Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. II. Specific role of the silicic acid pump in the year-round dominance of diatoms in the Bay of Brest (France)

Yolanda Del Amo*, Bernard Quéguiner, Paul Tréguer, Hervé Breton, Luis Lampert

ABSTRACT: To assess the consequences of very-high-nitrate freshwater inputs on phytoplankton community structure a complete 1993-1994 annual cycle is described for the Bay of Brest (France). In contrast to other nitrate-enriched coastal ecosystems where small and non-siliceous species dominate in summer, in this well-mixed macrotidal ecosystem diatoms $>$10 μm dominated bloom successions in surface waters from March to September 1993. Following a small bloom of Skeletonema costatum in March, an intensive spring bloom (biogenic silica, BSi = 1.8 to 2 μmol Si l$^{-1}$) observed in April-May (first dominated by Thalassiosira spp. and then by Rhizosolenia spp. by late May) collapsed due to Si limitation. Although dinoflagellates developed during the decline of this spring bloom and remained abundant until late September, a new diatom-dominated population (Chaetoceros spp.) developed from the end of May until late September (BSI decreased from about 1 to 0.5 μmol Si l$^{-1}$). Finally, at the end of the productive period (September), a bloom dominated by the $<$10 μm size class, essentially due to cryptophyceans, occurred. On an annual basis, the $>$10 μm size class accounted for 73 to 74% of the time-weighted averages of chlorophyll a, of primary production, and of biogenic silica in surface waters. Finally, there is no evidence that the phytoplankton community structure of the Bay of Brest was dramatically affected by nitrate enrichment, either in terms of size structure or of diatom abundance relative to dinoflagellates (although the emergence of some undesirable species among the dinoflagellates was observed). A silicic acid (i.e. silicate) pump, specific to well-mixed coastal ecosystems, is inferred to explain the dominance of diatoms during the periods following the spring bloom. It provides a mechanism that prevents silicon loss out of the system by trapping it at the shallow water-sediment interface at the end of the spring bloom. The tidally induced vertical mixing allows silicic acid from biogenic silica dissolution to become readily available for new diatom developments in surface waters.

KEY WORDS: Coastal ecosystem Phytoplankton dynamics · Community structure · Diatoms · Dinoflagellates · Size classes · Nutrient limitation · Silicon · Eutrophication

INTRODUCTION

The long-term increase of nutrient enrichment in western European coastal waters has often been associated with eutrophication problems as well as modifications of the phytoplankton community structure (Smayda 1990, Bilen et al. 1991). Increased anthropogenic inputs of nitrogen and phosphorus to rivers has led to a decline of dissolved Si:N and Si:P ratios in adjacent coastal waters, favoring potential Si limitation of diatom primary production (Meybeck & Helmer 1989, Smayda 1990, Le Pape et al. 1996, Del Amo et al. 1997). Phytoplankton species composition is sensitive to nutrient ratios and diatoms clearly appear to be the most affected group (Officer & Ryther 1980, Smayda...
This study is part of a major, multi-annual, research project (Contrat de Baie), which focused on the assessment of the consequences of increasing nitrate freshwater loads on the ecological balance of the Bay of Brest. A companion paper (Del Amo et al. 1997) discusses the nutritional limitation of primary production over the entire annual cycle. In this study, we focus on changes in species composition and size distribution within the phytoplankton community over the annual cycle in relation to environmental variations. To explain the persistence of the paradoxical diatom dominance in Si-limited environments, we finally address the question of the specific functioning of the silicic acid (i.e., silicate) pump (see Dugdale et al. 1995) in well-mixed coastal ecosystems.

MATERIALS AND METHODS

Sampling strategy and analytical methods. Data collection was carried out during 30 cruises between 15 February 1993 and 21 March 1994, at Stn R, (48° 20′ N, 4° 30′ W) (Fig. 1), which is located in the central part of the Bay of Brest and is considered to be typical of the main part of the Bay (Quéguiner 1982, Delmas & Tréguer 1983, Ragueneau et al. 1994). Sampling frequency ranged from twice a week during spring to once a month during winter, and determination of physical (temperature, salinity), chemical (nutrients) and biological parameters (oxygen, biomass and primary production) was performed in non-replicated samples from different depths of the water column. Biomass of siliceous forms (biogenic silica or BSI) was determined for surface and bottom water samples of 500 to 1000 ml of seawater after filtration through 0.6 μm polycarbonate Nuclepore filters. Filters were dried for 24 h at 60°C and stored in closed plastic Petri dishes for further determination of BSI, according to Ragueneau & Tréguer (1994) (precision: 5%). Detailed sampling strategy and basic analytical methods are described in Del Amo et al. (1997).

Size fractionation. Because vertical mixing generally characterizes this system (see Del Amo et al. 1997), size fractionation was only performed on surface water samples for particulate organic carbon (POC) and nitrogen (PON), chlorophyll a (chl a), phaeopigments, BSI and primary production rates. Size fractions of chl a, phaeopigments, BSI and primary production were conducted by post-screening through Nuclepore filters (10 μm, 2 μm, and 0.6 μm) on a 3 level Sartorius filtration device. Concentrations in unfractionated samples (Nuclepore >0.6 μm) were also measured, and, except for the BSI, they have been reported in Del Amo et al. (1997).

