MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 140: 251-256, 1996

Published September 12

Artificial neural network versus multiple linear
regression: predicting P/B ratios from
empirical data

T. Brey!*, A. Jarre-Teichmann?, O. Borlich!

'Alfred Wegener Institute, Postiach 120 161, D-27515 Bremerhaven, Germany
Institut fiir Meereskunde, Diisternbrooker Weg 20, D-24105 Kiel, Germany

ABSTRACT: Traditionally, multiple linear regression models (MLR) are used to predict the somatic pro-
duction/biomass (P/B) ratio of animal populations from empirical data of population parameters and
environmental variables. Based on data from 899 benthic invertebrate populations, we compared the
prediction of £/B by MLR models and by Artificial Neural Networks (ANN). The latter showed a slightly
(about 6%) but significantly better performance. The accuracy of both approaches was low at the pop-
ulation level, but both MLR and ANN may be used to estimate production and productivity of larger

population assemblages such as communities.
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INTRODUCTION

Somatic production of populations is an important
component of energy flow and organic matter cycling
in all ecosystems. The assessment of production, how-
ever, is time-consuming and expensive work, even at
the level of a single population. Therefore, many
attempts have been made to establish empirical rela-
tions between easy-to-obtain parameters and produc-
tion, B or the ratio of production to mean biomass, B
(P/B ratio)

With respect to benthic invertebrates, Zaika (1970),
Robertson (1979), Warwick (1980), Banse & Mosher
(1980), Schwinghamer et al. (1986) and many others
tried to predict the P/B ratio from 1 independent para-
meter. Their models depend solely on the negative
exponential relation between metabolic rate and body
mass in animals (see Schmidt-Nielsen 1984). Other
authors, such as Plante & Downing (1989), Brey (1990),
Edgar (1990) and Morin & Bourassa (1992}, introduced
more parameters, such as biomass, temperature and
taxon, to improve the accuracy of the prediction.
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All these authors used linear models to predict the
P/B ratio, 1.e. the data were transformed to achieve
linear relations between the independent parameters
and P/B. The main weakness of these multiple linear
regression (MLR) models is that transformations in-
clude a priori assumptions about the type and consis-
tency of the relation between 2 parameters which may
not be met completely.

Artificial neural networks (ANN) are computer pro-
grams which are characterized by a massively parallel
but highly interconnected architecture. They are able
to learn and to generalize relations between input and
output data from examples presented to the network.
The strength of ANN is pattern recognition and pat-
tern classification, but these programs can also be used
for predictive purposes (Dayhoff 1990). ANN are used
in various fields such as in industrial process control,
speech recognition, financial market forcasts and
chemical compound identification (Nelson & Illing-
worth 1991, Zupan & Gasteiger 1991) but are increas-
ingly being applied to tasks in aquatic ecology as well
(see e.g. Culverhouse 1992, Potter et al. 1993, French &
Recknagel 1994). The main advantage in using ANN
for prediction is that a priori assumptions about the
relations between independent and dependent vari-
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ables are not necessary. However, those relations
learned by an ANN are hidden in its neural architec-
ture and cannot be expressed in traditional mathemat-
ical terms.

In the present paper we compare the performance of
the ‘classic’ approach, MLR, and of ANN in estimating
P/B ratios of benthic invertebrates from empirical data.

METHODS

Data. This study is based on data from 899 unex-
ploited benthic invertebrate populations collected by
Brey (1996) from the literature (Table 1). Each data set
consisted of an annual P/B ratio and 8 variables used
to estimate P/B (Table 2). Three of these, mean water
temperature (T}, water depth (D) and mean individual
body mass (M), were used as continuous variables,
whereas the other parameters were transformed to cat-
egorical binary variables (0 or 1, see Draper & Smith
1981). To check the performance of MLR and ANN
with a ‘real world’ example, we used 30 production

Table 1. Benthic invertebrate population data used in this
analysis. Data set available on request from the first author
(ASCIl on 3.5" disk for Apple Macintosh)

Taxon No. of species No. of data sets
Mollusca 138 + 3 297
Polychaeta 41+ 3 93
Crustacea 53 +1 154
Echinodermata 38+0 51
Insecta larvae 124 + 92 304

