance of labelled particles. Although this last technique includes the grazing by predators other than protoits, total rates of grazing were not significantly different from those estimated by the uptake of particles ($F = 0.35, p = 0.56$). Grazing rates estimated with the dilution, inhibition or genetically labelled minicells methods were not significantly different among

<table>
<thead>
<tr>
<th>Methods</th>
<th>System</th>
<th>n</th>
<th>Total grazing Mean</th>
<th>CV</th>
<th>HNF grazing Mean</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>R</td>
<td>40</td>
<td>5.8×10^4</td>
<td>125%</td>
<td>43</td>
<td>17.3</td>
</tr>
<tr>
<td>M1</td>
<td>L</td>
<td>32</td>
<td>1.8×10^4</td>
<td>58%</td>
<td>122</td>
<td>7.6</td>
</tr>
<tr>
<td>M1</td>
<td>S</td>
<td>19</td>
<td>2.9×10^4</td>
<td>105%</td>
<td>21</td>
<td>6.0</td>
</tr>
<tr>
<td>M2</td>
<td>R</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>L</td>
<td>36</td>
<td>6.5×10^4</td>
<td>117%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>S</td>
<td>75</td>
<td>4.7×10^4</td>
<td>113%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>All</td>
<td>91</td>
<td>3.8×10^4</td>
<td>139%</td>
<td>186</td>
<td>9.7</td>
</tr>
<tr>
<td>M2</td>
<td>All</td>
<td>111</td>
<td>5.0×10^4</td>
<td>117%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
that follow were made independently for these 2 groups (M1 and M2).

Average total community ingestion rates (GT) in the studies where M2 methods had been used were slightly higher than those where M1 methods were used, comparing similar systems (Table 2). Average GT were higher in rivers, followed by marine systems and lakes. Average specific flagellate grazing rates (GRF) were also higher in rivers (17.3 bacteria HNF^{-1} h^{-1}) than in lakes (7.6 bacteria HNF^{-1} h^{-1}) or seawater (6.0 bacteria HNF^{-1} h^{-1}). Although these averages exhibited high variance, we systematically observed greater values of GT when M2 methods were used (Table 2).

Effects of temperature and biological factors on grazing rates

Both GRF and GT on bacteria were significantly and positively correlated to temperature for M1 methods (n = 182, r = 0.45, p < 0.0001; n = 91, r = 0.46, p < 0.0001 respectively; Fig. 2A, B). While GRF increased with temperature, GT seemed to reach a plateau at ca 18°C (Fig. 2A, B). GT were not related to temperature for M2 methods (Fig. 2B).

Bacterial abundance was positively correlated with GRF (n = 181, r = 0.40, p < 0.0001; Fig. 3A) for M1 methods and with GT for both M1 and M2 methods (n = 111, r = 0.36, p < 0.0001; n = 91, r = 0.32, p = 0.002 respectively; Fig. 3B).

Bacterial production (BP) showed a significant positive relationship with GRF and GT (n = 77, r = 0.46, p < 0.0001; n = 49, r = 0.57, p < 0.0001 respectively; Fig. 4A, B) but only for the M1 methods. No significant relationship was found between BP and GT when the M2 methods were considered (Fig. 4B).

No significant relationship was detected between GRF and HNF (Fig. 5A). Conversely, a positive relationship was found between GT and HNF for both M1 and M2 methods (n = 66, r = 0.54, p < 0.0001; and n = 100, r = 0.27, p = 0.007 respectively; Fig. 5B). To further evaluate the effect of HNF on grazing rates, we excluded those samples that used the disappearance of labelled particles, because studies using these methods occasionally found significant bacteria grazing due to organisms other than protists (Sanders et al. 1989, Pace et al. 1990, 1997).

![Figure 3](image1.png)

Fig. 3. Relationship between bacterial abundance and (A) specific grazing rates of flagellates, GRF, and (B) total community grazing rates, GT, with M1 methods (*) and M2 methods (○) that follow were made independently for these 2 groups (M1 and M2).

![Figure 4](image2.png)

Fig. 4. Relationship between bacterial production and (A) specific grazing rates of flagellates, GRF, and (B) total community grazing rates, GT, with M1 methods (*) and M2 methods (○).
Log HNF abundance (HNF ml⁻¹)

Fig. 5. Relationship between flagellate abundance and (A) specific grazing rates of flagellates, GRF, and (B) total community grazing rates, GT, with M1 methods (○) and M2 methods (□) and those estimates obtained through the long-term disappearance of labelled bacteria (X) (Vaqué et al. 1992). However, GT obtained with this method (Fig. 5B) were also positively correlated to HNF abundance (n = 25, r = 0.58, p = 0.002).

