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ABSTRACT. Conflicting hypotheses prevail on the overwintering strategies of the Antarctic krill 
Euphausia superba due to the difficult accessibility of Antarctic waters, especially in winter. and hence, 
to the lack of seasonal data. This study reports on the seasonal lipid dynam~cs of E. superba (25 to 
56 mm) collected In the Weddell Sea in late winter/spring, summer, autumn and mid-winter Total hpid 
data provide evidence of large seasonal accumulation of reserve lipids in austral summer with a mean 
lipid content of 28.2 % of dry mass and particularly in autumn, when mean lipid levels peak with 39.2% 
of dry mass. After the overwintering period mean lipid contents decrease to a minlmum of 10.5% of dry 
mass, indicating extensive utilisation of lipid reserves during winter. These data suggest that lipids con- 
tribute significantly to the overwintenng success of this extremely versatile species. Lipid class analy- 
ses of spring and summer specimens (10 to 56 mm) from the Antarctic Peninsula and the Weddell Sea 
revealed that not only triacylglycerol, but also phosphatidylcholine may serve as important storage 
lipids of E. superba. In the other dominant Antarctic krill species, E. crystallorophias ( l 0  to 40 mm) and 
Thysanoessa macrura (10 to 27 mm), wax esters are the primary depot lipid, but phosphatidylcholine 
also functions as a storage lipid in these species. Phosphatidylcholine is unusual as a reserve lipid, 
being an essential component of biomembranes. In contrast, phosphatidylethanolamine, the other 
major phospholipid class, seems to have exclusively membrane functions, since it does not increase (in 
percent of dry mass) with increasing lipid levels in these 3 euphausiid species. 
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INTRODUCTION 

Euphausia superba is one of the key species in the 
Southern Ocean food web with biomass estimates of 
hundreds of millions of tons (Miller & Hampton 1989). 
Due to its overwhelming dominance in some Antarctic 
regions and its potential commercial interest, marine 
research has focused on the biology of the Antarctic 
krill. However, the mysteries of its fascinating life his- 
tory have only recently started to unravel, partially 
with the help of powerful ice-breaking research ves- 
sels. Apart from other open questions such as longevity 
and production of krill, one of the major enigmas has 
concerned the overwintering strategy of E. superba. As 
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a predominantly herbivorous pelagic species with a 
high energy throughput (Kils 1981), krill has to face an 
extended period of food paucity during the long 
Antarctic winter and early spring period, when phyto- 
plankton is at a minimum (Scharek et al. 1994). Exper- 
imental evidence of starved summer specimens has 
indicated protein catabolism and body shrinkage 
along with lowered metabolic rates as possible survival 
mechanisms (Ikeda & Dixon 1982). Energy-saving 
reduction of metabolic activity has also been measured 
in winter specimens (Kawaguchi et al. 1986, Quetin & 
Ross 1991, Torres et al. 1994a). Investigations by divers 
and remotely operated vehicles have revealed that 
knll may convert to a 'pseudobenthic' mode of life dur- 
ing winter, when it inhabits near-surface ice crevices to 
find refuge from predators and to feed on ice algae 
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(Kottmeler & Sullivan 1987, O'Brien 1987, Marschall 
1988, Stretch et al. 1988). Omnivory, and hence utilisa- 
tion of alternative food sources such as detritus or 
metazoans, has also been suggested as a strategy to 
avoid starvation during the dark season (Clarke 1980, 
Kawaguchi et al. 1986, Price et al. 1988, Daly & 
Macaulay 1991, Huntley et al. 1994). 

Reliance of Euphausia superba on lipid reserves to 
survive the winter period has been disputed in the 
past, largely based on summer lipid data and starva- 
tion experiments (Ikeda & Dixon 1982, Clarke 1984). 
However, Hagen (1988) and Quetin et al. (1994) have 
suggested that lipids are used as  an energy reserve 
during winter. Quetin & Ross (1991) calculated that 
lipids provide only 11 % of the energy for successful 
overwintering (vs 71 % of the energy saved in wlnter 
by metabolic reduction). Another recent comparison of 
krill lipid contents from fall and winter produced some- 
what conflicting evidence of lipid storage due to differ- 
ences between open water and pack ice sampling sites 
as  well as high individual variability (Torres et al. 
1994b). The latter study as well as earlier starvation 
experiments have shown that krill may survive up to 
211 d without food (Ikeda & Dixon 1982, Torres et al. 
1994b). However, according to calculations by Ikeda & 
Dixon (1982), proteins contribute most of the energy 
during this starvation period. Obviously, there is an 
urgent need for lipid data of krill, espec~ally from the 
non-summer periods. We have therefore compiled a 
large seasonal data set to shed new light on the role of 
lipids in the overwintering of Antarctic krill, which is 
still not unequivocally clarified. 

