Nitrogen fluxes through the lower estuary of the river Great Ouse, England: the role of the bottom sediments

M. Trimmer¹, D. B. Nedwell¹*, D. B. Sivyer², S. J. Malcolm²

¹Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
²Centre for Environment Fisheries and Aquaculture Sciences, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom

ABSTRACT: Sediment-water nutrient exchange, oxygen uptake, denitrification (acetylene blockage) and pore water nutrient concentration profiles were measured at intertidal sediment (predominantly silt/clays) sites in the lower estuary of the river Great Ouse, England. Sediments were consistent sinks for NO₃⁻ (310 μmol m⁻² h⁻¹, mean sites 4 to 9) and O₂ (2800 μmol m⁻² h⁻¹, mean sites 4 to 7), sources of NH₄⁺ (270 μmol m⁻² h⁻¹, mean sites 4 to 9) but neutral with respect to NO₂⁻ and urea. Oxygen uptake was significantly correlated (p < 0.05) with seasonal temperature. Nitrate exchange became saturated at NO₃⁻ concentrations > 400 μM, at a rate of about 400 μmol NO₃⁻ m⁻² h⁻¹. Denitrification accounted annually for 46% of the NO₃⁻ exchanged into the sediments and approached asymptotic rates during spring and summer at NO₃⁻ concentrations > 400 μM. Of the total N flux through the sediments, NH₄⁺ efflux accounted for 51%, whilst 49% was converted to gases, compared to >90% in the upper estuary. Freshwater flushing times were calculated for a defined area of the estuary and ranged from 20.5 d in June to 3.25 d in November. Attenuation of the riverine total oxidised nitrogen (NO₃⁻ + NO₂⁻) load to the estuary ranged from 1% in the middle of winter to 56% at the height of summer and annually the sediments denitrified 38.4 Mmol N. Recycling of nitrogen in the sediments, via NO₃⁻ ammonification (calculated by difference) and organic ammonification, generated an annual NH₄⁺ efflux of 128 Mmol N, equivalent to 22% of the primary production N requirement in the Wash.

KEY WORDS: Bottom sediments · Denitrification · Freshwater flushing · Nutrient attenuation

INTRODUCTION

The ability of estuaries to attenuate and divert riverine nutrient loads (primarily nitrogen and phosphorus) away from coastal seas has been studied increasingly over the past 3 decades (Nedwell 1975, Seitzinger et al. 1980, Billen et al. 1985, Law et al. 1991, Nielsen et al. 1995, Nedwell & Trimmer 1996, Nixon et al. 1996, Ogilvie et al. 1997), with denitrification receiving a great deal of attention. The fractional loss of riverine nutrient loads via either denitrification, primary production or sediment burial, within an estuary, does in part seem to be related to the estuary flushing time or residence time (Balls 1994, Nixon et al. 1996). However, estuarine sediments may also add fixed available N (primarily NH₄⁺) to the overlying water via NO₃⁻ ammonification and organic ammonification and are often a substantial source of N for pelagic primary production (Billen & Lancelot 1988).

The role of the bottom sediments in the N budget of the upper estuary of the Great Ouse was reported in Nedwell & Trimmer (1996). Although >90% of the total sedimentary N flux was to N gases and the sediments of the upper Great Ouse estuary were removing NO₃⁻ from the water column at a maximal rate throughout the year, the intense denitrification could only attenuate ~1% of the total oxidised nitrogen (TOxN; nitrate + nitrite) load. Such a small proportionate removal was due to the very high ratio of N load (in the water) to sediment surface area (areal N load) in this section of the river (455 mol N m⁻² yr⁻¹). The influence of the sediments via recycled N on the NH₄⁺ load was also very

*Addressee for correspondence. E-mail: nedwd@essex.ac.uk
small. The main aims of the current study were therefore to identify whether sedimentary N cycling in the much larger areas of intertidal flats at the mouth of the lower Great Ouse, at the edge of the Wash embayment, would have a greater effect on the N load of the Great Ouse compared to that measured in the upper estuary.

MATERIALS AND METHODS

Sample sites and sediment characteristics. This study examined a stretch of the Great Ouse estuary seaward of that described by Nedwell & Trimmer (1996). Seaward of King’s Lynn (site 4) the estuary widens from approximately 100 to 250 m at the mouth (site 5), where it then rapidly broadens out over the expansive intertidal flats at the edge of the Wash embayment. Sites 5, 6, 7, 8, 10 and 11 (Fig. 1) were situated on the intertidal flats which were predominantly silt/clays, 65 % (w/w) of particles <63 μm diameter. Sites 9 and 12 were seaward of the intertidal flats, where the sediments were dominated by fine sands with 85 % (w/w) of particles 250 to 125 μm diameter. Further sediment characteristics for the 9 sites are given in Table 1, measured as described by Nedwell & Trimmer (1996). Sites 4 to 9 (Fig. 1) were visited regularly between April 1994 and April 1995 at low tide using a small inflatable boat. Sites 10, 11 and 12 (Fig. 1) were visited (in turn on consecutive high tides) regularly between July 1990 and June 1994 at high tide using a flat-bottomed boat, grounding, and waiting to dry out at low tide.

Water column nutrients. Water samples (20 ml) were collected from sites 4 to 9, immediately filtered (0.2 μm Minisart Plus™, Sartorius UK Ltd), frozen in dry ice and stored at -20°C until analysed. After thawing, samples were analysed for nitrate, nitrite, ammonium and salinity on all occasions, and for urea in July 1994, according to the methods described in Nedwell & Trimmer (1996).