For POC and PON fractionation, seawater was pre-filtered through 2 or 10 μm Nuclepore filters, and then

1990, Conley & Malone 1992). Si limitation can result in considerable modifications of the phytoplankton community structure at the species-composition level or at the size-structure level. Concerning the phytoplankton species composition, decreased diatom abundance or dominance (van Bennekom et al. 1975, Bodeanu 1990) and widespread shifts from siliceous (diatoms) towards non-siliceous (flagellates) species (Billen et al. 1991, Fisher et al. 1992), with the possible emergence of novel and nuisance phytoplankton blooms (Smayda 1990, Anderson 1995), have been reported following N and P enrichments. The modification of the size structure of the phytoplankton community is also reflected by shifts toward smaller-sized organisms (Revelante & Gilmartin 1978). Following the classification of Sieburth et al. (1978), 3 major pelagic size classes can be distinguished: pico- (<2 μm), nano- (2–20 μm), and micro- (20–200 μm) plankton. Although seasonal increases in primary production generally reflect the microplankton growth, pico- and nanoplankton can sometimes be significant contributors to primary production in eutrophic coastal ecosystems (Larsson & Hagström 1982, Lessard & Swift 1985, Hansen 1992, Leakey et al. 1992). Such shifts from microplankton to nanoplankton and from siliceous towards non-siliceous can deeply affect the overall pelagic productivity (Officer & Ryther 1980, Legendre & Le Févre 1989) in terms of nutrient cycling, food web structure and energy flow (Michaels & Silver 1988). Whereas diatoms generally promote transfer of energy to higher trophic levels, many of the organisms belonging to smaller size classes are more involved in the ‘microbial food web’ (Doering et al. 1989, Legendre & Le Févre 1989), rather than contributing directly to the planktonic food chain (Azam et al. 1983). Therefore, the composition and the size structure of the phytoplankton community partly reflect the relative importance of the microbial food web over overall ecosystem production (Sieburth et al. 1978, Azam et al. 1983, Fenchel 1987, Hagström et al. 1988, Caron 1991) and should therefore be quantified.

In the studied ecosystem, the Bay of Brest (France), a macrotidal coastal ecosystem influenced by freshwater inputs and rapid exchange with adjacent ocean waters (see Del Amo et al. 1997), a doubling in the nitrate riverine supply during the last 20 yr and a parallel decrease of the Si:DIN (silicic acid: dissolved inorganic nitrogen) ratio in coastal waters (from 2.00 to 0.33) have been observed (Le Pape et al. 1996). The apparent phytoplankton productivity has not shown any response yet to this increased nitrogen fertilization (Le Pape et al. 1996), but silicic acid was found to be the current potential limiting factor of diatom growth in the Bay of Brest during spring and summer (Ragueneau et al. 1994, Del Amo et al. 1997).
Plankton species identification and numeration. Samples for plankton species composition in surface and bottom waters were preserved on board with an acid Lugol's solution. Species were identified and counted by microscopic examination on an inverted microscope (Utermöhl 1931). The enumeration of microzooplankton was restricted to ciliates and identification of dinoflagellates was done only for the recognizable genera. Nanoplankton (<10 µm linear size) identification was also restricted to cryptophyceans and dinoflagellates, and, for the purpose of simplification, we will refer to them as 'nanoflagellates', i.e. the smallest non-siliceous cells. 'Microplankton' will encompass the larger organisms, i.e. all diatoms and dinoflagellates >10 µm. Some diatom cells <10 µm can be found in the Bay of Brest; however, they are seldom found as isolated organisms but rather form large colonies of individuals, like Skeletonema costatum and Chaetoceros socialis, which are retained on the 10 µm filters. Counts varied from 200 to 1600 cells per sample, leading to an accuracy range of 5 to 16% (i.e. percent of total) (Lund et al. 1958).

RESULTS

Based on biomass and primary production changes (Fig. 2), Del Amo et al. (1997) divided the annual cycle of the Bay of Brest into 4 periods: Period I, the spring transition period (15 February to 1 April 1993); Period II, the spring bloom period (1 April to 18 May 1993); Period III, the secondary blooms period (18 May to 7 October 1993); and Period IV, the fall/winter period (7 October 1993 to 17 February 1994). Within the annual cycle, BSI concentrations (Figs. 2 & 3) and the phytoplankton succession (Figs. 4 & 5) reflected the above partitioning particularly well, as different community structures characterized each phase (see below).

