Assimilation of inorganic nitrogen by seep mytilid Ia, an undescribed deep-sea mussel containing methanotrophic endosymbionts: fate of assimilated nitrogen and the relation between methane and nitrogen assimilation

Raymond W. Lee, James J. Childress*
Department of Biological Sciences and the Marine Science Institute, University of California, Santa Barbara, California 93106, USA

ABSTRACT: Undescribed deep-sea mussels containing methanotrophic endosymbionts (seep mytilid Ia) are found at high densities around hydrocarbon seeps of the Gulf of Mexico where methane, nitrate and ammonium are present at high concentrations. In this study we investigated assimilation of ammonium, nitrate, glycine and methane using 15N- and 13C-labelled tracers to determine sites of assimilation, rates of assimilation, and the chemical form in which assimilated C and N appears. We then investigated the interaction between inorganic nitrogen assimilation and methane assimilation to assess whether they are directly dependent on each other. 15NO$_3^-$, 15NH$_4^+$ and 13CH$_4$ were assimilated primarily into the gills where the bacteria are located, with negligible incorporation into symbiont-free tissue. In contrast, 13C-15N-glycine was assimilated equally into gill and symbiont-free tissue. These results indicate that inorganic N is assimilated in the gill tissue. The bulk of 13C and 15N label from methane and ammonium incubations was in the 80% EtOH soluble fraction, suggesting that the primary assimilation product was low-molecular-weight metabolites. Some 13C was incorporated into carbon storage products. Mussels that assimilated excess 13CH$_4$ converted 35% of 13CH$_4$ into an EtOH insoluble form. Negligible 15N label was observed in this fraction. Inorganic N assimilation and methane assimilation were not tightly coupled. N assimilation was not affected by absence of methane or inhibition of methanotrophy. Methane assimilation was not stimulated by increased N assimilation. Seep mytilids were capable of luxury consumption of inorganic N, i.e. C/N assimilation ratios below the average C/N ratio of mussel tissues (4.2). We believe that luxury consumption is supported by C reserves resulting in part from methanotrophy. From relations between CH$_4$ and N source concentration and assimilation rate, we estimated the environmental conditions that result in balanced C/N assimilation. From this analysis we predict that at environmentally realistic methane and inorganic N concentrations seep mytilids assimilate excess CH$_4$.

KEY WORDS: Seep mytilid Ia, Methanotrophy, Chemoautotrophy, Nitrogen assimilation, Ammonium, Nitrate, Methane, Hydrocarbon seep

INTRODUCTION

Deep-sea mussels (seep mytilid Ia) containing methanotrophic endosymbionts are abundant and conspicuous members of chemosynthetic communities clustered around hydrocarbon seeps on the continental slope of the northern Gulf of Mexico (MacDonald et al. 1989, 1990a, b). At these sites, biomass is high relative to elsewhere in the deep-sea. Methane, which is abundant in the seep effluent, is an important source of energy and carbon. Inorganic sources of nitrogen are rich compared with elsewhere in the marine environment. However, the degree to which
ammonium (ΣNH$_3$, the sum of NH$_4^+$ and NH$_3$ unless otherwise specified) from seep effluent and nitrate from bottom water contribute to methanotrophic production of organic material at hydrocarbon seeps is not known.

The ability of the bacterial symbionts that reside within the seep mytilid gills to oxidize methane as a source of energy and reduced carbon is now well documented (Childress et al. 1986, Brooks et al. 1987, Fisher et al. 1987, Fisher & Childress 1992, Kochevar et al. 1992). Although these mussels can also filter-feed (Page et al. 1990), high rates of net C influx (Kochevar et al. 1992), shell growth in the presence of methane as sole carbon source (Cary et al. 1988), and highly depleted δ^{13}C values similar to methane in the environment (Childress et al. 1986, Kennicutt et al. 1992) indicate that methane is the primary source of C to the symbiotic association. Uptake of inorganic nitrogen is essential for growth based on methanotrophy, and has recently been demonstrated (Lee et al. 1992, Lee & Childress 1994). The stable nitrogen isotope composition of these mussels is extremely variable and can be anomalously depleted in 15N (δ^{15}N = -12.9 to +2.0‰; Brooks et al. 1987), indicating that a variety of N sources may be utilized and that novel mechanisms of acquisition may be involved. Although it is clear that the presence of methane is an important determinant of mussel abundance and condition in nature, it is less clear what role, if any, is played by the availability of inorganic nitrogen. The environment inhabited by these mussels is extremely N-rich compared with areas inhabited by marine photoautotrophs and other marine symbioses. Nitrate in water surrounding mussel habitats ranges from 9.4 to 41.0 μM. Ammonium in hypersaline seep effluent and sediment porewater can be in the mM range, but is 1.6 to 13 μM in water overlying mussel that is not mixed with sediment during sampling (Lee & Childress 1994).

Uptake and assimilation of inorganic nitrogen is regarded as an important capability of symbiotic associations. In associations between algae and invertebrates, nitrate uptake is not common whereas ammonium uptake, assimilation, and recycling are ubiquitous (Wilkerson & Trench 1986). The prevailing depletion-diffusion model for uptake involves no participation by the host (D’Elia & Cook 1988). Nutrients from the environment are believed to enter by diffusion, which is facilitated by low nutrient concentrations in the host tissues maintained by active symbiont uptake. However, it should be noted that host tissues contain ammonium assimilation enzymes, glutamate dehydrogenase (GDH; Male & Storey 1983, Catmull et al. 1987, Rees 1987, Rahav et al. 1989) and glutamine synthetase (GS; Rees 1987). Host assimilation of ammonium, which has been demonstrated in the hydra-Chlorella symbiosis (Rees 1987), is inconsistent with a depletion-diffusion mechanism. In an earlier study, in which we demonstrated that symbiotic mussels take up ammonium (Lee et al. 1992), our results were inconclusive with regard to whether symbiont assimilation drives ammonium uptake. Uptake was not observed in functionally aposymbiotic mussels, but the kinetics of uptake by symbiotic mussels were somewhat non-linear, which is suggestive of mechanisms other than simple diffusion into the host tissue. A gradient favoring passive influx of NH$_4^+$ or NH$_3$ was not observed, and hemolymph ammonium concentrations were indistinguishable between aposymbiotic and symbiotic mussels.