Pore water nutrient profiles. Duplicate sediment pore water profiles were collected from sites 10, 11 and 12 using an in situ vacuum ‘sipper’ system on each visit immediately after exposure at low tide (D. B. Sivyer & S. J. Malcolm, unpubl.). Each probe
Table 1. Average sediment characteristics for the 9 sites investigated. Sites 4 to 9 measured in May 1994; top 1-2 cm ± SE, n = 6. Sites 10, 11 and 12 measured July 1990 to June 1994; top 1 cm ± SE, n = 13.

<table>
<thead>
<tr>
<th>Site</th>
<th>Particle size6</th>
<th>Water content (g H₂O g⁻¹ sed.)</th>
<th>Specific gravity (g cm⁻³ sed.)</th>
<th>Porosity (cm³ H₂O cm⁻³ sed.)</th>
<th>Organic C (% dry wt)</th>
<th>Total N (% dry wt)</th>
<th>C:N ratio (mol: mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Very fine sands</td>
<td>0.23 ± 0.01</td>
<td>1.69 ± 0.06</td>
<td>0.38 ± 0.01</td>
<td>0.10 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td>5:1</td>
</tr>
<tr>
<td>5</td>
<td>Silt/clays</td>
<td>0.33 ± 0.03</td>
<td>1.75 ± 0.14</td>
<td>0.57 ± 0.03</td>
<td>0.21 ± 0.03</td>
<td>0.02 ± 0.00</td>
<td>13:1</td>
</tr>
<tr>
<td>6</td>
<td>Very fine sands</td>
<td>0.21 ± 0.01</td>
<td>1.81 ± 0.07</td>
<td>0.38 ± 0.01</td>
<td>0.21 ± 0.03</td>
<td>0.02 ± 0.00</td>
<td>17:1</td>
</tr>
<tr>
<td>7</td>
<td>Silt/clays</td>
<td>0.44 ± 0.03</td>
<td>1.39 ± 0.05</td>
<td>0.61 ± 0.02</td>
<td>2.23 ± 0.35</td>
<td>0.14 ± 0.02</td>
<td>19:1</td>
</tr>
<tr>
<td>8</td>
<td>Silt/clays</td>
<td>0.26 ± 0.02</td>
<td>1.73 ± 0.04</td>
<td>0.45 ± 0.03</td>
<td>0.44 ± 0.17</td>
<td>0.03 ± 0.01</td>
<td>18:1</td>
</tr>
<tr>
<td>9</td>
<td>Fine sands</td>
<td>0.39 ± 0.03</td>
<td>1.46 ± 0.06</td>
<td>0.56 ± 0.02</td>
<td>0.36 ± 0.08</td>
<td>0.06 ± 0.02</td>
<td>8:1</td>
</tr>
<tr>
<td>10</td>
<td>Silt/clays</td>
<td>0.41 ± 0.12</td>
<td>1.49 ± 0.13</td>
<td>0.61 ± 0.13</td>
<td>1.14 ± 0.79</td>
<td>0.09 ± 0.07</td>
<td>15:1</td>
</tr>
<tr>
<td>11</td>
<td>Silt/clays</td>
<td>0.37 ± 0.09</td>
<td>1.68 ± 0.10</td>
<td>0.62 ± 0.10</td>
<td>1.72 ± 0.51</td>
<td>0.14 ± 0.05</td>
<td>14:1</td>
</tr>
<tr>
<td>12</td>
<td>Fine sands</td>
<td>0.20 ± 0.05</td>
<td>1.95 ± 0.08</td>
<td>0.39 ± 0.08</td>
<td>0.37 ± 0.19</td>
<td>0.02 ± 0.02</td>
<td>22:1</td>
</tr>
</tbody>
</table>

Wentworth classification (Tait 1981): very fine sands 250–125 μm, very fine sands 125–63 μm, silt/clays <63 μm.

consisted of a filter band (9 μm pore size, 1 cm deep × 2.7 cm external diameter × 12.3 cm² surface area) mounted on a hollow support. Extracting a 10 ml sample of pore water in sediment with a porosity of 0.7 would draw water from 14.3 cm³ of sediment, 86% of which would be contained in the 12.3 cm³ ring of sediment immediately around the filter. Maximum pore water intrusion from sediment horizons above or below the designated depth would be between 0.3 and 1% (of the total 10 ml sample) depending on porosity. Extraction of a sufficient volume (10 ml) of pore water was usually complete after 5 to 10 min, depending on sediment type. On 3 occasions pore water samples were taken at the same depth at approximately 1 h intervals over a period of 4 h to look for changes in pore water nutrient pools. Extracted water samples were preserved with mercuric chloride solution (100 μl, 0.2% w/v; Kirkwood 1992) and subsequently analysed for NO₃⁻, NO₂⁻, NH₄⁺, SiO₃ and PO₄³⁻ according to Kirkwood (1996).

Rate measurements. Sediment-water nutrient exchange and oxygen uptake: For logistical reasons, sediment-water nutrient exchange and oxygen uptake measurements were made at sites 4 and 7 independently to those at the other sites. Site 4 was selected to continue for a further year the data set obtained in 1992 to 1993 (Nedwell & Trimmer 1996), thus giving interannual comparisons. Site 7 was selected as it represented the sediment that was most strongly differing to those measured in the upper estuarine study (Nedwell & Trimmer 1996). Triplicate sediment cores (~20 cm deep) and overlying water (~100 ml) were collected at low tide from sites 4 to 9, at bimonthly intervals, from May 1994 until March 1995, using small perspex core tubes (20 cm long × 3.4 cm i.d.) sealed with a rubber bung. Denitrification rates were measured as described by Ogilvie et al. (1997) using acetylene-saturated site water injected into the surface 1 cm of sediment and incubated in the dark at in situ temperature for 3 to 6 h, depending on the time of year and the rate of oxygen uptake. The reader is referred to Ogilvie et al. (1997) for a detailed discussion of measuring denitrification by acetylene blockage.