The >10 µm size class

During the 1993–1994 annual cycle, the seasonal variations of biomass and primary production (Figs. 2 & 3) were mainly caused by the >10 µm size class. The latter was dominated by diatoms (see below) all year round. This size class accounted for 23 to 46% (0.1 to 0.2 µg l⁻¹) of total chl a (Fig. 2a) during the fall/winter...
Fig. 2. Biomass and primary production in size-fractionated samples in surface waters of the Bay of Brest during the 1993-1994 annual cycle (Stn R3). (a) Chl a (pg l-1); (b) phaeopigments (pg l-1); (c) POC (pmol l-1); (d) BSi (pmol l-1); (e) primary production (mg C m-2 d-1). Periods: I, spring transition; II, spring bloom; III, secondary blooms; IV, fall/winter.

period, whereas it accounted for up to 91–95% (5.3 to 6.4 μg l-1) during the spring bloom in April-May. During the secondary blooms period, there was a somewhat regular trend of decreasing contribution of the >10 μm size class, which represented respectively 81% (3.0 μg l-1), 84% (1.1 μg l-1), 75% (1.1 μg l-1), and 54% (0.4 μg l-1) of the total at each successive chl a maximum.

The maximum contribution of phaeopigments from the >10 μm size class, accounting for as much as 90% (2.6 μg l-1) of the total (Fig. 2b), was reached at the phaeopigment maximum on 18 May when the bloom collapsed. Although phaeopigments are known to be overestimated by the analytical method used for this study (Turner™ fluorometry), they can represent up to 50% of total pigments in coastal waters (Longhurst et al. 1995). During the secondary blooms period, the >10 μm size class showed a decreasing trend, with values ranging from 0.2 to 0.5 μg l-1 (40 to 70% of the total) until mid-August, whereas for the rest of the year including the fall/winter period, values were very low (< 0.1 μg l-1).

Because POC and PON concentrations exhibited a similar pattern within the annual cycle (Del Amo et al. 1997), only the annual progression of POC within the size classes is shown in Fig. 2c. POC and PON maxima of the >10 μm size class were reached simultaneously with the spring bloom chl a maximum (Fig. 2a), as well as with BSi maximum (Fig. 2d). At that time, the >10 μm size class accounted for 69% (38.3 μmol C l-1) and 61% (3.5 μmol N l-1) of the total concentrations of POC and PON respectively. Two distinct peaks of BSi concentrations were observed during the spring bloom (1.79 μmol l-1 on 27 April and 1.99 μmol l-1 on 13 May, Fig. 2d). Both of them were mainly due to diatoms >10 μm (this size class accounted respectively for 91 and 94% of the total BSi concentration), but the diatom populations of each peak were dominated by a different species (see below). Although the water column was well mixed during the year, it is noteworthy that at each decline of the diatom blooms (late April, mid-May and June-July), total BSi concentrations in bottom waters were slightly higher than surface concentrations (Fig. 3). During the secondary blooms period, POC, PON and BSi concentrations of the >10 μm size class remained relatively high until mid-August (ranges: 3.1 to 10.3 μmol C l-1, 0.6 to 1.4 μmol N l-1 and 0.7 to 1.0 μmol Si l-1), accounting for 22 to 55, 36 to 62 and 78 to 92%, respectively, of the totals; afterwards, values decreased rapidly and the contribution of this size class remained minor during the rest of the year.

On an annual scale, 73% of the integrated annual primary production at the surface was achieved by the >10 μm size class, and that fraction was responsible for most of the major seasonal variations of primary production (Fig. 2e). Four successive peaks of total primary production rates were observed during the 1993–1994 annual cycle (Del Amo et al. 1997). The >10 μm size class accounted for 92% (200.4 mg C m-3 d-1) of the total during the spring bloom peak of 27 April and...
83% (100.8 mg C m\(^{-3}\) d\(^{-1}\)) and 80% (76.8 mg C m\(^{-3}\) d\(^{-1}\)) of the totals, respectively, during the first 2 secondary blooms. However, the >10 \(\mu\)m size class did not dominate the last secondary bloom in September, when its contribution to the total was only 48% (28.8 mg C m\(^{-3}\) d\(^{-1}\)) and cryptophyceans dominated over diatoms.

The 2-10 \(\mu\)m size class

The 2-10 \(\mu\)m size class showed relatively low concentrations in each biomass parameter (Fig. 2). Throughout the productive period, chl \(a\), phaeopigment, POC and BSi concentrations remained \(\leq 0.6 \mu\)g 1\(^{-1}\), 0.4 \(\mu\)g 1\(^{-1}\), 8 \(\mu\)mol C 1\(^{-1}\) and 0.3 \(\mu\)mol Si 1\(^{-1}\) respectively. Some distinct peaks of chl \(a\) and POC concentrations (Fig. 2a, c) were however observed during the spring bloom, when first cryptophyceans and then nanodinoflagellates developed intensively (Fig. 6). During the secondary blooms period, the 2-10 \(\mu\)m size class showed a regular increase in its contribution to the total biomass, i.e. an inverse progression as compared to the >10 \(\mu\)m size class; chl \(a\) concentrations increased from 0.1 \(\mu\)g 1\(^{-1}\) (9% of the total) in late June up to 0.5 \(\mu\)g 1\(^{-1}\) (67%) in early October, and phaeopigment concentrations (Fig. 2b) increased from 0.1 \(\mu\)g 1\(^{-1}\) (24%) in late June to 0.4 \(\mu\)g 1\(^{-1}\) (68%) in late September. It is noteworthy that during the fall/winter period, most of the phaeopigments (62 to 68% of the total) were found in that size class. Small variations characterized the BSI concentrations of the 2-10 \(\mu\)m size class throughout the year and the contribution of this size class to total BSI was generally <17% during the productive period; the maximum BSi concentration of this size class (0.3 \(\mu\)mol Si 1\(^{-1}\)) was reached in September, when it accounted for 60% of the total (Fig. 2d).