The finding that symbiotic associations of invertebrates and algae do not take up ammonium following prolonged exposure to darkness (Muscatine & D’Elia 1978, Wilkerson & Muscatine 1984, Wilkerson & Trench 1986, Szramt et al. 1990) or when they are aposymbiotic (Muscatine et al. 1979, Wilkerson & Muscatine 1984) is regarded as strong evidence for symbiont-mediated assimilation. These results are also consistent with assimilation of ammonium by the host where assimilation is dependent on reduced carbon skeletons as well as ATP and/or NAD(P)H resulting from symbiont activity. Stimulation of ammonium assimilation by photosynthesis does not occur in most intact associations or freshly isolated symbionts (Rees 1987). These findings indicate that in these associations, assimilation of ammonium is not directly dependent on reduced carbon produced from photosynthesis and may instead be supported by carbon reserves. Such reserves may be present in either host or symbiont tissues. Regardless of which partner assimilates ammonium, the ability to rely on carbon reserves rather than environmental methane may enable mussels to exhibit 'luxury consumption', i.e. N consumption in excess of requirements due to methane assimilation.

15N-labelled tracers have proven useful in investigating N assimilation by marine symbioses (Summons & Osmond 1981, Summons et al. 1986, Wilkerson & Kremer 1992, Lee & Childress 1994) although there have been few such studies. In the present study we investigated assimilation of ammonium, nitrate, glycine, and methane using 15N- and 13C-labelled tracers to determine sites of assimilation, rates of assimilation, and the form in which assimilated C and N appears. We also investigated the interaction between inorganic nitrogen assimilation and methanotrophic carbon assimilation to assess whether they are directly dependent. From our physiological measurements and results of Kochevar et al. (1992), we also determined the conditions that result in C/N assimilation ratios that equal
the C/N ratio of mussel tissues, to assess whether C/N balance occurs in situ.

MATERIALS AND METHODS

Mussel collection and maintenance. Mussels were collected from depths of >500 m on the Louisiana Slope of the Gulf of Mexico in August 1991, August and September 1992, and June and July 1993 using the Johnson Sea Link I and II submarines and were maintained in the laboratory as described previously by Lee et al. (1992). Mussels from 1991 were from Bush Hill (27° 47' N, 91° 30' 24" W). Mussels from 1992 were a mixture from Bush Hill and Brine Pool (27° 43' 24" N, 91° 16' 30" W) collections. 1993 mussels came from either Bush Hill, the Brine Pool, or GC-272 (27° 40' N, 91° 30' W).

Whole mussel assimilation experiments. Freshly collected mussels were incubated at 5 to 7°C in the presence of 15NH4, 15NO3, or 15N13C-glycine with or without 13CH4 present. The concentrations of ammonium and nitrate in the incubations were determined to within ±0.2 μM (limit of detection ~0.5 μM) by flow-injection analysis (FIA: Johnson & Petty 1983, Willson & Johnson 1986). Methane, N2 and oxygen were analyzed by gas chromatography (GC; Childress et al. 1984). Concentrations of N substrates and 13CH4 were maintained by additions of concentrated stock solutions every few hours as needed. 13CH4 stock solutions (~800 to 900 μM) were made by equilibrating 13CH4 gas (5 to 10 ml, 98.8% 13C; Isotec) with seawater in 60 ml plastic syringes overnight on a shaker table at 5°C. At the end of each incubation, mussels were dissected into gill (symbiont-containing) and mantle (symbiont-free) tissues and blotted on a paper towel. In some experiments, subsamples were frozen at ~80°C for later fractionation.

Excised gill incubations. Gills with a small portion of mantle tissue left attached were placed in petri dishes containing 0.2 μm-filtered seawater (FSW) at 5°C then were subdivided by cutting parallel to the filaments. These gill pieces were then placed in syringes or plastic bottles (250 to 1000 ml) containing 15N and 13C substrates. Air bubbles were removed and the syringes or bottles placed on a shaker table at 5°C. At the end of the incubations, mantle tissue was removed and the remainder blotted then dried at 60°C.

Tissue fractionation. Untreated samples contained 15N and 13C in both inorganic and organic form. To remove ammonium and CO2, dry untreated samples were first ground to a fine powder. 2 N NaOH was added and the samples were then kept at 20 to 25°C. After 24 to 48 h, 2 N HCl was added and the samples were then re-dried. These samples, from which ammonium and inorganic carbon were removed, will be referred to as 'base-treated.' Unless otherwise noted, 'assimilation' will refer to incorporation of label into this fraction. Homogenates of frozen tissues were extracted twice for >12 h with 80% ethanol (EtOH) to separate low and high molecular weight components. The EtOH soluble fractions were pooled for each sample, evaporated at 60°C, then treated with NaOH and HCl. These fractions contained amino acids and other low molecular weight components and will be referred to as 'EtOH soluble.' The material that remained after EtOH treatment consisted of proteins and other high molecular weight compounds and will be referred to as 'EtOH insoluble.'