Denitrification rates measured by acetylene blockage: Nine small sediment cores (~10 cm deep) and overlying water (~100 ml) were collected at low tide from sites 10, 11 and 12 using perspex tubes (30 cm long × 10 cm i.d.), sealed underneath with an adjustable piston and carried back to the mobile laboratory on the flat-bottomed boat. Site water (~750 ml) was carefully introduced over the sediment and the tube capped. The core samples were then incubated with gentle aeration at in situ temperature in a water bath in the dark. After 2 h, a water sample (10 ml) was withdrawn, filtered (0.2 μm Minisart Plus™, Sartorius UK Ltd) and fixed (as above) prior to analyses. Water samples then were continued to be taken every 4 h up to 24 h. All water samples were analysed for NO₃⁻, NO₂⁻, NH₄⁺, SiO₃ and PO₄³⁻ according to Kirkwood (1996).

Calculation of sedimentary C and N budget. The calculation of the sedimentary C and N budgets requires several assumptions to be made. Firstly, that C and N were mineralised in proportion to the C:N ratio of the sediment (Blackburn et al. 1988). However,
sedimentary organic matter determinations do not discriminate between the amounts of labile or refractory organic matter present (Nedwell 1987) and may therefore give little indication of the amount of microbiologically available organic matter at each site. Secondly, that all of the sulphide formed from SO_4^{2-} reduction was reoxidised before release from the sediment surface (Jorgensen 1977, 1982, Blackburn et al. 1988, Nedwell et al. 1993) and that permanent sulphide burial was minimal (Nedwell & Trimmer 1996). Studies have shown that only a small proportion (<1 and 7%) of sedimentary SO_4^{2-} reduction is released from sediments as sulphide (Ingorsen & Jorgensen 1982 and Marnette et al. 1992, respectively). Thirdly, that pore water concentrations of SO_4^{2-} were high enough to prevent methanogenesis, although this may not always be the case (Wellsbury et al. 1996). Fourthly, that N_2 fixation was small compared to the total sedimentary flux of N (Abd Aziz & Nedwell 1988). Whereas Hargrave & Philips (1981) measured a total efflux of CO_2 equivalent to 2.5 times the rate of oxygen uptake, both Mackin & Swider (1989) and Boucher et al. (1994) measured an almost 1:1 relationship between oxygen uptake and CO_2 production, suggesting that measures of oxygen uptake can provide realistic estimates of total sediment respiration.

The measured rates of denitrification by acetylene blockage (D_a) were taken to be equivalent to the amount of NO_3^- uptake being reduced to N_2 gas. The mineralisation of organic C and N via NO_3^- reduction to gases was then calculated using the stoichiometries given in Nedwell & Trimmer (1996) and the measured C:N ratios of the sediment. The difference between the rate of denitrification (D_a) and NO_3^- uptake was taken to represent the rate of NO_3^- ammonification and mineralisation of organic C and N via NO_3^- ammonification, was calculated as:

\[
(\text{CH}_2\text{O})_{106} (\text{NH}_3)_{16} + 53 \text{HNO}_3 = 106 \text{CO}_2 + 69 \text{NH}_3 + 53 \text{H}_2\text{O}
\]

(1)

The total amount of NH_4^+ generated by the above calculations was then compared to the actual measured NH_4^+ flux and any deficit or excess in the NH_4^+ budget calculated. The annual rates of O_2 uptake at sites 4 and 7, in conjunction with the measured C:N ratios of the sediment, were used to calculate, stoichiometrically, the organic mineralisation via O_2 and SO_4^{2-} respiration at these 2 sites (stoichiometries given in Nedwell & Trimmer 1996). The annual rates of O_2 uptake at sites 4 and 7 were then averaged and used to calculate the organic mineralisation via O_2 and SO_4^{2-} respiration at sites 5, 6, 8 and 9. Any remaining excess of N that could not be accounted for by either the measured NH_4^+ flux or by uncoupled denitrification (D_a) was oxidised and then reduced to N_2 gas, and represented organic mineralisation via coupled denitrification (D_n) as (Nedwell & Trimmer 1996):

\[
(\text{CH}_2\text{O})_{106} (\text{NH}_3)_{16} + 118 \text{O}_2 = 106 \text{CO}_2 + 8 \text{N}_2 + 130 \text{H}_2\text{O}
\]

(2)