As for biomass, primary production (Fig. 2e) within the 2-10 \(\mu\)m size class was relatively low (range 1.2 to 30 mg C m\(^{-3}\) d\(^{-1}\)) and accounted for only 17% of the total integrated annual surface value. The highest values were measured during the spring transition (25.2 mg C m\(^{-3}\) d\(^{-1}\), 53% of the total), as well as during the spring bloom, when this size class accounted for 38% of the total primary production (30 mg C m\(^{-3}\) d\(^{-1}\)); afterwards, its contribution dropped down to 6%. During the secondary blooms period, successive peaks of increasing amplitude occurred, and we observed an increasing trend similar to that of biomass, up to 33% (20.4 mg C m\(^{-3}\) d\(^{-1}\)) in late September.

The 0.6–2 \(\mu\)m size class

The picoplankton showed no or little seasonal variations in terms of chl \(a\), phaeopigment, BSi and primary production over the annual cycle (Fig. 2), with respective concentrations of <0.3 \(\mu\)g 1\(^{-1}\), 0.2 \(\mu\)g 1\(^{-1}\), 0.1 \(\mu\)mol Si 1\(^{-1}\) and 13.2 mg C m\(^{-3}\) d\(^{-1}\) throughout the year. On an annual basis, the primary production of the 0.6–2 \(\mu\)m size class (Fig. 2e) represented only 10% of the integrated surface rate. The seasonal progression of primary production rates exhibited a pattern quite similar to that of the 2–10 \(\mu\)m size class, with increases occurring during the spring transition and the spring bloom (range: 2.4 to 13.2 mg C m\(^{-3}\) d\(^{-1}\)), and a gradual increase from June to late September (from 1.2 to 12 mg C m\(^{-3}\) d\(^{-1}\)), when the 0.6–2 \(\mu\)m size class contributed up to 20% of the total. The high POC content within the 0.6–2 \(\mu\)m size class (range of concentrations: 4.3 to 13.0 \(\mu\)mol C 1\(^{-1}\), Fig. 2e), as compared to the low chl \(a\) concentrations (C:chl \(a\) ratios >463 during the productive period), suggests either an important contribution of heterotrophs (probably linked with bacterial growth) or that most of this POC was detrital. During this period, C:N molar ratios in this size class ranged from 8 to 37, and phaeopigment-chl \(a\) ratios ranged from 0.2 to 2.3, with higher values when blooms of the >10 \(\mu\)m size fraction died down, suggesting that the 0.6–2 \(\mu\)m size fraction contained fragments of dead cells and detrital material. It is known that size fractionation can result in overestimation of picoplankton due to retention of cellular material from broken or damaged larger cells during the filtration procedure (e.g. Lignell 1992, Fahnenstiel et al. 1994); therefore, some contamination of the 0.6–2 \(\mu\)m size class by POC and PON from cellular fragments of larger cells is possible.

Species composition

Counts on surface and bottom samples were close to each other throughout the year; hence, the results herein are those for surface samples only.
Nanoflagellates exhibited a narrow range of variations (from 5.3×10^4 to 1.0×10^6 cells l$^{-1}$) as compared to the major changes observed in microplankton cell numbers (range: 3.1×10^3 to 2.2×10^6 cells l$^{-1}$) (Fig. 4). On an annual scale, the striking feature within the microplankton was the year-round dominance of diatoms over dinoflagellates (Fig. 5). Dinoflagellates were mainly observed during the secondary blooms period but, even at that time, they did not exceed 5.1×10^4 cells l$^{-1}$, i.e. 2 orders of magnitude lower than diatoms.

Period IV: fall/winter. This period was characterized by low cell numbers of both diatoms ($<1.1 \times 10^4$ cells l$^{-1}$) and dinoflagellates ($<8.0 \times 10^3$ cells l$^{-1}$). The diatom population was mainly composed of small chains or isolated cells of *Thalassionema nitzschoides*, *Pseudonitzschia* spp. and *Thalassiosira* spp. During that period, nanoflagellates did not exceed 4.5×10^5 cells l$^{-1}$ and occasional increases were mainly related to cryptophyceans (Fig. 6).

Period I: spring transition. Beginning in mid-February, a slight increase of the microplankton was observed with the development of *Skeletonema costatum*, reaching up to 5.0×10^4 cells l$^{-1}$ (68% of total microplankton on 15 March 1993) (Fig. 5a). Other diatoms present at that time were *Thalassiosira cf. fallax* and *T. cf. rotula*. Small (10 to 20 μm) dinoflagellates like *Scrippsiella trochoidea*, *Cachonina niei*, *Heterocapsa triqueta* and *Minuscula bipes* gained importance in early spring; however, a large proportion of unidentified dinoflagellates, more often represented by single or few individuals in the cell counts, was observed (Fig. 5b). Within the nanoflagellate group, an
increase of small unidentified species occurred simultaneously with a decrease of cryptophyceans, while nanodinoflagellates showed little variations in cell numbers (Fig. 6).