MATERIALS AND METHODS 

During 'Polarstern' expeditions in summer 1985, 
midwinter 1986, late winterkpring 1986, and autumn 
1992, krill specimens were collected in the southeast- 
ern Weddell Sea between 68" and 76" S; only the mid- 
winter samples are from 62" to 64"s.  Juvenile to adult 
Euphausia superba (25 to 56 mm) were sampled by dif- 
ferent plankton and nekton nets for the determination 
of their total lipid content. The specimens were sorted 
in a cooling container to species, size and sex and 
frozen individually in glass vials a t  -80°C. In the home 
laboratory dry mass was measured after lyophilisation 
for 48 h.  Total lipids were extracted with dichloro- 
methane:methanol (2:1, v:v, with 0.01 % butylhydroxy- 
toluene added as  antioxidant). The lipid content was 
determined gravirnetrically, essentially after Folch et 
al. (1957). The total lipid contents are expressed in per- 
cent of dry mass (% DM). 

For the lipid class determinations, larval to adult 
specimens of Euphausia superba with a size of 10 to 

56 mm were sampled to cover a wider range of onto- 
genetic stages. The specimens were obtained during 
spring 1983 (60' to 63"s) and summer 1985 off the 
Antarctic Peninsula (60" to 63"s) and during summer 
1985 in the Weddell Sea (70" to 74" S) ,  using the same 
procedures as for the total lipid samples. E. crystal- 
lorophias specimens (10 to 40 mm) were collected dur- 
ing summer 1985 in the southeastern Weddell Sea 
(70" to 78"s) .  Thysanoessa macrura specimens (10 to 
27 mm) were sampled during spring 1983 and summer 
1985 near the Antarctic Peninsula (60" to 61"s) and 
during summer 1985 in the southeastern Weddell Sea 
(72" to 73"s).  The lipid class compositions were 
analysed on an Iatroscan Mark I1 uslng thin-layer chro- 
matography combined with a flame-ionisation detector 
according to the method of Fraser et al. (1985). Differ- 
ent standard mixtures were prepared for calibration, 
which approximated the lipid class compositions of the 
analysed samples. For details see Hagen (1988). 

RESULTS AND DISCUSSION 

Fig. 1 shows the seasonal lipid dynamics of juvenile 
to adult Euphausia superba in the Weddell Sea. Maxi- 
mum lipid contents are accumulated in autumn with a 
mean of 39.2 + 5.6% DM (n = 65), whereas in spring 
lipid levels reach a minimum averaging 10.5 * 4.0% 
DM (n = 71). Intermediate and more variable lipid con- 
tents occurred during summer (28.2 + 6.9% DM, n = 
23). These data clearly demonstrate the accumulation 
of extensive lipid reserves by E. superba during the 
productive season to a maximum in autumn (April/ 
May), and they show the depletion of these energy 
reserves during the winter to a minimum in early 
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Fig. 1. Euphausia superba (25 to 56 mm; n = 164). Seasonal 
lipid accumuIation and depletion of juven~le to adult krill 

specimens In the southeastern Weddell Sea 
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spring (November), before the onset of substantial 
phytoplankton growth (Scharek et al. 1994). 

We could not detect significant sex-dependent dif- 
ferences within seasons, although we ascribe the 
higher variability of lipid data during summer to repro- 
ductive processes. In contrast to the other dominant 
Antarctic euphausiids, Euphausia crystallorophias and 
Thysanoessa macrura, which spawn in spring (Little- 
page 1964, Makarov 1979, authors' pers. obs.), repro- 
duction in E. superba can extend from November to 
April with major spawning activities in January and 
February (summer) (Mauchline 1980, Quetin et al. 
1994). In the southeastern Weddell Sea the onset of 
spawning is delayed and extends over a short period 
from early January to early March (Spiridonov 1995). 
The large amounts of first calyptopis larvae in this high 
Antarctic region in mid-February during our 1985 
expedition (Hagen 1988) also showed that spawning 
must have taken place around mid-January. 

In October/November 1986 in the southeastern 
Weddell Sea the ovaries of Euphausia superba were 
still immature and had not developed further from 
the winter resting stage (V. Siege1 pers. comm.). 
According to Couzin-Roudy (1993) egg production, is 
restricted to the summer in E. superba. Hence, repro- 
ductive processes seem to be largely fuelled by phyto- 
planktonic input in late spring and summer and do 
not explain the extensive lipid utilisation during win- 
ter/spring down to a quarter of the maximum lipid 
levels. This strong dependence on internal resources 
corro'borates the poor feeding conditions in winter. 
Based on reduced respiration rates of adult krill under 
winter conditions (Quetin & Ross 1991) and safe keep- 
ing 5 % DM essential lipids, a rough calc.ulation shows 
that the autumn lipid reserves can provide metabolic 
energy for about 5 mo. By means of metabolic reduc- 
tion and the efficient utilisation of its energy reserves, 
E. superba seems to be able to survive the winter 
period and with the support of ice algae in early 
spring (Marschall 1988, Smetacek et al. 1990) krill 
should be able to reach the onset of phytoplankton 
production in November. 