Calculation of freshwater flushing times and attenuation of riverine N load. At the mouth of the Great Ouse the Wash forms the largest estuary in the UK (666 km²; Davidson et al. 1991). However, because of the nature of the Great Ouse-Wash interface, defining which region of sediment can be regarded as the Great Ouse estuary is somewhat subjective. We define the area of the Great Ouse estuary (Fig. 1), at high tide, as the region of sediment extending halfway along the shore to the mouth of the River Nene (west) and an equal distance east, out to where maximum seawater salinities (33 psu) were first measured at high tide. An arc with a radius from the immediate mouth of the Great Ouse to the latitude marking the position of 33 salinity was then drawn until it intersected lines extending out at right angles from the east and west boundaries. Subsequent arcs with decreasing radii were drawn to mark various salinity boundaries. The landward extent of the estuary was defined as the region where salinities of <1 were measured at high tide. Seasonal surveys indicated that the salinity regime of the estuary was similar throughout most of the year, and it was only during extremely low summer freshwater flows that saline intrusion increased up the estuary at high tide. Based on this calculation the overall area of sediment covered by the estuary at high tide was 50 km². The 50 km² was then subdivided into sectors running east to west across the mouth of the Great Ouse, each sector in turn was subdivided into 1 km² (or fractions of) boxes, giving a total number of around 55 boxes, depending on season. The height and volume of water in each box at high tide were calculated using the depths given in the most recent Imray Chart (Y9, The Wash, Imray Laurie Norie and Wilson Ltd). The ratio of freshwater to saltwater was calculated by assigning each box a salinity value read off the various salinity arcs and in this way the freshwater volume of each sector and in turn the entire estuary could be calculated. The freshwater volume was then compared with representative seasonal freshwater flow rates (Environment Agency unpubl. data) to calculate freshwater flushing times.

The same box model was then used calculate the total rate of denitrification for the entire estuary and in turn the percentage of the TOxN load attenuated. For each high tide survey a linear relationship was fitted to the NO_3^- and salinity data. This in turn was used to assign a NO_3^- concentration to each box, given its salinity value. The NO_3^- concentrations were then used to generate denitrification rates for each box.
using the calculated k_m and V_{max} values (see Fig. 8). Denitrification rates in the sediment became saturated at approximately 400 μM NO$_3^-$.

RESULTS

Sediment characteristics

The sedimentary organic C and total N content (0 to 2 cm) was highest at the muddy sites 7, 10 and 11 (Table 1) and lowest at the sandy sites. The organic C content of the sediment was significantly ($p < 0.05$) correlated with both porosity and total N content. The average sedimentary C:N (molar) ratio in the lower estuary (15:1) was substantially less than that in the upper estuary (33:1; Nedwell & Trimmer 1996).

Nutrient and salinity concentrations in the water column

Nitrate in the estuary varied seasonally, with maximal concentrations (up to 830 μM at site 4) during high river flow in January 1995 and minimal concentrations (6 μM at site 12) during September 1993. In contrast to the clear seasonality for NO$_3^-$, the NH$_4^+$ concentrations fluctuated throughout the year between 0 and 80 μM. Nitrite and urea (when detectable) were always less than 10 μM. Highest salinities (33 psu) were measured during the summer at sites 9 and 12 when freshwater flows were restricted and saline intrusion from the Wash was greatest.

Pore water nutrients

Profiles

Nitrate concentrations decreased rapidly with depth at sites 10 and 11 (Fig. 2), usually reaching a minimum by 5 cm. Subsurface NO$_3^-$ peaks between 0 and 5 cm were occasionally measured at site 12, indicating nitrification in this more oxic sandy sediment. The overlying water column NO$_3^-$ concentrations were significantly correlated ($p < 0.05$) with the top 1 cm pore water NO$_3^-$ concentrations at sites 10 and 11 (as found also in the upper estuary; Nedwell & Trimmer 1996). Ammonium concentration profiles generally increased with depth at sites 10 to 12 (Fig. 2) and overall NH$_4^+$

![Fig. 2. Examples of (A) nitrate and (B) ammonium pore water profiles (mean of duplicates) measured at sites 10 (●), 11 (■) and 12 (▲)](image_url)
concentrations were highest during summer. The NH$_4^+$ pore water concentrations were highest at site 10 (up to 2380 µM at 10 cm, July 1992), a factor of 10 lower at site 11 and lowest at site 12 (rarely above 100 µM at 10 cm).

Changes in nutrient pools after exposure

The time series of pore water profiles showed that sedimentary NO$_3^-$ concentrations decreased in the exposed sediment at all sites, regardless of sediment type (Fig. 3). Maximum removal of NO$_3^-$ usually occurred in the first 2 h after exposure and the rate was significantly correlated with the initial NO$_3^-$ concentration ($p < 0.05$). In contrast to NO$_3^-$, NH$_4^+$ pore water concentrations increased with time (Fig. 3) at sites 10 and 11, with greatest production at site 10. Although the sediment at site 11 was usually a net source for NH$_4^+$, it removed a small amount during June 1994. In contrast the pore water NH$_4^+$ concentrations decreased consistently with time at site 12, presumably due to nitrification, as indicated also by the subsurface NO$_3^-$ peaks. The fact that the time series of SiO$_3$ pore water concentrations at sites 10 to 12 (Fig. 3) remained constant with time suggested that the changes in NO$_3^-$ and NH$_4^+$ concentrations reflected real in situ processes and not intrusion of pore water from surrounding areas.

Oxygen uptake

Oxygen uptake by the sediments at sites 4 and 7 showed a clear seasonal pattern (Fig. 4), with maximum uptake during the summer and minimum uptake during the winter and early spring. The rate of O$_2$ uptake was significantly correlated ($p < 0.05$) to the sediment temperature at both sites. Analysis of variance (and post hoc Tukey testing) showed that the rates of O$_2$ uptake at the more organic site 7 were only significantly higher ($p < 0.05$) than site 4 during June and August 1994, and the annually integrated values for O$_2$ uptake were very similar—28 and 21 mol O$_2$ m$^{-2}$ yr$^{-1}$ respectively. The annual rate of 21 mol O$_2$ m$^{-2}$ yr$^{-1}$ measured at site 4 during 1994 to 1995 compared well
with the previous year's value of 23 mol O₂ m⁻² yr⁻¹, indicating inter-annual reproducibility.