Period II: spring bloom. A broad peak of microplankton from mid-April until mid-May (7.8 \times 10^5 to 6.1 \times 10^5 cells l\(^{-1}\); Fig. 4) was observed simultaneously with maximums in >10 \mu m size class primary production and biomass (chl a and BSI; Fig. 2a, d). This peak was due to 2 diatom-dominated populations (Fig. 5a): during the early spring bloom period, the chain-forming *Thalassiosira* cf. *tallax* accounted for as much as 86% of the total microplankton number and was accompanied by a mixed population of *Chaetoceros* spp. (C. cf. *debiele*, C. cf. *curvisetum*, C. cf. *affine*, C. cf. *socialle*, C. cf. *protuberans*). Afterwards, a mixed population of *Rhipsozolenia* spp. (mainly *R. delicatula* and *R. iraglissima*) dominated, accounting for up to 85% (5.8 \times 10^5 cells l\(^{-1}\)) of the total microplankton number. After this peak, microplankton cell number dropped to <1.4 \times 10^5 cells l\(^{-1}\) on 18 May and, accordingly, a large number of empty frustules (4.2 \times 10^5 cells l\(^{-1}\)) was observed.

The major increase in dinoflagellate numbers occurred from mid-April and was concomitant with the development of the *Rhizosolenia* population, although dinoflagellates did not collapse on 18 May as did the diatom community (Fig. 5a, b). The dinoflagellate population was composed of a variety of species belonging to the genera *Gonyaulax*, *Gymnodinium*, *Gyrodinium*, and *Protoperydinium* as well as the small dinoflagellates of the spring transition. The collapse of the diatom bloom on 18 May was also characterized by the emergence of toxic species like *Gymnodinium cf. nagasakiense* and *Dinophysis* spp.

During the spring bloom, nanoflagellate development progression (Fig. 4) was also characterized by 2 successive peaks. The first one, at the beginning of the period, was tightly coupled to increases in both 2–10 \mu m size class primary production and chl a, and was dominated by cryptophyceans (Fig. 6). However, these forms had exhibited a dramatic decrease by late April (from 4.8 \times 10^5 to 8.2 \times 10^4 cells l\(^{-1}\)), and at the end of the spring bloom, a second nanoflagellate development was essentially dominated by nanodinoflagellates. It is noteworthy that this increase of the <10 \mu m dinoflagellates matched the development of the larger dinoflagellates of the microplankton mentioned before. Ciliates started to develop during the spring bloom and their number ranged between 1.8 \times 10^3 and 1.3 \times 10^4 cells l\(^{-1}\).

Period III: secondary blooms. The first secondary bloom was characterized by the most striking increase of microplankton numbers (up to 2.2 \times 10^6 cells l\(^{-1}\); Fig. 4) although increases in chl a and BSI concentrations as well as in primary production rates in the >10 \mu m size class were only moderate, i.e. 3.0 \mu g l\(^{-1}\), 1.0 pmol SI l\(^{-1}\) and 8.4 mg C m\(^{-3}\) d\(^{-1}\), respectively (Figs. 2 & 3). The reason for the weaker variation in biomass and production parameters as compared to cell numbers has to be related to differences in the species composition of the diatom population (Fig. 5a). The secondary blooms were dominated by *Chaetoceros sociale*, which accounted for up to 98% of the *Chaetoceros* spp. cell counts during the first microplankton peak. As already mentioned, individuals of this species are <10 \mu m in size but they are included in the microplankton because they are organized in chains. *Rhipsozolenia* spp., as well as other species of the *Chaetoceros* sub-genus *Hyalochaete*, forming long and twisted chains of small cells, were also present together with *Leptocylindrus* spp. during the successive secondary blooms.

Dinoflagellates reached their maximum (5.1 \times 10^4 cells l\(^{-1}\)) at the beginning of the secondary blooms period and remained relatively abundant (range: 3.0 to 5.1 \times 10^4 cells l\(^{-1}\)) until mid-September (Fig. 5b), but without ever dominating over diatoms. *Proorocentrum micans*, *Gymnodinium* spp., *Gyrodinium* spp. and unidentified dinoflagellate cell types were the most abundant, but smaller dinoflagellates again developed at the end of this period. It should be noted that maximum cell concentration of *Dinophysis* spp. (up to 9.6 \times 10^5 cells l\(^{-1}\)) occurred simultaneously with that of the prymnesiophyte *Phaeocystis pouchetii* (5.1 \times 10^4 cells l\(^{-1}\)) at the beginning of the secondary blooms period.
Euglena spp. were also observed with increasing numbers from mid-July (3.5 x 10^3 cells l^{-1}) to early September (1.9 x 10^4 cells l^{-1}).

Three moderate peaks of nanoflagellates (<5.8 x 10^5 cells l^{-1}) characterized the secondary blooms period (Fig. 4), a pattern close to that of the chl a and primary production of the 2–10 μm size class. The last increases in 2–10 μm size class chl a and primary production were mainly attributable to cryptophyceans (Fig. 6). A close relationship between nanoflagellates and ciliates was observed during the secondary blooms period: each increase in nanoflagellate concentration occurring during the secondary blooms period was paralleled by an increase in ciliate numbers, suggesting that nanoflagellates were controlled by ciliates during the secondary blooms period.