Determination of 15N/14N and 13C/12C. An automated CHN analyzer (Roboprep-CN, Europa Scientific) interfaced with an isotope ratio mass spectrometer (IRMS; Tracermass, Europa Scientific) was used to determine 15N/14N and 13C/12C ratios as well as %N and %C present in the samples (Owens 1988, Preston & McMillan 1988, Brooks et al. 1989, Owens & Rees 1989). Samples dried at 60°C were ground to a fine powder. Then 1 to 2 mg quantities of sample were placed in tin capsules and weighed to ±0.001 mg with a Cahn electrobalance. The encapsulated samples were flash-combusted at 900°C and reduced over copper metal at 550°C. The N2 and CO2 produced were separated by GC and then admitted directly to the IRMS for determination of 15N/14N and 13C/12C. We routinely obtained precision of better than 0.01 at.% [15N X (total N)-1] x 100 for 15N and 0.001 at.% for 13C and ±0.1% for %C and %N using reference materials 1572, citrus leaves). Rates of assimilation are given as μmol g⁻¹ wet tissue h⁻¹. The difference in at.% of heavy isotope present in samples from tracer experiments and from mussels and gill pieces not exposed to labelled compounds was determined and then converted to μmol g⁻¹ wet tissue using % water and %C or %N results. In general, isotope fractionation effects were not detectable, given the analytical precision of our determinations, or were negligible since ~100% 15N and 13C substrates were used. Differences in isotopic natural abundance between different individuals and between pieces from the same gill were also not detectable and were negligible compared with the signal resulting from incorporation of labelled substrates.

Tissue ammonium determination. Tissues were dissected, then immediately frozen in liquid nitrogen and stored either in liquid nitrogen or at ~80°C until analysis. Tissues were homogenized in 5 volumes of 50% ethanol, then centrifuged (Millipore microfuge, 6400 rpm; 3 to 5 min) to remove solids. Supernatant of the tissue homogenate was analyzed for ammonium by FIA. The resulting homogenate ammonium concentrations are reported as μmol ammonium kg⁻¹ water present in tissue sample (μM).
RESULTS

Assimilation of 13C15N-glycine, 15NH$_3$, and 15NO$_3$ and transfer of 15N and 13C between gill and mantle tissue

Symbiotic seep mytilids incorporated 13C15N-glycine into both gill (symbiont-containing) and mantle (symbiont-free) tissue. Rates of 15N incorporation were 0.699 ± 0.309 μmol g$^{-1}$ h$^{-1}$ (SD; n = 5) into gill tissue and 0.395 ± 0.089 μmol g$^{-1}$ h$^{-1}$ (SD; n = 4) into mantle tissue. The mean calculated 15N incorporation rate of 0.477 μmol g$^{-1}$ h$^{-1}$ for whole mussels compares favorably with uptake rates of 0.56 ± 0.22 μmol g$^{-1}$ h$^{-1}$ (SD; n = 4) observed previously from initial concentrations of 10 μM glycine (Lee et al. 1992). Rates of 13C assimilation from 13C15N-glycine were 0.459 ± 0.230 μmol g$^{-1}$ h$^{-1}$ (SD; n = 5) into gill tissue and 0.252 ± 0.149 μmol g$^{-1}$ h$^{-1}$ (SD; n = 4) into mantle tissue. The ratio of C/N assimilation for the 2 tissues was 0.670 ± 0.192 (SD; n = 5) for gill and 0.618 ± 0.353 (SD; n = 4) for mantle. Since the ratio of 13C to 15N in the 13C15N-glycine used in the experiments was 1, these results indicate that 13C was metabolized and excreted to a greater degree than 15N.

In an earlier report, we gave rates of assimilation for 15NH$_3$ and 15NO$_3$ by whole mussels collected in 1991 from incubations in which mussels and excised gills were maintained in the laboratory <7 d. Incubations were 6 to 18 h for whole mussels and 3 to 6 h for excised gills in the presence of 50 μM 15NO$_3$ substrate and 200 μM methane. Values given as mean ± SD (n).

<table>
<thead>
<tr>
<th>Collection site</th>
<th>Tissue</th>
<th>15N assimilation (μmol g$^{-1}$ h$^{-1}$)</th>
<th>13C assimilation (μmol g$^{-1}$ h$^{-1}$)</th>
<th>13C/15N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush Hill, 1991</td>
<td>Gill*</td>
<td>0.061 ± 0.047 (17)</td>
<td>0.361 ± 0.161 (16)</td>
<td>12.1</td>
</tr>
<tr>
<td>Mantle*</td>
<td>0.004 ± 0.002 (10)</td>
<td>0.038 ± 0.022 (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bush Hill or Brine Pool, 1992</td>
<td>Gill</td>
<td>0.059 ± 0.031 (5)</td>
<td>0.248 ± 0.075 (8)</td>
<td>0.395 ± 0.115 (25)</td>
</tr>
<tr>
<td>Mantle</td>
<td>0.013 ± 0.009 (5)</td>
<td>0.006 ± 0.002 (5)</td>
<td>0.006 ± 0.004 (3)</td>
<td></td>
</tr>
<tr>
<td>Excised gill</td>
<td>0.396 ± 0.184 (5)</td>
<td>0.371 ± 0.108 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantle</td>
<td>0.000 ± 0.002 (5)</td>
<td>0.000 ± 0.004 (3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Data from Lee & Childress (1994)

bIncubation with 100 μM 15NO$_3$.

Inhibited by seep mytilids are variable (Lee & Childress unpubl.), and in the present study, results were used from incubations in which mussels and excised gills exhibited moderate to high rates of 15NO$_3$ assimilation.