Sediment-water nutrient exchange fluxes

The flux of NO₃⁻ and NH₄⁺ across the sediment-water interface at sites 4 to 9 showed no clear seasonal pattern (Fig. 5), but confirmed that the sediments in this lower sector of the estuary were consistent sinks for NO₃⁻ and sources of NH₄⁺. On average, for all flux data from sites 4 to 9, the sediments took up 310 μmol NO₃⁻ m⁻² h⁻¹ at a mean NO₃⁻ concentration of 425 μM, and released 270 μmol NH₄⁺ m⁻² h⁻¹. At sites 4 to 9, neither the flux of NO₃⁻ to the sediment nor efflux of NH₄⁺ from the sediment was significantly correlated either with their respective concentrations in the overlying water or with the sediment temperature. (The single exception was at site 7 where the flux of NO₃⁻ to the sediment was significantly correlated with the concentration of NO₃⁻ in the overlying water.) Measurements of sediment-water NO₃⁻ exchange at the more seaward sites 10, 11 and 12, where the mean NO₃⁻ concentration in the water column was only 167 μM, indicated that these sediments were also consistent sinks for NO₃⁻, but at these outer sites the rates of NO₃⁻ exchange to the sediment were significantly correlated (p < 0.05) with the concentrations of NO₃⁻ in the overlying water (Fig. 6).

The efflux of NH₄⁺ from the sediments along the lower estuary peaked at the most highly organic site 7: annual averages were 82 μmol NH₄⁺ m⁻² h⁻¹ at site 4, 332 μmol NH₄⁺ m⁻² h⁻¹ at site 7 and 145 μmol NH₄⁺ m⁻² h⁻¹ at site 9. The data series for NH₄⁺ efflux at sites 10 to 12 was not as extensive as that for the other sites. However, a significant relationship was found between the rate of efflux and sediment organic C content, but the relationship was not significant at other times of the year when ammonification of organic matter was less rapid, and probably limited by low temperature rather than organic matter availability. The efflux of NH₄⁺ was significantly (p < 0.05), although weakly (r = 0.47), correlated with the flux of NO₃⁻ to the sediment and most strongly correlated at site 7 (r = 0.78). No significant urea fluxes were measured at sites 4 to 9.

Sediment denitrification rates measured by acetylene blockage

Statistically significant rates of denitrification were measured at sites 4 to 9 on all occasions (Table 2). Although there was no obvious seasonality to these rates of denitrification, maximal denitrification rates (up to 228 μmol N m⁻² h⁻¹) were measured at all 6 sites during May 1994. During the summer (May to September 1994), at sites 6 to 9, denitrification was significantly correlated (p < 0.05) with the concentration of NO₃⁻ in the water column, but not at sites 4 and 5 where denitrification seemed to be NO₃⁻ saturated. Also during the summer, at sites 4 to 9, denitrification was significantly correlated (p < 0.05) to the sediment temperature.
Fig. 5. Seasonality of sediment-water nutrient flux. (A) Nitrate flux \((\bullet) \) and (B) ammonium flux \((\square) \) from sites 4 to 9. Note, not every site was visited on each occasion. Each point is a mean of triplicate determinations at each site, negative values indicate uptake by the sediment, error bars omitted to aid clarity.

Table 2. Denitrification rates measured at sites 4 to 9 in the lower Great Ouse estuary using the acetylene block technique (± standard error, \(n = 3 \)). ns: samples not collected due to bad weather.

<table>
<thead>
<tr>
<th>Date</th>
<th>Site 4</th>
<th>Site 5</th>
<th>Site 6</th>
<th>Site 7</th>
<th>Site 8</th>
<th>Site 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1994</td>
<td>158 ± 28</td>
<td>176 ± 13</td>
<td>174 ± 16</td>
<td>228 ± 22</td>
<td>121 ± 6</td>
<td>88 ± 12</td>
</tr>
<tr>
<td>Jul 1994</td>
<td>106 ± 16</td>
<td>166 ± 15</td>
<td>19 ± 4</td>
<td>60 ± 7</td>
<td>37 ± 4</td>
<td>4 ± 1</td>
</tr>
<tr>
<td>Sep 1994</td>
<td>131 ± 23</td>
<td>78 ± 13</td>
<td>45 ± 8</td>
<td>63 ± 8</td>
<td>32 ± 4</td>
<td>9 ± 1</td>
</tr>
<tr>
<td>Nov 1994</td>
<td>81 ± 12</td>
<td>60 ± 2</td>
<td>19 ± 5</td>
<td>84 ± 16</td>
<td>40 ± 11</td>
<td>8 ± 1</td>
</tr>
<tr>
<td>Jan 1995</td>
<td>29 ± 7</td>
<td>ns</td>
<td>ns</td>
<td>30 ± 3</td>
<td>ns</td>
<td>9 ± 3</td>
</tr>
<tr>
<td>Mar 1995</td>
<td>18 ± 1</td>
<td>47 ± 8</td>
<td>42 ± 5</td>
<td>50 ± 11</td>
<td>91 ± 11</td>
<td>15 ± 1</td>
</tr>
</tbody>
</table>

NO\(_3\)\(^-\) exchange rates, but not at other times of the year. Analysis of variance (and post hoc Tukey testing) showed that there were no significant differences between the rates of denitrification at sites 4 and 5 nor, apart from during May 1994, between sites 4 and 7. However, denitrification was always significantly lower \((p < 0.05) \) at the more seaward site 9 than at sites 4 and 5.