Best models to estimate community grazing rates

The best linear model to predict GT was found when only M1 methods were considered (excluding the disappearance method, for the reasons described above) and the following independent variables (all significant with p < 0.01): heterotrophic nanoflagellate abundance (HNF), temperature (T) and bacterial abundance (BN). The plot of observed vs predicted values (Fig. 6A) showed no obvious outliers. The equation was:

\[
\log GT = -3.21 + 0.99 \log HNF + 0.028 T + 0.55 \log BN
\]

(n = 66, adjusted \(r^2 = 0.53, p < 0.0001 \)) with \(\beta \)-coefficients = 0.59, 0.35 and 0.25 respectively.

GT increased with temperature (Fig. 2B) up to ca 18°C. We used a LOWESS (Cleveland 1979) fit to the data to detect the inflection point. When rerunning the analysis with temperatures <18°C, bacterial abundance was no longer a significant variable and the model explained much more variance (78%). The equation was:

\[
\log GT = -0.64 + 1.16 \log HNF + 0.07 T
\]

(n = 28, adjusted \(r^2 = 0.78, p < 0.0001 \)) with \(\beta \)-coefficients = 0.66 and 0.42 respectively. Inspection of the observed vs predicted plot did not reveal any outliers (Fig. 6B).

For temperatures >18°C, a very small percentage of the variability was explained by the best model. The model, obviously, did not include temperature but included bacterial and flagellate abundances (BN and HNF), which were only slightly significant:

\[
\log GT = -1.99 + 0.59 \log HNF + 0.66 \log BN
\]

(n = 38, adjusted \(r^2 = 0.19, p = 0.01 \)) with \(\beta \)-coefficients = 0.40 and 0.37 respectively.

The only variable correlated to GT for the M2 methods was BN and explained only 14% of the variance (n = 93, \(r^2 = 0.14, p < 0.0001 \)).
Best models to estimate specific grazing rates by flagellates

No models explained a high percentage of the variability in GRF. The only statistically significant model was for M1 methods where T and BN were significantly related to GRF:

$$\log GRF = -3.27 + 0.024 T + 0.55 \log BN \quad (4)$$

($n = 177$, adjusted $r^2 = 0.27$, $p < 0.0001$) with β-coefficients $= 0.35$ and 0.29 respectively.

Because only 6 points had estimated GRF with M2 methods, we did not try any further analysis with this group of data.

Performance of the models

We used recently published particle uptake data (from Barcina et al. 1992 and Epstein & Shiarios 1992) and unpublished data of our own to test Models (1) and (2) with data different from those used to build the models (Fig. 7A). The data from Barcina et al. (1992) consisted of flagellate grazing rates obtained with FLBs, while Epstein & Shiarios (1992) reported grazing by both flagellates and ciliates. The other data set was composed of unpublished minicell disappearance rates from the Catalonian coastal area, and the open Catalan Sea (both from NW Mediterranean), and long-term minicell or FLB disappearance rates corresponding to the measurements done in the Hudson River (Vaque et al. 1992) and in Woods Hole (Marrasse et al. 1992), USA. Total grazing rates obtained with Models (1) and (2) should be higher than flagellate-only grazing rates, and lower than total disappearance rates (if metazoans eating bacteria have some impact). As expected, predicted rates are lower (less than half an order of magnitude) than observed disappearance rates (points labelled W, B and H in Fig. 7), and some of the values of flagellate grazing obtained by Barcina et al. (1992) are lower than those expected (points labelled A in Fig. 7), or on the 1:1 line (points labelled E from Epstein & Shiarios 1992, Fig. 7). Only 2 out of the 6 samples obtained from the Barcina et al. (1992) study are below the line, a result which agrees with the authors' observation that flagellates should be the dominant grazers in their system. Only 2 observations are greatly underestimated by our models (point labelled S, from the open Catalan Sea and another point off-scale). The abundances of bacteria and heterotrophic flagellates in the oligotrophic Catalan Sea were extremely low at the time of these experiments (unpubl. results) and thus, outside the range of values used to build the models. Extrapolation beyond the range of the variables used to build regression models is unreliable (Wilkinson 1989). The observed values for the disappearance rate measurements were highly correlated to the predicted values ($n = 13$, $r^2 = 0.88$, $p < 0.0001$; Fig. 7B) but the slope was significantly lower than 1 ($b = 0.764 \pm 0.084$), suggesting that loss factors for bacteria other than protists should be important mainly in the most oligotrophic systems.