Table 2. Seep mytilid la. Incorporation of 15N and 13C into fractionated tissue samples from intact mussels (1991 collection) incubated with 50 μM 15NH$_3$ with and without 100 to 200 μM 13CH$_4$ for 12 h. g refers to unfractinated tissue weight. Values given as mean ± SD (n). Base-treated refers to samples treated with NaOH and acid to remove ammonium and inorganic carbon. EtOH soluble fraction contains low molecular weight organic compounds; EtOH insoluble fraction contains high molecular weight compounds.

<table>
<thead>
<tr>
<th>C substrate</th>
<th>Tissue Fraction</th>
<th>15N Incorporation (μmol g$^{-1}$ h$^{-1}$)</th>
<th>13C Incorporation (μmol g$^{-1}$ h$^{-1}$)</th>
<th>13C/15N</th>
</tr>
</thead>
<tbody>
<tr>
<td>13CH$_4$</td>
<td>Gill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>0.495 ± 0.221 (4)</td>
<td>6.014 ± 3.797 (4)</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>Base-treated</td>
<td>0.291 ± 0.212 (5)</td>
<td>4.562 ± 3.936 (5)</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>EtOH soluble</td>
<td>0.362 ± 0.038 (4)</td>
<td>3.452 ± 1.016 (5)</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>EtOH insoluble</td>
<td>0.060 ± 0.036 (4)</td>
<td>2.068 ± 1.217 (5)</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>Mantle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>0.060 ± 0.015 (5)</td>
<td>0.150 ± 0.177 (5)</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Base-treated</td>
<td>0.038 ± 0.009 (5)</td>
<td>0.265 ± 0.457 (5)</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>EtOH soluble</td>
<td>0.027 ± 0.024 (5)</td>
<td>0.186 ± 0.144 (5)</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>EtOH insoluble</td>
<td>0.008 ± 0.008 (5)</td>
<td>0.002 ± 0.002 (4)</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>15NH$_3$</td>
<td>Gill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>0.528 ± 0.083 (5)</td>
<td>-0.008 ± 0.017 (5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Base-treated</td>
<td>0.346 ± 0.082 (5)</td>
<td>-0.015 ± 0.023 (5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>EtOH soluble</td>
<td>0.346 ± 0.088 (4)</td>
<td>0.016 ± 0.004 (4)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>EtOH insoluble</td>
<td>0.004 ± 0.002 (4)</td>
<td>-0.005 ± 0.005 (4)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mantle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>0.048 ± 0.040 (5)</td>
<td>-0.004 ± 0.023 (5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Base-treated</td>
<td>0.039 ± 0.052 (5)</td>
<td>0.002 ± 0.020 (5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>EtOH soluble</td>
<td>0.043 ± 0.038 (4)</td>
<td>-0.003 ± 0.003 (4)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>EtOH insoluble</td>
<td>0.020 ± 0.007 (4)</td>
<td>-0.004 ± 0.006 (4)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Seep mytilid la. Assimilation of 15NH$_3$ and 15NO$_3$ into gill and mantle tissue of mussels from different collections maintained in the laboratory <7 d. Incubations were 6 to 18 h for whole mussels and 3 to 6 h for excised gills in the presence of 50 μM 15NO$_3$ substrate and 200 μM methane. Values given as mean ± SD (n).
15N label from 15NH3 and 15NO3- incubations was incorporated at much higher rates in the gill compared with mantle (Table 1). From these results, and based on our measurement of average gill weight as 28% of total tissue weight, the proportion of label in gill and mantle tissue was calculated. 74% of the 15N label was present in the gill tissue following 15NH3 incubations (Bush Hill, 1991 collection), which is similar to results for 13CH4 assimilation by these same mussels in which 80% of the label was present in the gills (Table 2). For 15NO3- incubations of laboratory maintained mussels collected from the Brine Pool (laboratory maintained 3 d), 96% of the 15N (Table 1) and 98% of the 13C label was present in the gill tissues. To investigate transfer of 15N from gill to mantle tissue, pulse-chase experiments with 15NH3 and 13CH4 were conducted using mussels collected in 1991. Following an 11 h pulse, a slight loss of 15N and 13C from the gill tissues was observed during the chase period (109 h) but no increase was observed in the mantle tissue (Fig. 1a, b).

Pulse Duration

Assimilation (umol 15N g⁻¹)

Time (h)

Assimilation (umol 13C g⁻¹)

![Fig. 1. Seep mytilid la. Pulse-chase incubation of symbiotic laboratory-maintained mussels from 1991 collection. Mussels were exposed to 50 μM 15NH3 and 200 μM 13CH4 for 11 h. (a) Assimilation of 15NH3 into base-treated fraction. (b) Assimilation of 13CH4 into base-treated fraction. Values are from single measurements. (*) Gill tissue, (○) mantle tissue](image)

Fate of incorporated 13CH4 and 15NH3

Around 40% of the 15N label and 25% of the 13C label present in untreated gill tissue from mussels incubated for 12 h in the presence of 13CH4 and ammonium was lost following treatment with NaOH and HCl, indicating that a substantial proportion of label was present as 15NH3 and 13CO2 (Table 2). From these results we estimate that 2.4 mM 15NH3 and 17.4 mM 13CO2 were present in these samples. Treatment of mantle samples resulted in a slight loss of 15N, but no loss of 13C was detected.

The largest proportion of 15N and 13C was present in the EtOH soluble fraction of gills (73 and 61% respectively). This fraction contains amino acids and the ratio of C/N assimilated into this fraction was 10.1 (Table 2).

The largest proportion of 15N and 13C was present in the EtOH soluble fraction of mantle tissue with a C/N assimilation ratio of 7. The EtOH insoluble fraction of gill tissue contained only 12% of the 15N label compared with 35% of the 13C label. The C/N assimilation ratio for this fraction was 35.