Total 394 + 99 899

“No. of species + No. of populations identified to genus only

Table 2. Independent variables collected together with P/Bratio

Variable group Variables

Mean annual temperature T (K)
Water depth D (m)
Mean individual body mass M (kJ)

Motility
Vagile - Sessile

Abiotic variables

Biotic variables

Living
Epifauna - Infauna

Feeding
Herbivorous - Omnivorous -
Carnivorous

Biotope
Marine - River - Lake

Taxon
Mollusca - Crustacea - Polychaeta -
Echinodermata - Insecta larvae

data sets of Sprung (1993, 1994, M. Sprung pers.
comm.; our Table 3) which were not part of our data
base.

MLR. We linearized the relations between 7, D and
M and the P/B ratio according to theoretical considera-
tions and to empirical evidence. The relation between
metabolic rates and body mass is exponential, as
shown bv many experimental and empirical studies
(Schmidt-Nielsen 1984 and references therein). There-
fore we used log-transformations for P/B and M. Meta-
bolic rates show a positive nonlinear increase with
temperature in aquatic poikilotherms, as expected
from theoretical considerations and shown by many
investigations (e.g. keda 1985, Alongi 1990 or Clarke
1991). Linearisation can be approximated by trans-
forming according to the Arrhenius equation with
log(P/B) and 1/T Food is likely to be the limiting
resource in many aquatic systems (Levinton 1982), and

Table 3. Annual production (P} and P/B ratio estimates tor 30
populations (23 species) from Ria Formosa, Portugal (Sprung
1993, 1994, M. Sprung pers. comm.) computed by the incre-
ment summation method (ISM). The original ash-free dry
mass data were converted to kJ using factors taken from the

literature
No. Species P P/B
(kJm*yr ) (vr)
1 Abra ovata 13.00 2.309
2 Cerastoderma edule 40.24 4.810
3 Cerastoderma edule 42.42 5.697
4 Loripes lacteus 2.54 1.142
5 Scrobicularia plana 400.33 1.791
6 Scrobicularia plana 32.62 3.060
7 Tellina tenuis 8.70 1.875
8 Venerupis aureus 54.21 6.270
9 Amyclina corniculum 17.86 1.611
10 Bittium reticulatum 27.09 1.252
11 Bittium reticulatum 146.61 2.145
12 Cerithium vulgatum 14.08 0.848
13 Cyclope neritea 24.44 2.032
14 Haminea hydatis 30.07 1.702
15 Hydrobia ulvae 6.48 1.811
16 Mesalia brevialis 238.12 1.759
17 Cyathura carinata 0.46 1.802
18 Cyathura carinata 11.74 3.013
19 [dotea chelipes 0.77 3.778
20 Upogebia pusilla 3.98 5.090
21 Upogebia pusilla 57.86 3.121
22 Audouinia filigera 58.44 2.996
23 Audouinia filigera 11.21 2.433
24 Capitella sp. 6.34 1.636
25 Glycera convoluta 22.65 3.447
26 Melinna palmata 144.81 2.337
27 Nephtys hombergii 31.53 4.601
28 Nereis diversicolor 448.43 5.263
29 Nereis diversicolor 739.67 3275
30 Terebella lapidaria 12.10 2.758
Community 2648.74 2.649
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Table 4. Binary variables used in multiple linear regression

analysis. Pilot studies showed that the combination of 'Motil-

ity and ‘Living’ as well as the re-grouping of 'Feeding’ im-
proved performance

Group No. Binary vanable -
Motility 1 1 0
& living Vagile & Others
epifauna
Feeding 2 1 0
Carniv. - Omniv
& Herbiv
Biotope 3 1 0 0
4 0 1 0
River Lake Marine
Taxon 5 1 0 0 0 0
6 0 1 0 0 0
7 0 0 1 0 0
8 0 0 0 1 0
9 0 0 0 0 1
Moll Crus Poly  Echi Inse-La

shortage of food seems to reduce metabolic rates
(Parry 1983, Steen et al. 1991). In aquatic systems, the
input of food into the benthic system decreases expo-
nentially with water depth, therefore we used log (F/B)
and log(D +1). Binary variables representing the
remaining parameters were constructed according to
Table 4.