DISCUSSION

Differences in specific grazing rates on bacteria are notable when comparing experimental data to field data. In experiments performed with cultured marine and limnetic flagellate species, specific grazing rates of flagellates are usually higher than in the field experiments reported in Table 2. Fenchel (1982a) found wide ranges (27 to 254 bacteria HNF$^{-1}$ h$^{-1}$ for marine species and 54 to 194 bacteria HNF$^{-1}$ h$^{-1}$ for limnetic species) in experiments carried out at 20°C; Davis & Sieburth (1984) determined 50 to 121 bacteria HNF$^{-1}$ h$^{-1}$ for marine species incubated at 21°C, and Choi & Peters (1992) found values ranging from 14 bacteria HNF$^{-1}$ h$^{-1}$ at -1.5°C to 99 bacteria HNF$^{-1}$ h$^{-1}$ at 15°C for marine species. The average value for M1 methods in Table 2 was 9.7 bacteria HNF$^{-1}$ h$^{-1}$ (range: 0.25 to 90 bacteria HNF$^{-1}$ h$^{-1}$). The higher values from culture experiments could be due to: (1) optimum growth conditions for bacteria and flagellates; (2) the fact that both bacteria and flagellates are usually present in high concentrations (higher than in situ concentrations); or (3) that bacterial cells are usually larger in culture than in situ. As these
conditions are unlikely to occur in the field and we wished to predict protist grazing in natural systems, we specifically avoided the use of data from laboratory cultures in our models.

Assessment of methods

We found a significant difference in grazing rates between M1 and M2 methods. A great number of GT values estimated with M2 methods accounted for a dramatically high percentage of bacterial standing stock (mean 76%, range 2 to 436% daily). The average for M1 methods was more moderate: 17% daily (range 0.2 to 104%). Differences between M1 and M2 methods do not appear to be related to differences among environments (marine vs freshwater: Table 2). Thus, our results suggest that there are systematic differences between these methods which are associated with their intrinsic characteristics. Possible reasons for the extremely high values of GT could simply be that they include sources of mortality for bacteria other than protistan predation (e.g. metazoans, viruses). Also, the manipulation of samples associated with M2 methods (filtration, dilution, inhibitors, and sometimes long-term incubations) can facilitate changes in the abundance and activity of the original heterotrophic communities. There may be shifts in the bacterial populations during manipulation, increasing the amount of nutrients available to bacteria. Temperature is an important factor, especially when the experiments are not performed at in situ temperature. Marrase et al. (1992) compared bacterial loss rates at in situ and at laboratory temperatures (20°C) and found a constant discrepancy between rates associated with the temperature shift. As we have shown above (Fig. 2), temperature does significantly affect the grazing rate estimates.

Filtration implies the removal of predators of protists, thus allowing a fast growth of flagellates which significantly reduce bacterial populations in a short period (see examples in Andersen & Fenchel 1985, and Bloem & Bär-Gilissen 1989). Furthermore, filtration can induce an enrichment in organic and inorganic nutrients, thus increasing bacterial growth. Grazing rates on bacteria under these circumstances are not necessarily equivalent to those occurring before the manipulation.

In studies where filtration through 1 μm filters is used, all organisms are removed including the direct or indirect producers of growth substances for bacteria. Reduction of the substrate pool could cause bacteria to stop growth (Güde 1986). Dilution of a sample could potentially prevent substrate exhaustion, but then an overestimate of the bacterial growth rates could be obtained if bacterial growth in situ were substrate-limited (which is likely always to be the case; Kirchman 1990, Toolan et al. 1991, Coveney & Wetzel 1992, Morris & Lewis 1992). As the dilution procedure reduces bacterial density, the same amount of substrate would be available to fewer bacteria. Comparing bacterial growth rates by the dilution method to other estimates of bacterial activity in freshwater sediments, Gasol et al. (1993) found no correlation between both measurements of activity, and very high estimates from the dilution experiment. As a consequence, in these same experiments, bacterial loss rates by the dilution method were several orders of magnitude higher than estimates based on other methods (J. M. Gasol, & Sander & J. Kalf unpublished). Bacterial loss rates in the dilution procedure are obtained from the slope of the regression between the undiluted fraction and the change in bacterial numbers. The growth rate is obtained from the intercept of such a regression. Thus, whatever the factor that alters growth rates will also alter the estimates of the loss rates.