Assimilation of excretory ammonium

If ammonium from host excretion is assimilated, then rates of assimilation of exogenous 15NH3 may underestimate the actual rate of ammonium assimilation. Assuming that exogenous and excretory ammonium act as a single pool, then the percentage of ammonium present as 15NH3 can be used to determine the actual rate of ammonium assimilation. To estimate the relative abundance of 15NH3 and 14NH3, mussels were incubated in 10 to 1000 μM 15NH3 for 6 h. Gill tissues were analyzed for 15NH3 by IRMS. Labelled and unlabelled ammonium (15NH3 + 14NH3) were determined in EtOH extracts of tissues by FIA. Results from these experiments are shown in Fig. 2. 15NH3 concentration correlated with 15NH3 + 14NH3 concentration. The slope of the relation was 0.67 ± 0.28 (95% confidence interval for slope), indicating that the internal 15NH3 pool was 67% 15NH3 and therefore assimilation of 15NH3 from the medium comprised around two-thirds of the actual ammonium assimilation (Fig. 2). Thus C/N assimilation ratios for ammonium assimilation based on 15NH3 assimilation rates may be over-estimates. For example, the C/N assimilation ratio of 12.1 observed for whole mussels incubated with 15NH3 and 13CH4 corresponds to a ratio of 8.1 when excretory ammonium is considered. Unless otherwise stated, C/N assimilation ratios given are the raw ratios, uncorrected for the problem of source pools. The C/N ratio of gill tissue was 4.23 ± 0.56 (SD, n = 27). This value is representative of values that are exhibited by mussels from differ-
Fig. 2. Seep mytilid la. Proportion of gill tissue ammonium that is \(^{15}\text{NH}_3\) in symbiotic mussels collected in 1992. Values are from single measurements.

Fig. 3. Seep mytilid la. \(^{15}\text{N}\) assimilation rate vs \(^{13}\text{CH}_4\) assimilation rate exhibited by gills from whole seep mytilid la incubations. Mussels from 1992 collection incubated with 50 \(\mu\text{M}^{15}\text{NH}_3\) and 200 \(\mu\text{M}^{13}\text{CH}_4\) for (a) 12 or 24 h or (b) 12 h. Mussels from Brine Pool collected in 1993 incubated with 50 \(\mu\text{M}^{15}\text{NO}_3\) and 200 \(\mu\text{M}^{13}\text{CH}_4\) for (c) 7 h. Values are from single measurements.

Relation between \(^{13}\text{CH}_4\) and N assimilation

Variability in \(^{13}\text{CH}_4\), \(^{15}\text{NH}_3\), and \(^{15}\text{NO}_3^-\) assimilation rates was observed among individual mussels. \(^{15}\text{NH}_3\) and \(^{15}\text{NO}_3^-\) assimilation into gill tissue was strongly correlated with \(^{13}\text{CH}_4\) assimilation (Fig. 3a to c). The inverse of the slopes of these regression lines, which is one measure of the relation between C and N assimilation, was 20 for \(^{15}\text{NH}_3\)-incubated mussels that exhibited a mean C/N assimilation ratio of 12.1 (Fig. 3a), 4.3 for another set of \(^{15}\text{NH}_3\)-incubated mussels that exhibited a mean C/N assimilation ratio of 2.1 (Fig. 3b), and 7.7 for \(^{15}\text{NO}_3^-\)-incubated mussels that exhibited a mean C/N assimilation ratio of 12.7 (Fig. 3c). Although the strong correlation between \(^{13}\text{CH}_4\) and N assimilation suggests that N assimilation is dependent on \(^{13}\text{CH}_4\) assimilation, we believe that they actually co-vary with some other factor such as condition or symbiont population size. A variety of direct tests, as described below, indicated that N assimilation and \(^{13}\text{CH}_4\) assimilation are independent of each other.

The rate of N assimilation was not dependent on methanotrophy. For example, C/N assimilation ratios differed between experiments involving intact mussels (Fig. 3a, b). Intact mussels incubated without methane in the medium exhibited rates of N assimilation that were indistinguishable from mussels incubated with \(^{13}\text{CH}_4\) (Table 2). Rates of N assimilation into the various chemical fractions (organic, EtOH soluble and insoluble) were also indistinguishable (Table 2). Treatment of excised gill pieces with acetylene (C\(_2\)H\(_2\)), which completely inhibited \(^{13}\text{CH}_4\) assimilation, had no effect on the rate of \(^{15}\text{NO}_3^-\) or \(^{15}\text{NH}_3\) assimilation (Table 3).

Methane assimilation was not dependent on N assimilation. In excised gill \(^{13}\text{CH}_4/^{15}\text{N}\) incubations where \(^{15}\text{N}\) assimilation was increased by increasing the concentration of \(^{15}\text{N}\) substrate in the medium, no relation was observed between \(^{15}\text{N}\) and \(^{13}\text{C}\) assimilation rates (Fig. 4a, b). If methanotrophy directly supports N assimilation, then increased rates of N assimilation...
Table 3. Seep mytilid Ia. Assimilation of 13N and 13C into the base-treated fraction of excised seep mytilid gills from 1991 collection. Incubations performed under conditions of 50 µM 15N substrate and 200 µM 13CH$_4$. Acetylene (C$_2$H$_2$) was used in some treatments to inhibit methanotrophy. **Boldface** denotes treatments significantly different from 15NH$_3$-13CH$_4$ treatment (Wilcoxon signed-rank test; p < 0.05). Values given as mean ± SD (n).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Assimilation (µmol g$^{-1}$ h$^{-1}$)</th>
<th>13N</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15NH$_3$</td>
<td>0.232 ± 0.211 (6)</td>
<td>0.433 ± 0.259 (6)</td>
<td></td>
</tr>
<tr>
<td>14CH$_4$</td>
<td>0.162 ± 0.036 (6)</td>
<td>0.017 ± 0.023 (6)</td>
<td></td>
</tr>
<tr>
<td>15NO$_3^-$</td>
<td>0.064 ± 0.036 (6)</td>
<td>0.399 ± 0.225 (6)</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_2$ + 13CH$_4$</td>
<td>0.059 ± 0.015 (5)</td>
<td>0.002 ± 0.019 (5)</td>
<td></td>
</tr>
<tr>
<td>15CH$_4$ + 14NH$_3$</td>
<td>0.028 ± 0.021 (6)*</td>
<td>0.371 ± 0.282 (6)</td>
<td></td>
</tr>
</tbody>
</table>