DISCUSSION

Phytoplankton community structure

Shift from microplankton to nanoplankton?

The overwhelming contribution of the >10 μm size class to chl a, POC and BSI biomass and the primary production throughout the productive period (from early April to early October) is a major feature of the seasonal plankton cycle of the Bay of Brest (Fig. 7, Table 1). The seasonal increases in plankton biomass and primary production are mainly associated with changes in the respective concentrations of the >10 μm size class. On an annual basis, the >10 μm size class accounted both for 73% of the time-weighted average chl a and of the time-weighted average primary production in surface waters. Contrary to the situation found in other N-enriched coastal systems, like the Gulf of Mexico (Nelson & Dortch 1996), the Northern Adriatic Sea (Revelante & Gilmartin 1976, Malej et al. 1995), the Chesapeake Bay (Fisher et al. 1992, Sellner 1987), or the Otsuchi Bay (Tsuda et al. 1994), where summer phytoplankton is dominated by nanoflagellates, most of the Bay of Brest summer phytoplankton belongs to the microplankton size class. However, due to the possibility of developments of cryptophyceans, the last secondary bloom at the end of the productive period may be characterized by a substantial contribution of the 2–10 μm size class to total primary production and to chl a. This situation is comparable to that of the Gulf of Trieste where a late summer peak of nanophytoplankton is usually observed (Malej et al. 1995). As expected due to their chain-forming characteristic, diatom contribution in the 2–10 μm size class is low (only 21% of the annual time-averaged BSI concentration was found in that fraction).

Nevertheless, an increasing contribution of the 2–10 μm size class from May to September (Fig. 7) occurs in the Bay of Brest as N becomes the major limiting nutrient (Del Amo et al. 1997). Therefore, this increase does not seem to represent a response of the community structure to the high-nitrate loads to the Bay by freshwater inputs. The nanoflagellate bloom would rather reflect their better adaptation to low nutrient conditions (Egge & Aksnes 1992). A better adaptation to low irradiances is also suggested by the predominant contribution of the 2–10 μm size class to total biomass and primary production during the periods when primary production is primarily limited by light (Quéguiner & Tréguer 1984, Del Amo et al. 1997), i.e. the fall/winter period and the spring transition.

Table 1. Summary of the main features of each seasonal period. Chl a concentrations and primary production rates are time-weighted averaged values for each period (ranges in parentheses). Small dinoflagellates: *Minuscula bipes*, *Scrippsiella trochoidea*, *Cachonina neii* and *Heterocapsa triquetra*.

<table>
<thead>
<tr>
<th>Nutrient characteristic</th>
<th>IV. fall/winter</th>
<th>I. spring transition</th>
<th>II. spring bloom</th>
<th>III. secondary blooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chl a (μg l^{-1})</td>
<td>N excess</td>
<td>N excess</td>
<td>Si limitation</td>
<td>Si, P and N limitation</td>
</tr>
<tr>
<td></td>
<td>0.39 (0.28–0.47)</td>
<td>0.87 (0.61–1.14)</td>
<td>4.08 (0.65–7.74)</td>
<td>1.52 (0.66–3.47)</td>
</tr>
<tr>
<td>Primary production</td>
<td>13.2 (6.6–25.3)</td>
<td>38.3 (28.0–45.1)</td>
<td>93.6 (9.8–196.8)</td>
<td>63.1 (23.4–126.5)</td>
</tr>
<tr>
<td>(mg C m^{-3} d^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominant dinoflagellate species</td>
<td>Mixed</td>
<td>Small dinoflagellates</td>
<td>Gymnodinium spp., small dinoflagellates</td>
<td>Gymnodinium spp., Gyrodinium spp., Dinophysis spp. (22%)</td>
</tr>
<tr>
<td>Dominant nanoflagellate group</td>
<td>Cryptophyceans</td>
<td>Cryptophyceans</td>
<td>April cryptophyceans</td>
<td>Mixed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May dinoflagellates</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 7. Contribution of each size class (M. >10 μm; N. 2-10 μm; P. 0.6-2 μm) to the time-weighted averaged chlorophyll a concentration and to the integrated primary production rate during each period of the year. Pie height is proportional to the respective averaged concentration or rate.

Furthermore, biological activity during those periods and during the last bloom in September is especially restricted to the surface layer.

Shift from siliceous to non-siliceous species?

A second striking feature is the dominance of diatoms as major components of primary producers within the Bay of Brest pelagic community during the spring bloom as well as during the successive secondary blooms (Table 1). Diatoms are essentially found in the largest size class, which accounted for 74% of the time-weighted average BSi concentration.