The use of eukaryotic inhibitors may also cause artifacts. Some authors who use cycloheximide have indicated that ciliate grazing on bacteria is not entirely inhibited by this antibiotic (Sanders & Porter 1986, Taylor & Pace 1987). Another artifact associated with the use of antibiotics to inhibit bacteriovores may be an uncoupling of bacteria from the sources of regenerated nutrients (Sherr et al. 1986) crucial for bacterial growth. These artifacts imply high variability in the bacterial production measurements and associated high variability in the grazing measurements (see Fig. 1).

The method used by Wikner et al. (1986), the radio-labelled minicell uptake rate, gave significantly higher values of grazing than the uptake of fluorescent particles or disappearance of minicells and FLB. We expected to find similar results in comparison with those from studies using fluorescently labelled particles, because the only difference is in the manner of minicell labelling. More comparisons between these 2 methods need to be made to clarify the differences we detected.

The problems with some of the M2 methods could explain the weak relationships we found between grazing rates and the set of independent variables studied (see Results). Although most of the M1 methods involve short-term incubations, they are, however, not free of problems. Protists may select against inert particles or dead bacteria (Landry et al. 1991), and they may eject some of the ingested particles (Pace & Bailiff 1987, Sieracki et al. 1987, McManus & Okubo 1991). However, these methods gave consistent results that varied as expected with the environmental variables. It is possible that part of the unexplained variance in the
models reported above are related to some of these problems, as well as to differences among researchers, and probably to the size-selective feeding behavior of flagellates and ciliates (Fenchel 1980, González et al. 1990, Śmśek & Chrzanski 1992). If the particle (minicells, latex beads, even FLB if they were not made from the same sample) size does not overlap with the natural bacteria size distribution, the estimates of grazing could be over- or underestimates.

The disappearance of marked cells is the only method included in M1 which requires long-term incubations (24 to 48 h). However, no statistical differences in the grazing rates were found between this method and those measuring community rates (GT) in short-time incubations. The samples were neither filtered nor diluted and, in all the studies available, the incubations were made at in situ temperature (Pace et al. 1990, Marrase et al. 1992, Vaqué et al. 1992). In addition, the same substrate (fluorescent particles) for bacterial consumers was used and, in these experiments, flagellates and ciliates were the main predators on bacteria. These experimental conditions could perhaps explain why the estimates using this method were similar to those of the M1 methods.

It is possible that some of the apparent differences between M1 and M2 methods were related to the particular ecological conditions of the sites where these techniques were applied, and not to the methodology. We can analyze the effects of temperature, bacteria, and heterotrophic flagellate abundance in the studies that used each method. There were no differences in the ranges of each of these 3 variables when analyzed by method (M1 vs M2; Table 3). Mean bacterial abundance was slightly higher for M1 methods, but this did not result in higher grazing rates for M1 methods as would have been expected. While we cannot completely exclude differences in ecological conditions as a determinant of the higher rates found with M2 techniques, we conclude that methodological differences are probably important.

Temperature and substrate regulation of feeding rates

Temperature is an important variable determining protist feeding rates. Laboratory experiments found temperature to be positively correlated to the ingestion rate of *Paraphysomonas imperforata* feeding on diatoms (Caron et al. 1986) and on bacteria (Choi & Peters 1992). These authors also found flagellate growth rate to be positively related to temperature for temperatures below 15°C. Tobiesen (1990) studied several species of nano- and microflagellates and found temperature to be related to total and specific clearance rates. He also found temperature to be related to maximal flagellar speed, and flagellar speed to be related to clearance rate. Thus, he postulated that temperature affected feeding rates by changing water viscosity, which in turn affected flagellar speed. Further, bacterial growth rate was also found to be related to temperature in a literature survey that included many different habitats (White et al. 1991). When experiments of community grazing impact on bacteria were performed simultaneously at in situ temperatures and at 20°C, rates in the laboratory were always significantly higher than those in the field for temperatures below ca 13°C (Marrase et al. 1992). As the water temperature increased above 13 to 15°C the effect was no longer apparent. The data that we have analyzed, from very different systems, collected by different authors, and with different methods, confirm this pattern (Fig. 2). However, GRF and GT followed different patterns in their relation to temperature. GRF increased with temperature within the range 0 to 30°C (Fig. 2A), while GT increased only up to 18°C, and after this temperature there is no further increase (Fig. 2B). A possible explanation for this different behavior could be that while GRF is a variable related to individual flagellate activity, GT refers to the total grazing of the community (including organisms other than flagellates) and is sensitive to other biological interactions (e.g. competition, top-down control).