*Significantly different from 15NO$_3^-$-13CH$_4$ treatment (Wilcoxon signed-rank test; p < 0.075)

Fig. 4. Seep mytilid Ia. 13CH$_4$ assimilation vs 15N assimilation exhibited by excised gills of seep mytilid Ia from 1991 collection. (a) Ammonium incubated gills; gills were incubated for 3 to 6 h. (b) Nitrate incubated gills; gills were incubated for 6 h. All incubations were in seawater containing 160 to 200 µM labelled or unlabelled methane using mussels from the 1992 collection. Values are from single measurements.

Fig. 5. Seep mytilid Ia. Time-course of 15N and 13C assimilation into base-treated fraction by excised seep mytilid Ia gills. (a) Ratio of C/N assimilation vs time for ammonium incubated gills. (b) Ratio of C/N assimilation vs time for nitrate incubated gills. Gills from 1992 collection incubated in 100 µM 15N substrate and 160 to 200 µM 13CH$_4$. Values are from single measurements.

Assimilation might be accompanied by stimulation of 13CH$_4$ assimilation provided that methane is not limiting.

We characterized the time courses of 13CH$_4$ and 15N assimilation into excised gills by incubating pieces with 15NH$_3$ or 15NO$_3^-$ and 13CH$_4$ for up to 48 h (Fig. 5a, b). If methanotrophy supports N assimilation directly, then the ratio of C/N assimilated should be constant over time. This was not the case. The ratio of C/N assimilated during different time intervals in 15NH$_3$ incubations increased with time from 3 to 5.5 (Fig. 5a). The opposite was observed in 15NO$_3^-$ incubations, with the ratio of C/N assimilation decreasing from around 26 to 7 (Fig. 5b).

Since methane and inorganic N assimilation were decoupled, under some conditions excess 13CH$_4$ assimilation was observed. Conversely, inorganic N assimilation in excess of demands due to methane were also observed. Such 'luxury consumption' of N, in which C/N assimilation ratios are less than 4.2, were exhibited initially in the 15NH$_3$ time-course experiment and were also induced by increasing the concentration of...
Assimilation of organic N

Heterotrophic acquisition of C and N can potentially make a large contribution to seep mytilid nutrition, but the importance of these sources relative to methane and inorganic N is difficult to assess without good measurements of dissolved and particulate organic material in the immediate vicinity of mussels. The rates of filter-feeding that are observed indicate that the C 'maintenance' needs of the association can be satisfied when >10^6 bacteria cells are present in the water column (Page et al. 1990). However, the abundance of particulate material and its C/N ratio around mussels has not been studied. The rates of amino acid uptake are quite high. Rates of glycine uptake from 10 μM initial concentrations are comparable to the highest rates of ammonium uptake that we have measured (Lee et al. 1992). In the present study, the rate of C assimilation from 50 μM 13C15N-glycine incubations was 0.620 μmol C g^-1 h^-1 for the whole mussel, which is considerably less than the mean rate of 13CH4 assimilation of 1.79 μmol C g^-1 h^-1 observed for 15NH3 incubated mussels. Methane assimilation rates of up to 5 μmol C g^-1 h^-1 have been observed previously (Kochevar et al. 1992). The rate of N assimilation from 50 μM 13C15N-glycine incubations was 0.477 μmol N g^-1 whole mussel h^-1. Rates of 15NH3 assimilation exhibited by mussels from Table 2 were 0.382 μmol N g^-1 whole mussel h^-1. However, the rates of amino acid uptake likely overestimate the rates in situ since the concentrations of individual amino acids in samples overlying mussels were all below 1 μM (Lee et al. 1992). These samples were likely diluted by ambient water and concentrations of individual amino acids may actually be higher. Determination of environmental conditions encountered by the mussels is difficult due to the likelihood of steep chemical gradients resulting from mixing of seep effluent with ambient bottom water. Improved sampling technologies will facilitate better characterization.

Host or symbiont mediated N assimilation?

Our results indicate that inorganic N is not assimilated in tissues that are free from symbionts. 15N from 15NH3 and 15NO3^- appeared to a much greater degree in gill tissue, with only a low level of label present in the mantle tissue. 15N was distributed between gill and mantle tissue in a similar fashion to 13C from 13CH4, which is assimilated only by the symbionts. Isolated gills assimilated 15NH3 at rates that were comparable to rates exhibited by gills in intact mussels. Although it is possible that 15N present in mantle tissue was assimilated there, these rates are low compared with gill tissue. Furthermore, nitrate reductase activity was not detected in mantle tissue and glutamine synthetase activity was considerably lower in mantle compared with gill tissue (Lee & Childress unpubl.).