Dinoflagellates and nanoflagellates develop in summer, which is a situation similar to those found in other N-enriched coastal systems, such as the Gulf of Mexico (Nelson & Dortch 1996), the Adriatic Sea (Revelante & Gilmartin 1976), the Chesapeake Bay (Fisher et al. 1992), the San Francisco Bay (Cloern 1996), or the Otsuchi Bay (Tsuda et al. 1994). The striking difference between the Bay of Brest and the above ecosystems is that summer flagellates are never dominant. Such a spring and summer diatom dominance is a common feature of nearshore well-mixed waters of the western English Channel (Grall & Jacques 1964, Martin-Jézéquel 1983, Wafar et al. 1983, Raguenue et al. 1996). However, the dinoflagellate development observed during the decline of the spring diatom bloom and its relatively long duration in summer (from early June to mid-September 1993) seem to be a new phenomenon in the Bay when compared with previous studies (Quéguiner & Tréguer 1984).

However, although no shift from siliceous to non-siliceous phytoplankton has been observed, the long term increase of anthropogenic N inputs and the decline of the Si:DIN ratios (Le Pape et al. 1996) have led to consistent exhaustion of silicic acid by early spring followed by a period of low silicic acid levels during the secondary blooms period (Del Amo et al. 1997). Si limitation of the diatom-dominated spring bloom could have triggered the shift from the Thalassiosira spp. population to the Rhizosolenia spp. community; it might also have controlled the collapse of the entire diatom population by early May while dinoflagellates (< and >10 μm) kept growing. In the Gulf of Mexico in spring, Nelson & Dortch (1996) observed systematic changes in response to Si limitation within the diatom assemblage, with Si limitation favoring species with a high affinity for silicic acid over those less adapted to silicic acid-depleted habitats.

In spite of the diatom dominance, the emergence of some undesirable >10 μm flagellates (Phaeocystis pouchetii colonies, Dinophysis spp. and Gymnodinium cf. nagasakiense) was observed during the 1993–1994 annual cycle. The emergence of P. pouchetii had never been observed before in the Bay of Brest, but it had already been reported as a common phenomenon in the aftermath of a diatom bloom due to nutrient depletion (van Bennekom et al. 1975, Egge & Aksnes 1992). In contrast, Delmas et al. (1992) have explained the occurrence of Dinophysis spp. in nearshore waters of the French Atlantic coast as a result of mass transport from offshore waters. Although no data is presently available to demonstrate whether relatively dense populations of P. pouchetii (up to 5.1 × 10⁶ cells l⁻¹) and Dinophysis spp. (up to 9.6 × 10⁴ cells l⁻¹) in the Bay of Brest waters result from active growth, from mass transport, or from both, it is interesting to note that those species were present in the adjacent oceanic...
waters earlier within the season in cell numbers up to 4.7×10^4 and 2.4×10^5 cells l^{-1}, respectively.

Summer conditions prevailing in macrotidal ecosystems, i.e. the Bay of Brest and the western English Channel, may prevent a massive increase of flagellates due to high vertical mixing. As opposed to other N-enriched ecosystems, most of the summer period in the Bay of Brest is characterized by nitrate-rich waters due to the severe imbalance of Si and N (low Si:DIN ratio) in freshwater loads (Table 2; Del Amo et al. 1997), so that the successive summer diatom developments can only occur as soon as silicic acid is again available. However, freshwater and therefore Si inputs from rivers in summer are very weak (Table 2; Del Amo et al. 1997) and therefore Si must originate from other sources such as recycling. Furthermore, diatom production during summer is particularly important, and Si concentrations, although potentially limiting because of the high diatom requirement, increased during this period, while DIN concentrations simultaneously decreased (Del Amo et al. 1997).

Silicic acid in shallow well-mixed ecosystems

The relatively weak development of summer diatom flagellates as compared to diatoms could be in part explained by the high vertical mixing of the water column in the Bay of Brest. However, it is important to examine the reasons why the phytoplankton cycle here is so different from other coastal systems that do not allow summer diatoms to dominate over flagellates: how can summer diatom growth be so important in the Bay of Brest after the drastic Si limitation in spring?

The year-round dominance of diatoms cannot be supported without Si availability and should be related to the seasonal silicon cycle in this shallow, well-mixed ecosystem (Fig. 8). At the beginning of the productive period, diatom development leads to a severe depletion of silicic acid, and Del Amo et al. (1997) conclude that such a depletion causes the collapse of the spring bloom. As commonly observed in coastal ecosystems (e.g. Smetacek 1988), the bulk of the spring diatom bloom is not channeled through the pelagic food web due to the temporal mismatch with large macrozooplankton. In accordance with Bienfang et al. (1982), we hypothesize that the spring diatom population of the Bay of Brest might have rapidly settled at the water-sediment interface at the end of the spring bloom due to Si limitation. Supporting this hypothesis are the higher BSi concentrations measured in bottom waters relative to surface waters during the spring bloom collapse (Fig. 3). In coastal upwelling ecosystems with diatom-dominated populations, export of biogenic silica from the photic layer feeds the 'silicate pump' described by Dugdale et al. (1995), which results in enhanced loss of silicate versus nitrogen from surface towards deep waters. In deep and stratified water ecosystems, such a 'silicate pump' reduces the availability of silicic acid in the euphotic layer, increasing its role as a limiting nutrient in surface waters. Deep waters become oppositely Si enriched by BSi dissolution, as compared to N, which is rapidly recycled in the surface layer by heterotrophic activity (Lavasseur & Thiriault 1987, Dugdale et al. 1995, Fig. 8). In the shallow ecosystem of the Bay of Brest, we hypothesize that the 'silicate pump' works conversely to the scenario described by Dugdale et al. (1995) and silicon trapping as BSi at the water-sediment interface prevents from the loss of Si out of the system. The well-mixed nature of this system, resulting from tidally induced vertical mixing, then allows silicic acid originating from gradual dissolution of biogenic silica of the settled frustules to be readily available for diatom development in surface waters during the remaining productive period (Fig. 8). This pattern complies with the spring silica budget estimated by Raguenneau et al. (1994) emphasizing the increase of Si recycling from the sediment-water interface with temperature from April to June. It also explains the observed increase of silicic acid that supports the secondary blooms (Table 2). Thus, Si recycling restricts the dramatic Si-limiting period to a relatively short time interval and allows support of the high Si requirement of diatoms during summer, contrary to other stratified and deep water ecosystems where Si is trapped out of the euphotic zone after the spring bloom sedimentation.