Lipids of Euphausia superba have been analysed in 
great detail and triacylglycerols have been identified 
as the principal storage lipid class (e.g. Clarke 1980, 
1984, Hagen 1988, Pond et al. 1995). For E. superba 
and the North Atlantic euphausiids Thysanoessa 
raschii and T. inermis it has been suggested that in 
addition to triacylglycerols or wax esters, the usual 
depot lipids, phospholipids may also serve as storage 
lipid (Saether et al. 1985, 1986). Normally, phospho- 
lipids are essential components of biomembranes and 
typically do not serve as storage lipids. 

Our data on the lipid composition of Euphausia 
superba clearly show a linear increase of triacylglyc- 
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Fig. 2.  Euphausia superba (10 to 56 mm; n = 59) from the 
Antarctic Peninsula and the Weddell Sea. Linear accumula- 
tion curves of triacylglycerol and phosphatidylcholine, indi- 
cating the function of both lipid classes as depot lipids, in con- 
trast to phosphatidylethanolamine. (Note that the amount of 
the different lipid classes is expressed in percent of total dry 
mass in order to show the accumulation of triacylglycerol and 
phosphatidylcholine with increasing total lipid content (% 

DM), irrespective of slze or mass of the specimens] 

er01 and phosphatidylcholine (in percent of dry mass) 
with increasing lipid levels, which results in very large 
amounts of these lipid classes in the lipid-rich speci- 
mens (Fig. 2 ) .  Fig. 2 also demonstrates that only 1 spe- 
cific phospholipid class is the responsible component 
of this accumulation, namely phosphatidylcholine, bet- 
ter known as lecithin. This selective acc'un~ulation of 
an individual phospholipid with increasing lipid levels 
strongly suggests its function as an energy reserve. 
However, triacylglycerol is the primary depot lipid and 
is deposited at a faster rate (steeper slope) than phos- 
phatidylcholine. In contrast, the percentage of the 
other major phospholipid, phosphatidylethanolamine, 
does not increase (in percent of dry mass) with increas- 
ing total lipid content, similar to cholesterol (Hagen 
1988). This disproves the function of phosphatidyl- 
ethanolamine as a reserve lipid. In E. crystallorophias 
as  well as in Thysanoessa nlacrura phosphatidyl- 
choline also serves as  depot lipid, in addition to wax 
esters (Fig. 3). In spite of marked regional, seasonal 
and ontogenetic differences, all these lipid data follow 
the same relationships along linear accumulation 
curves, indicating a basic underlying biochemical 
process in lipid deposition and mobilisation. They may 
even serve as 'calibration curves', since we can quan- 
tify the major lipid class fractions, if we know the total 
lipid content of a specimen. 

The increase of phosphatidylcholine with increasing 
lipid levels cannot be explained by the formation of 
additional membrane compounds during this process, 
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Fig. 3. (A) Euphausia crystallorophias (10 to 40 mm; n = 50) 
from the Weddell Sea and (B) Thysanoessa rnacrura (10 to 
27 mm; n = 28) from the Antarctic Peninsula and the Weddell 
Sea. Linear accumulation curves of wax ester and phos- 
phatidylcholine indicate the function of both lipid classes as 

depot lipids, in contrast to phosphatidylethanolamine 
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due to the large amounts of phosphatidylcholine accu- 
mulated. On the other hand, body shrinkage during 
times of starvation would also not lead to such a 
remarkable decrease in phosphatidylcholine. In spite 
of extensive lipid analyses the function of phospha- 
tidylcholine as an important storage lipid could not be 
verified for any of the other Antarctic zooplankton taxa 
investigated (Hagen 1988). Such a phenomenon has so 
far only been observed in euphausiids. Why these 
euphausiids also deposit phosphatidylcholine as 
energy reserve is still an unresolved question. It has 
been hypothesised that phospholipids are more easily 
mobilised than neutral lipids (Saether et al. 1986). 
Generally, we have no satisfying physiological or bio- 
chemical answers to the selective accumulation of dif- 
ferent lipid classes, such as triacylglycerol, wax ester 
or phosphatidylcholine, in marine organisms (Clarke 
1983, Hagen et al. 1993, 1995). 
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In conclusion, our data demonstrate the importance 
of extensive lipid reserves, triacylglycerol and phos- 
phatidylcholine, for Euphausia superba to survive the 
Antarctic winter. On the other hand, E. crystalloro- 
phias and Thysanoessa macrura make use of wax 
esters and phosphatidylcholine as energy reserves. 
The seasonal llpid accumulation of E. superba during 
the productive period and consumption during win- 
ter/spring before the phytoplankton bloom is much 
more pronounced than previously assumed. The sub- 
stantial lipid deposition of this dominant biomass spe- 
cies will also have strong implications on the overall 
biogenic energy flux in Antarctic waters, since part of 
the intense but short seasonal pelagic primary produc- 
tion is conserved in the pelagial as chemical energy 
and made available to other trophic levels over a very 
prolonged time period. 
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