Within the gills, our results are inconclusive with regard to whether assimilation occurs in the host tissue, symbionts, or both. Many of our findings support symbiont-mediated assimilation. The distribution of 23N was similar to the distribution of symbiont-assimilated 13C from 13CH4. Ingestion of 14C-labelled bacteria (Page et al. 1990) and 13C15N-glycine resulted in the appearance of substantial amounts of label in the mantle tissue, indicating that processes that clearly involve host participation result in uniformly distributed C and
N. Variation among individuals in ability to assimilate 13CH$_4$ correlated with the N assimilation rate. Although inorganic N and methane assimilation are not directly linked, methane and inorganic N assimilation ability may co-vary as a function of symbiont population size. However, given that ammonium assimilation is likely supported by carbon reserves, and that ammonium assimilation enzymes are present in host tissues (Lee & Childress unpub.), assimilation of ammonium may be facilitated by the host.

Evidence for N assimilation supported by C reserves and its implications

In the present study, we demonstrate that N assimilation is not directly dependent on methanotrophy and that assimilation can be supported entirely from stored reduced carbon. There is however, a long-term dependence on methanotrophy since aposymbiotic mussels do not take up ammonium (Lee et al. 1992). C used to assimilate inorganic N may be derived entirely or in part from methanotrophy. In tissue fractionations, we observed a disproportionate amount of 13C label in the EtOH insoluble fraction of mussel gills. This may reflect incorporation of methane into carbon-rich storage products such as polyhydroxybutyrate (Anthony 1982).

The utilization of carbon storage products in the assimilation of inorganic N is likely important in facilitating luxury consumption of N by seep mytilids. C from methane was not directly required for assimilation of inorganic N. The rates of 15NH$_3$ assimilation and distribution into various chemical fractions was similar between mussels incubated with and without 13CH$_4$ (Table 2). Acetylene inhibition of methanotrophy in excised gills had no effect on inorganic N assimilation (Table 3). Conversely, increasing rates of N assimilation of excised gills by increasing N substrate concentration in the medium did not stimulate 13CH$_4$ assimilation. Thus, methane and inorganic N assimilation are not coupled. The ratio of C/N assimilation for methane and inorganic N was found to vary considerably among treatments. In 13C-15N-glycine incubations, the finding that 15N is retained to a greater degree than 13C indicates that sources of carbon other than from glycine are utilized to assimilate the amino N. The ability to utilize stored carbon and the decoupling of C and N assimilation can result in C/N assimilation in a ratio below 4.2 (luxury consumption). In the presence of 160 to 200 µM 13CH$_4$, luxury consumption was exhibited under conditions of >10 µM 15NH$_3$ or >50 to 200 µM 15NO$_3^-$. The lowest ratios of C/N assimilation were around 1, indicating utilization of carbon reserves and/or possible preferential production of N rich amino acids such as asparagine (C/N = 2) or arginine (C/N = 1.5).

Depending on environmental conditions, assimilated N may exceed that required for growth (C/N assimilation < 4.2) or assimilated C may exceed that required for growth (C/N assimilation > 4.2). Excess C assimilation may reflect N limitation. However, this depends on the fate of symbiont assimilated C within the host tissues which is presently unknown. During the relatively short incubation periods in the present study, there was likely little transfer of symbiont derived C to host tissues. If symbiont derived C is primarily respired, then excess C assimilation does not necessarily reflect N limitation of the association as a whole.

Estimates of C and N assimilation rates in situ — evidence for excess assimilation of C

Nitrate and ammonium are both present in the seep mytilid environment. In water overlying mussels, nitrate ranges from 9.4 to 41.0 µM while ammonium ranges from 1.6 to 13 µM although concentrations as high as 9.4 mM are observed in brine near mussels (Lee & Childress 1994). The rate of inorganic nitrogen assimilation at a given concentration of ammonium and nitrate in the environment can be estimated from assimilation rate vs source concentration results (Lee & Childress unpub.). The dependence of 15NNH_3 assimilation (µmol g$^{-1}$ whole mussel h$^{-1}$) on 15NH$_3$ concentration (µM) in the environment exhibited by laboratory maintained mussels collected at the brine pool was:

$$\text{Ammonium assimilation} = 0.036 \times \left[\text{NH}_3\right]^{0.25}$$

$$\text{(1) } (r^2 = 0.79).$$

The dependence of 15NO$_3^-$ assimilation rate by excised gills (converted to µmol g whole mussel$^{-1}$ h$^{-1}$) on 15NO$_3^-$ concentration (µM) was:

$$\text{Nitrate assimilation} = 0.007 \times \left[\text{NO}_3^{-}\right]^{0.42}$$

$$\text{(2) } (r^2 = 0.43).$$

The presence of 14NH$_3$ reduced the rate of 15NO$_3^-$ assimilation by excised gills. The relation between ammonium concentration and the % maximum nitrate assimilation was:

$$\% \text{ maximum} = 100 \times \left[\text{NH}_3\right]^{-0.56}$$

$$\text{(3) } (r^2 = 0.74).$$

These equations were chosen based on fit and do not imply possible mechanisms. By combining these equations we obtain the following:

$$\text{Total N assimilation} = (0.036 \times \left[\text{NH}_3\right]^{0.25})$$

$$+ (0.007 \times \left[\text{NO}_3^{-}\right]^{0.42} \times \left[\text{NH}_3\right]^{-0.56}).$$