There is evidence that Si retention in the sediments after the spring bloom applies to other coastal ecosystems, as described by Dugdale et al. (1995), although in those systems depth and stratification prevent the recycled silicic acid from reaching the surface layer. The silicic acid pump described by Dugdale et al. (1995) for stratified systems does not lead to an enhancement of the limit-

<table>
<thead>
<tr>
<th>Riverine discharge (m3 s$^{-1}$)</th>
<th>NO$_3^-$ (µM)</th>
<th>NH$_4^+$ (µM)</th>
<th>Si(OH)$_4$ (µM)</th>
<th>PO$_4^{2-}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring transition</td>
<td>23</td>
<td>23.0</td>
<td>0.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Spring bloom</td>
<td>44</td>
<td>8.6</td>
<td>0.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Secondary blooms</td>
<td>25</td>
<td>2.2</td>
<td>0.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Fall/winter</td>
<td>45</td>
<td>13.9</td>
<td>0.8</td>
<td>6.9</td>
</tr>
</tbody>
</table>
ing role of Si in shallow well-mixed ecosystems, but, on the contrary, to a prevention of Si limitation, i.e. the same mechanism leads to an opposite effect according to specific hydrodynamic conditions. This situation also applies for the nearshore well-mixed waters of the western English Channel where diatom blooms develop during spring tides, which increase water-mixing and enable nutrient replenishment of the water column from the sediment-water interface (Ragueneau et al. 1996).

Conclusion

The overall phytoplankton dynamics of the Bay of Brest contrast with those reported for other N-disturbed ecosystems, as the decrease of the Si:DIN ratio related to the N enrichment of coastal waters is classically associated with a general decrease of microplankton and diatom abundance, favoring the development of smaller and non-siliceous populations (Officer & Ryther 1980, Smayda 1990, Billen et al. 1991, Malej et al. 1995). Le Pape et al. (1996) showed that there is no acute response in the Bay of Brest to N enrichment in terms of primary productivity. At present, neither is there evidence that the observed winter surplus of nitrate as compared to silicic acid inputs (Del Amo et al. 1997) has dramatically affected the phytoplankton community structure of the Bay of Brest in terms of size structure and of diatom abundance relative to dinoflagellates. In terms of phytoplankton size structure, microplankton dominates during most of the productive period; its contribution to total biomass and to total primary production tends to decrease towards the end of the secondary blooms period, in favor of smaller size classes, which become important contributors from October to late March, probably due to their better adaptation to environmental conditions. Furthermore, because no previous data on the size structure of phytoplankton are available for the Bay of Brest ecosystem, conclusions cannot be drawn about potential long-term shifts from microplankton to nanoplankton as observed elsewhere in response to N and P enrichments (Revelante & Gilmartin 1978, Malej et al. 1995). However, dinoflagellates (<10 μm) increase at the spring bloom collapse and remain abundant during summer, with some non-desirable species emerging among them.

The original patterns of the biogeochemical cycles of Si and N in shallow well-mixed ecosystems prevent the appearance of a new production community dominated by dinoflagellates, contrary to what has been suggested by Billen et al. (1991) in the North Sea. The original mechanism of the 'silicate pump' in well-mixed ecosystems enables a high, diatom-dominated, summer production.

Acknowledgements. This research was supported by a Contrat de Base grant awarded by the Communauté Urbaine de Brest. We thank Olivier Le Pape and Philippe Cann for their work at sea, as well as 4 anonymous referees for their helpful comments. Thanks are also due to captains, officers, and crew members of the Marine Nationale ships for their technical assistance at sea. This work is UMR CNRS 6539 contribution 97006.
LITERATURE CITED

Delmas D, Herbland A, Maestri SY (1992) Environmental conditions which lead to increase in cell density of the toxic dinoflagellates Dinophysis sp. in nutrient-rich and nutrient-poor waters of the French Atlantic coast. Mar Ecol Prog Ser 89:53–61

Submitted: May 6, 1996; Accepted: September 9, 1997
Proofs received from author(s): December 15, 1997