Prey density is related to grazing rates when the density of the prey is below the half-saturation concentration (the functional response; e.g. Taylor 1984). Thus, we could expect bacterial abundance to be related to grazing losses. Half-saturation constants vary from 1.3 to 38 × 10⁶ bacteria ml⁻¹ (Fenchel 1982a, Jürgens 1992), well within the ranges of bacterial abundance in our data set. In fact, we found bacterial

<table>
<thead>
<tr>
<th>Methods</th>
<th>T</th>
<th>BN</th>
<th>HNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>n</td>
<td>204</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>15.9</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>1.5 - 32.0</td>
<td>1.1 - 54.4</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>44%</td>
<td>89%</td>
</tr>
<tr>
<td>M2</td>
<td>n</td>
<td>90.0</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>15.1</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>0.7 - 26.4</td>
<td>0.5 - 6.6</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>45%</td>
<td>71%</td>
</tr>
</tbody>
</table>
concentration to be consistently related to flagellate grazing rates (Model 4) and to total grazing rates (Model 1). However, the effect of 'food' concentration was only significant at temperatures above 18°C (Model 3).

Wiebe et al. (1992) found that the effect of substrate concentration (organic matter) on bacterial activity was related to temperature in a complex way. At temperatures above 15°C they did not detect any effect of substrate additions, while bacterial growth rate greatly increased at low temperatures when substrate was added. A similar scenario could be expected for the regulation of flagellate feeding rate and total impact on bacteria. However, we actually found the resource (bacterial abundance) to be important only for temperatures above 18°C. This different behavior may be due to an interaction between bacterial abundances and temperature. Bacterial abundances are in general low at low temperatures (or at least they are lower than the half-saturation constants). When episodic algal blooms in low temperature water appear (e.g. during the winter of 1989-1990 in Vineyard Sound, MA, USA) and are followed by bacterial blooms, grazing rates on bacteria are usually higher than what we would expect from the low temperatures (see Fig. 3 in Marrasé et al. 1992). Temperature seems to play a limiting role, as long as bacterial concentration does not exceed a certain level. When considering data from environments with temperatures lower than 18°C bacterial abundance was not significant, and temperature explained 42% of the total variance. Once the limiting effect of temperature is overcome, other factors seem to be more important. For temperatures >18°C, heterotrophic flagellate and bacterial abundances explained 15% and 4% of the variance respectively, and temperature was not significant. For the specific grazing rates of flagellate, bacterial abundance explained 7% of the total variance (28%) described, while the variance explained by temperature itself was 21%. Those were results obtained considering different systems. As we have discussed, when individual systems are studied, episodic events may allow grazing rates to be high even at low temperatures.

Conclusion

We conclude that the experimental protocol and the method chosen to determine grazing rates affect the actual values obtained. The choice of methods should depend on the kind of study to be conducted, and the limitations of each method should be acknowledged. Experimental studies comparing different methodologies are needed to corroborate and evaluate the systematic differences that we found among methodologies. Our study also revealed that heterotrophic nanoflagellate abundance, temperature, and bacterial abundance were the main factors controlling bacterial grazing rates. However, factors such as protistan and bacterial mean sizes (Peters 1994), as well as abundances of predators other than protists (Sanders et al. 1989, Vaque & Pace 1992, Vaque et al. 1992), could describe part of the unexplained variance in our models. Unfortunately those variables were not included in the models because they are usually not provided in the field reports.

Acknowledgements. We thank M. L. Pace, C. Pedrós-Alió and F. Peters for permission to use unpublished manuscripts, or for insightful comments on the manuscript, and M. H. MacLean for revising the text. We thank all authors who published data in a usable form and the editors who allowed them to do so. This work was supported by research projects of CICyT-MAR 91-0359 and -MAR 91-0593, DGICYT PB91-075 and MAS2-CT93-0063.

LITERATURE CITED

Vaqué et al.: Grazing rates on bacteria

This article was submitted to the editor

Manuscript first received: September 7, 1993
Revised version accepted: April 5, 1994