DISCUSSION

Sediment characteristics

The muddy intertidal sediments of the lower estuary of the Great Ouse (Table 1) were distinctly different to those in the upper estuary (Nedwell & Trimmer 1996). Whereas the upper estuarine sediments were predominantly fine and very fine sands, the lower intertidal flats were predominantly silt and clay, which suggested that the intertidal flats near the mouth of the Great Ouse were an area of deposition for both organic and inorganic particulate matter. Gould et al. (1987) suggested that the flows in the Great Ouse were such that the sediments are unstable and scoured, causing most of the suspended material to remain in the water column until it reaches the waters seaward of King's Lynn (site 4). This area of deposition coincided with the estuarine turbidity maximum zone, suspended solid loads peaking at 61 mg l\(^{-1}\) at site 4 and decreasing to 13 mg l\(^{-1}\) by 20 km offshore [annual means, Joint Nutrient Study (JoNuS) database]. The turbidity maximum at site 4 would have been due mainly to 2 processes. Firstly, flocculation of riverborne material occurs at the freshwater-seawater interface; while, secondly, silt and clay deposited on the flats in the lower estuary during the ebb tide are resuspended and carried back up the estuary on the flood tide (Uncles & Stephens 1993, Forsgren et al. 1996).

Oxygen uptake

The oxygen uptake rates at sites 4 and 7 (Fig. 4) were similar to those measured in the upper Great Ouse estuary (Nedwell & Trimmer 1996) and in other estuaries (Jørgensen & Sørensen 1985, Andersen & Helder 1987, Binnerup et al. 1992, Yoon & Benner 1992) and shallow coastal seas (Hopkinson & Wetzel 1982, Hansen &
Nutrient exchanges

Nitrate flux

The NO$_3^-$ flux measurements showed that the sediments were sinks for NO$_3^-$ at rates similar to those reported for other estuaries with high NO$_3^-$ concentrations (Jørgensen & Sørensen 1985, Jørgensen & Sørensen 1988, Watson et al. 1993, Ogilvie et al. 1997). When the NO$_3^-$ flux data from all sites (including sites 1 to 4 in the upper estuary; Nedwell & Trimmer 1996) were plotted against water column NO$_3^-$ concentrations, the flux of NO$_3^-$ became saturated at NO$_3^-$ concentrations > 400 µM, at a rate of about 400 µmol NO$_3^-$ m$^{-2}$ h$^{-1}$ (Fig. 7). Therefore when NO$_3^-$ loads to the estuary increase, extending the NO$_3^-$ concentration gradient seawards, the sediments of the outer estuary (e.g. sites 10 to 12) have the capacity to respond by increased rates of NO$_3^-$ exchange.

To estimate changes of nutrient pools in the sediment after exposure at low tide, the time series of pore water nutrient profiles were integrated with respect to both depth and time. On average, for sites 10, 11 and 12, 76% of the total amount of NO$_3^-$ depletion occurred within the first 2 h after exposure at low tide. The total area of the Wash is approximately 666 km2 (Davidson et al. 1991) of which 45% is intertidal. This suggests that an enormous area of sediment rapidly processes any NO$_3^-$ that exchanges into it when inundated at high tide. Hence the intertidal sediment area of the Wash is potentially a very large sink for NO$_3^-$ and represented a much more significant sink for NO$_3^-$ than the upper estuary (Nedwell & Trimmer 1996).

Ammonium flux

The increase in the sedimentary NH$_4^+$ efflux from sites 4 to 7 could be due to a number of factors. Firstly, increasing concentrations of sedimentary organic matter lead to higher ammonification rates (Kelly & Nixon 1984, Kemp & Boynton 1984, Sloth et al. 1995), as supported by the significant (p < 0.05) correlation during the summer months between the NH$_4^+$ efflux and the organic content of the sediment. Secondly, as organic matter content increases the ratio of NO$_3^-$ to organic C decreases, favouring NO$_3^-$ ammonification over denitrification (Nedwell 1982, King & Nedwell 1985). The flux of NO$_3^-$ into the
Sediment denitrification rates measured by acetylene blockage

The flux of NO$_3^-$ into sediment can be regarded as a measure of the upper limit of possible reduction of NO$_3^-$ from external sources. The acetylene block assay confirmed that intrusive NO$_3^-$ from the water column was denitrified to gases in the sediments, the rates (Table 2) being similar to other environments with high concentrations of NO$_3^-$ (Jørgensen & Sørensen 1985, Koch et al. 1988, Ogilvie et al. 1997). Various studies have correlated peaks of denitrification with maximum concentrations of NO$_3^-$ (Jørgensen & Sørensen 1985, Koch et al. 1992, Rysgaard et al. 1995), available organic C (Jørgensen & Sørensen 1988) and NO$_3^-$ transport via bioturbation (Law et al. 1991). There was no clear seasonality to denitrification in the present study but maximum rates occurred during May, when relatively high NO$_3^-$ concentrations (>380 μM at sites 4 to 9) were combined with relatively warm (14°C) sediment temperatures. Although the sediment temperature peaked later in July (22°C), by then the NO$_3^-$ concentrations had fallen below 260 μM throughout the estuary. During the spring and summer the rate of NO$_3^-$ exchange was significantly correlated (p < 0.05) to the rate of denitrification and the gradient of the relationship suggested that for each mole of NO$_3^-$ reduced, only 28% was subsequently denitrified. This suggested that during the spring and summer, NO$_3^-$ ammonification predominated over denitrification (King & Nedwell 1984, Jørgensen 1989). The annually integrated values for NO$_3^-$ exchange and denitrification (Table 3) suggested, that on average, 46% of the NO$_3^-$ exchanged was denitrified.