ANN. We pre-transformed the continuous variables
T, D and M and P/B ratio to achieve distributions as
even as possible over the whole range of each variable
using the Box-Cox algorithm (Sokal & Rohlf 1995).
Pilot studies showed that continued 'flattening’ of the
distributions, by e.g. transformations based on stan-
dardised cumulative frequency dustributions, did not
significantly improve the results.

We used 1 binary variable to represent both the
groups '‘Motility" and 'Living’, because there are only 2
alternatives in either group (Table 2). All other vari-
ables were represented by 1 binary variable each,
which resulted in a total of 13 binary variables. We
used ‘NeuralWorks Predict’' by NEURALWARE to train
multilayer backpropagation networks to predict P/B
from the 16 input variables mentioned above. This soft-
ware performs semi-automated data analysis, variable
selection and network construction, using elements of
fuzzy logic and genetic algorithms.

Comparison of performance. In order to compare
the performance of MLR and ANN we divided the data
sets randomly into 750 training data sets and 149 test
data sets. Both MLR and ANN were applied to the
training data. The resulting models were used to esti-
mate the P/B ratio of each test data set from the inde-

pendent variables. Then we computed the correlation
between calculated P/B ratios and P/B ratios estimated
by either method using log-transformed data. The cor-
relation coefficients were interpreted as a measure of
prediction accuracy. For statistical comparison of the
2 methods we applied a straightforward bootstrap re-
sampling approach (Efron & Gong 1983, Efron & Tib-
shirani 1993): the whole procedure from data selec-
tion to correlation computation—was repeated 10
times which resulted in 10 pairs of correlation coeffi-
cients for MLR and ANN, respectively. These data
were tested for significant differences between MLR
and ANN by ANOVA with randomized-complete-
block design (Sokal & Rohlf 1995).

Based on the data of Sprung (shown in our Table 3),
estimates of a MLR model based on all 899 data sets
were compared with average estimates of the 10 ANN
established previously.

RESULTS

Pilot trials showed the MLR models including the
variables T, D, and M and the binary variables Nos. 1,
2, & 4 to 8 (Table 4) to work best; hence, this model was
used for all 10 experimental trials. In all trials, Mand T
explained the highest proportion of variance in P/B.

The 10 ANN constructed by 'NeuralWorks Predict’
differed in number and type of input vanables
selected. In all trials, the variable selection algorithm
decided in favor of the parallel use of several different
transformations of at least one of the continuous vari-
ables (Table 5).

The r? coefficients of the correlation between calcu-
lated P/B ratios and P/B ratios estimated by MLR and
ANN, respectively, are shown in Table 6. 1* coefficients
of ANN {(mean = 0.799) were significantly (p < 0.001)
higher than those of MLR (mean = 0.751), the average
difference was about 6 %.

The performance of the MLR in predicting annual
production based on all 899 data sets compared to the
average of the 10 ANN is shown in Fig 1. The average
absolute deviation of estimated from calculated popu-
lation production was 85 % for MLR and 69 % for ANN,
respectively. These values did not differ significantly
{(p > 0.10). MLR overestimated total production (= sum
of the 30 populations in Table 3) by 8.4 %, whereas the
ANN estimate was 7.0 % below Sprung's figure.

DISCUSSION

Ten re-sampling trials are rather few replicates for a
proper bootstrap estimate of a correlation coefficient.
However, we did not aim for an exact estimate, but for
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Table 5. Architecture of the 10 artificial neural networks constructed. —: Para-
meter not included; +: 1; ++: 2; +++: 3; ++++: 4 transformations of this parame-

ter included
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final test with Sprung's data revealed
only slight and insignificant differ-
ences in prediction accuracy (Fig. 1),

Parameter

Vagile - Sessile
Epifauna - Infauna
Carnivorous
Omnivorous
Herbivorous

Lake

River

Marine

Mollusca
Crustacea
Polychaeta
Echinodermata
Insecta larvae
Water depth D
Temperature T
Mean body mass M

+ o+ o+ 4+

+++
+++

Network structure
Input nodes
Hidden nodes
Output nodes

13
17
1

11
18
1

+ o+ o+ o+

+

a comparison of MLR and ANN performance. Because
of the parallel evaluation of both methods, we could
use a randomized-complete-block-test design which
counteracts high sample variance. Our results showed
ANN to perform slightly but significantly better in pre-
dicting population P/B ratio than MLR (Table 6). The