The isolines for nitrate and ammonium concentrations that result in a given value of total N assimilation
Fig. 7. Seep mytilid La. (a) Relationships between rate of total inorganic N assimilation vs ammonium and nitrate in the medium. Isolines given for various rates of N assimilation. (b) Rate of C assimilation that results in C/N balance vs methane concentration and maximum methane consumption rate. Isolines given for methane assimilation resulting in C/N balance for values of N assimilation given in (a) (0.05 to 0.16 μmol g⁻¹ h⁻¹) are given in Fig. 7a. From this figure it is apparent that, when ammonium concentrations are low (≤1 μM) and maximum nitrate concentrations are exhibited, rates of total N assimilation as high as 0.07 μmol g⁻¹ h⁻¹ are possible. The same rate is possible from ammonium alone at concentrations of 20 μM. From the shape of the 0.06 and 0.07 μmol g⁻¹ h⁻¹ isolines, it is apparent that, according to the relations derived in our studies, the reduction in N assimilation due to the effect of ammonium on nitrate assimilation is not offset by a concomitant increase in ammonium assimilation rate. For example, higher nitrate concentrations are required to achieve a rate of 0.06 μmol g⁻¹ h⁻¹ if ammonium concentration is increased from 1 to 3 μM. Once ammonium concentration is greater than 10 to 20 μM, the contribution to total N assimilation by nitrate at environmentally realistic concentrations (≤50 μM nitrate) is negligible.

From results obtained for methane consumption by whole mussels measured by Kochevar et al. (1992), it is possible to calculate the conditions required for methane assimilation to equal 4.2 times a given rate of N assimilation (i.e. C and N balance). The relation between methane consumption (μmol g⁻¹ h⁻¹) and methane concentration (μM) up to 300 μM, where it is observed to saturate, is:

$$\text{CH}_4 \text{ consumption} = \text{maximum consumption rate} \\
\times (0.00332 [\text{CH}_4] + 0.07326)$$

$$r^2 = 0.82; \text{ R. E. Kochevar pers comm.}.$$

The relation between CO₂ production (μmol g⁻¹ h⁻¹) and methane consumption is:
By combining these equations we obtain the following:

\[
\text{CH}_4 \text{ assimilation rate} = 0.69 \times (0.00332 [\text{CH}_4] + 0.07326) - 0.89. \quad (7)
\]

Thus, for a given rate of methane assimilation, the conditions required with respect to the maximum methane consumption rate and methane concentration can be calculated. Isolines given in Fig. 7b indicate methane concentrations required for mussels exhibiting a given maximum methane consumption that result in C/N balance for total N assimilation rates from Fig. 7a. C/N balance occurs over a relatively narrow range of methane concentrations (Fig. 7b). Since maximum rate of methane consumption varies considerably (1.43 to 9.23 μmol g⁻¹ h⁻¹; Kochevar et al. 1992), let us consider 2 cases: low methanotrophic functioning (2 μmol g⁻¹ h⁻¹) and high methanotrophic functioning (10 μmol g⁻¹ h⁻¹). For mussels exhibiting 2 μmol g⁻¹ h⁻¹ maximum consumption rates, C/N balance is achieved at 200 μM methane for assimilation of N at a rate of 0.05 μmol g⁻¹ h⁻¹, a rate that requires negligible concentrations of ammonium and nitrate in the environment. The maximum ammonium and nitrate concentrations that have so far been observed in water overlying mussels result in 0.08 μmol g⁻¹ h⁻¹ total N assimilation and require about 240 μM methane for C/N balance to be achieved. Concentrations of methane above 310 μM result in C assimilation in excess of C/N balance for the range of N assimilation rates given in Fig. 7a. Thus, for mussels exhibiting maximum methane consumption rates of 2 μmol g⁻¹ h⁻¹, methane concentrations above 200 μM result in methane assimilation in excess of C requirements for growth. For mussels exhibiting maximum methane consumption rates of 10 μmol g⁻¹ h⁻¹, methane concentrations above 24 μM methane result in methane assimilation in excess of C requirements for growth.

Methane concentrations are variable in areas where seep mussels are found. MacDonald et al. (1989) reported 0.1 to 66.3 μM methane at Bush Hill, and more recent investigations using a sampling system with a small dead volume indicate that methane concentrations can range from 0 to 8000 μM (C. R. Fisher pers. comm.). In an earlier study (Lee et al. 1992), we speculated that concentrations of inorganic N were sufficiently high at the hydrocarbon seeps to be non-limiting. Although the concentrations are indeed elevated compared with elsewhere in the marine environment, the physiological capacity for seep mussels to take up and assimilate ammonium and nitrate at environmentally realistic concentrations does not match the capacity for methane uptake and assimilation. Thus, on the time scales involved in our studies, seep mussels incorporate C in excess of N which indicates that mussels are N limited in situ or that a large proportion of symbiont-derived carbon is ultimately respired by the host.

Acknowledgements. We thank the captains, crewmembers, and pilots of the RV 'Edwin Link', RV 'Seward Johnson', DSRV 'Johnson Sea Link I and II'. NOAA NURP National Undersea Research Center at the University of North Carolina at Wilmington supported Sea Link dive time. We thank C. R. Fisher and K. Scott for assistance at sea. An earlier draft of the manuscript was critically reviewed by R. Trench and M. Brzezinski. Helpful discussions were contributed by N. Ezal and S. Goffredi. This work was supported by ONR grant N00014-92-J-11290 and NSF grants DIR-9016074 and OCE-9301374 to J.J.C.

LITERATURE CITED

MacDonald IR, Callender WR, Burke RA, McDonald SJ, Carney RS (1990) Fine-scale distribution of methanotrophic mussels at a Louisiana cold-seep. Prog Oceanogr 24:15–24
Male KB, Storey KB (1983) Kinetic characterization of NADP-specific glutamate dehydrogenase from the sea anemone Anthopleura xanthogrammica: control of amino acid biosynthesis during osmotic stress. Comp Biochem Physiol 76B:823–829

This article was submitted to the editor