During the spring and summer, denitrification was significantly correlated (p < 0.05) to the concentration of NO$_3^-$ in the overlying water at sites 6 to 9 but not at sites 4 and 5. However, no such correlation was found at any site for the autumn and winter data. This suggested that throughout the year at sites 4 and 5, or at sites 6 to 9 during the winter, denitrification was saturated with NO$_3^-$. For the pooled spring and summer denitrification and NO$_3^-$ concentration data a Michaelis-Menten hyperbolic model explained more of the variance than a first order linear regression, i.e. $r^2 = 0.59$ and 0.69, respectively (Fig. 8). This suggested
that at NO_3^- concentrations in excess of 400 μM denitrification became saturated at approximately 160 to 250 μmol N m$^{-2}$ h$^{-1}$ was reported during the winter by Koch et al. (1992) for tidal mudflat sediments. Although in the autumn and winter NO_3^- concentrations were maximal in the Great Ouse (up to 830 μM NO_3^- at site 4), denitrification was not correlated with NO_3^- (Fig. 8) presumably because denitrification became temperature-dependent rather than NO_3^--limited (Kaplan et al. 1977, Jørgensen & Sørensen 1988).

Sedimentary C and N budget

Table 4 summarises the proportion of sedimentary organic C mineralisation driven by each electron acceptor flux at sites 4 to 9 in the lower estuary. Carbon flow was dominated by the respiration of O_2 and SO_4^{2-} (76 to 95%) as reported elsewhere (Sørensen et al. 1979, Howes et al. 1984, Jørgensen & Sørensen 1985, Nedwell et al. 1993, 1994, Upton et al. 1993, Nedwell & Trimmer 1996). Nitrate reduction (both denitrification and NO_3^- ammonification) accounted for between 5 and 25% of the C flux and was greatest at site 7. The proportion of organic C oxidation driven by denitrification from externally derived NO_3^- (D_n average 2%) was low compared to the upper estuary (18%; Nedwell & Trimmer 1996). A greater proportion of organic C oxidation was driven by coupled denitrification (D_n average 5%). However, overall, the proportion of organic C oxidation driven by denitrification was low (8%) compared to O_2 and SO_4^{2-} respiration, corroborating the general hypothesis that denitrification plays only a minor role in the oxidation of organic C in estuarine and marine sediments (Sørensen et al. 1979, Jørgensen & Sørensen 1985, Nedwell et al. 1994).

Carbon flux

Table 4 summarises the proportion of sedimentary organic C mineralisation driven by each electron acceptor flux at sites 4 to 9 in the lower estuary. Carbon flow was dominated by the respiration of O_2 and SO_4^{2-} (76 to 95%) as reported elsewhere (Sørensen et al. 1979, Howes et al. 1984, Jørgensen & Sørensen 1985, Nedwell et al. 1993, 1994, Upton et al. 1993, Nedwell & Trimmer 1996). Nitrate reduction (both denitrification and NO_3^- ammonification) accounted for between 5 and 25% of the C flux and was greatest at site 7. The proportion of organic C oxidation driven by denitrification from externally derived NO_3^- (D_n average 2%) was low compared to the upper estuary (18%; Nedwell & Trimmer 1996). A greater proportion of organic C oxidation was driven by coupled denitrification (D_n average 5%). However, overall, the proportion of organic C oxidation driven by denitrification was low (8%) compared to O_2 and SO_4^{2-} respiration, corroborating the general hypothesis that denitrification plays only a minor role in the oxidation of organic C in estuarine and marine sediments (Sørensen et al. 1979, Jørgensen & Sørensen 1985, Nedwell et al. 1994).

Nitrogen flux

The total sedimentary N budget of the lower estuary (Table 3) was taken to be the NO_3^- flux to the sediment, the subsequent organic N mineralised via NO_3^- reduction, plus organic N mineralised via aerobic mineralisation and SO_4^{2-} reduction. Assuming steady state, any N inputs must be balanced by N outputs (Nedwell & Trimmer 1996). In some circumstances DON export from sediment can be high, but these tend to be either where there are active beds of benthic macrofauna (e.g. Enoks-

Table 3. Annual nitrogen budget for the lower Great Ouse estuary. (All flux values are mol m$^{-2}$ yr$^{-1}$.) Amm.: ammonification; denit.: denitrification, tot.: total, min.: mineralised.