Table 6. Performance of multiple linear regression (MLR) and
artificial neural network (ANN) in predicting log (P/B) of 149
test data sets not used to construct the respective model. The
table shows the squared correlation coefficient r? of the rela-
tion between calculated and estimated log(F/B). MLR and
ANN performance are significantly different (p < 0.001)

Trial MLR ANN Difference
1 0.758 0.803 0.045
2 0.758 0.808 0.050
3 0.714 0.766 0.052
4 0.769 0.812 0.043
5 0.786 0.835 0.049
6 0.724 0.769 0.045
7 0.769 0.796 0.027
8 0.732 0.808 0.076
9 0.775 0.787 0.012

10 0.724 0.808 0.084

Mean 0.751 0.799 0.048

but this single example provides only
limited evidence.
9 107 Two conclusions can be drawn from
this small difference in accuracy be-
- - tween the 2 models: On the one hand,
- - the a priori assumptions concerning
- - the relations between M, T, D and P/B
- f ratio used for the MLR are not far from
: _ reality. However, the simultaneous use
_ + of several different transformations of
_ - M, Tand D in the ANNSs (Table 5) may
- - point towards somewhat more complex
- + relations present in our data. On the
* - other hand, all relevant relations be-
: :r tween input variables and P/B seem to
et s be covered by the MLR. The remaining
b it 20 to 25% variance in either trial are
bt ‘true noise’ which cannot be explained
by the input parameters used here.
This may be due to important parame-
j S ters missing in our data set, e.g.
1’ 1 primary production (Suess 1980) hydro-
dynamic parameters such as turbu-
lence or current regime which affect
1000 T T T
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E. e o %
£ % o8 R
= L .80
< 10 ¢ % e ]
g 3
7 @ ©
3
g
St
& 0.1 : 4 '
0.1 1 10 100 1000

Production computed by ISM

Fig. 1 Production (kJ m™ yr ! computed from F/B estimates
using multiple linear regression (MLR based on 899 data sets,
R? = 0.733) or artificial neural networks (ANN, average of the
10 nets in Tables 5 & 6) compared to estimates based on ISM
(Table 3) The diagonal line represents the expected 1:1 rela-
tionship. Total production is estimated to be 2871.4 kJ m = yr™’
(MLR) and 2462.7 kJ m™% yr ' (ANN), respectively, while ISM
yielded 2648.7 kJ m? yr~!
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the structure and dynamics of macrozoobenthos (e.g
Boesch et al. 1976, Daly & Mathieson 1977, Grant 1981,
Blaricom 1982, Eckman 1983). Additionally, data accu-
racy is likely to be affected by methodological short-
comings. Field sampling of population data is a source
of large variability (Eleftheriou & Holme 1984 and ref-
erences therein). Misinterpretation of data, e.g. of age
classes, can lead to distinct errors in production com-
putations, too. This might be the case with Capitella
sp. in Sprung's data (our Table 3), the P/B ratio of
which 1s well below estimates of other authors for
capitellid polychaetes (e.g. Oyenekan 1983).

It is obvious from our results that even advanced
models applied to extensive data sets do not result in
empirical relations which are able to estimate popula-
tion P/B ratios or production with high accuracy. Aver-
age absolute deviations of 85% (MLR) and 69 % (ANN)
of the estimate from the measured value may be above
acceptable limits (compare Fig 1). However, provided
that deviations of estimates from true values are ran-
domly distributed among the populations of a commu-
nity, empirical models should be able to estimate com-
munity production fairly accurately, as already stated
by Brey (1990). The error in estimating the total pro-
duction of the 30 populations included in Sprung's data
{our Table 3) is only +8.4% (MLR) and =7.0% (ANN).
Although more test data are required for valid state-
ments, we believe that these models may be extremely
helpful in investigations on community energetics.

Our results indicate that one potential application of
ANN in ecology may be evaluating the quality of MLR
prediction models. Because of their inherent flexibility,
ANN may perform better than MLR in many cases, as
shown in this study. Therefore they may be a more
appropriate tool when emphasis is put on the predic-
tion itself and not on the underlying relations between
independent and dependent variables.
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