<table>
<thead>
<tr>
<th>Site</th>
<th>Sediment organic C and N content* (mol m$^{-2}$)</th>
<th>Min N via O_2 and SRb uptake</th>
<th>NO_3^- uptake</th>
<th>Denit. of NO_3^- uptake</th>
<th>Min N via NO_2^- to N_2 (D_n^b)</th>
<th>Min N via NO_2^- to N_2 (D_n^b)</th>
<th>Tot. N flux</th>
<th>NH$_4^+$ flux</th>
<th>% tot. N flux as NH$_4^+$</th>
<th>% tot. N flux as N gas</th>
<th>% denit. (D_n^b)</th>
<th>% denit. (D_n^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.11 0.21 2.11 1.58 0.75 0.84 0.16 1.33 0.32 5.5 0.83 15 85 16 84</td>
<td>7.06 0.54 1.87 1.51 0.83 0.67 0.08 0.00 0.10 3.6 3.21 90 10 237 137</td>
<td>2.49 0.15 1.47 0.78 0.47 0.31 0.03 0.00 0.04 2.3 3.01 129 -29 -70 170</td>
<td>14.30 0.74 0.77 4.34 0.74 3.59 0.05 0.62 0.19 3.8 1.73 45 55 237 137</td>
<td>4.47 0.25 0.73 2.27 0.56 1.71 0.04 0.58 0.19 3.8 1.73 45 55 237 137</td>
<td>2.65 0.34 1.67 0.26 0.19 0.07 0.03 1.31 0.02 3.3 1.37 42 58 10 90</td>
<td>1.79 0.59 1.20 0.06 0.64 0.17 4.1 2.33 51 49 21 79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
</tr>
</tbody>
</table>

*Top 1 cm of sediment, measured May 1994

bCalculated stoichiometrically using the annual oxygen uptake at sites 4 and 7, 21 and 28 mol O_2 m$^{-2}$ yr$^{-1}$, respectively, and the average of sites 4 and 7 (24.5 mol O_2 m$^{-2}$ yr$^{-1}$) for the remaining sites. Assumes organic matter oxidised by sulphate reduction (SR) was included in the sedimentary uptake of oxygen because of aerobic reoxidation of sulphide at the sediment surface.

dDenitrification determined using the acetylene blockage technique.

eCalculated assuming the difference between the measured rate of denitrification with acetylene and the amount of NO_3^- uptake was equivalent to NO_3^- ammonification.

fCalculated assuming that any excess mineralised N not accounted for by denitrification measured with acetylene blockage (D_n) or the measured NH$_4^+$ flux was equivalent to the rate of coupled denitrification (D_n). (See main body of text)

gSum of mineralised N and NO_3^- uptake.

hCalculated as [Denitrification of NO_3^- uptake/Total N flux - NH$_4^+$ flux] \times 100

iCalculated as [Total N flux - NH$_4^+$ - Denitrification of NO_3^- uptake/Total N flux - NH$_4^+$ flux] \times 100

jIgnores negative values or values $>100\%$ where budgets do not exactly balance, i.e. more NH$_4^+$ output than total N inputs.
Table 4. Annual organic carbon (OC) budget for the lower Great Ouse estuary. (All flux values are mol m\(^{-2}\) yr\(^{-1}\).) Amm.: ammonification; denit.: denitrification; tot.: total; min: mineralised

| Site | Sediment organic C and N content* (mol. m\(^{-2}\) | OC min via O\(_2\) and SR\(^b\) | NO\(_3^-\) uptake \(^a\) | Denit. of NO\(_3^-\) uptake \(^c\) | OC min via NO\(_3^-\) to N\(_2\) (\(D_m\)) | OC min via NO\(_3^-\) to N\(_2\) (\(D_H\)) | OC min via NO\(_3^-\) to NH\(_4^+\) (\(D_H\)) | Tot. C flux\(^d\) | % OC min via O\(_3\) and SR | % OC min via NO\(_3^-\) to N\(_2\) (\(D_m\)) | % OC min via NO\(_3^-\) to N\(_2\) (\(D_H\)) | % OC min via NO\(_3^-\) to NH\(_4^+\) (\(D_H\)) | % OC min via NO\(_3^-\) to NO\(_2^-\) | OC min via NO\(_3^-\) | % tot. OC
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.11 0.21</td>
<td>21.0 1.6</td>
<td>0.8 0.8</td>
<td>4.0 1.7</td>
<td>27.5</td>
<td>76</td>
<td>3</td>
<td>15</td>
<td>6</td>
<td>24</td>
<td>24</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>7.06 0.54</td>
<td>24.5 1.5</td>
<td>0.8 1.0</td>
<td>0.0 1.4</td>
<td>26.8</td>
<td>91</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.49 0.15</td>
<td>24.5 0.8</td>
<td>0.5 0.6</td>
<td>0.0 0.6</td>
<td>25.7</td>
<td>95</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14.30 0.74</td>
<td>28.0 4.3</td>
<td>0.7 0.9</td>
<td>1.3 7.2</td>
<td>37.4</td>
<td>75</td>
<td>2</td>
<td>3</td>
<td>19</td>
<td>25</td>
<td>25</td>
<td>15</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.47 0.25</td>
<td>24.5 2.3</td>
<td>0.6 0.7</td>
<td>1.2 3.4</td>
<td>29.8</td>
<td>82</td>
<td>2</td>
<td>4</td>
<td>11</td>
<td>18</td>
<td>18</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.65 0.34</td>
<td>24.5 0.3</td>
<td>0.2 0.2</td>
<td>1.9 0.1</td>
<td>26.8</td>
<td>92</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.8 0.6</td>
<td>1.8 0.6</td>
<td>1.4 2.4</td>
<td>29.0 85</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

*Top 1 cm of sediment, measured May 1994

\(^a\)Calculated stoichiometrically using the annual oxygen uptake at sites 4 and 7 (24.5 mol O\(_2\) m\(^{-2}\) yr\(^{-1}\)), respectively, and the average of sites 4 and 7 (24.5 mol O\(_2\) m\(^{-2}\) yr\(^{-1}\)) for the remaining sites. Assumes organic matter oxidised by sulphate reduction (SR) was included in the sedimentary uptake of oxygen because of aerobic reoxidation of sulphide at the sediment surface

\(^b\)Calculated assuming the measured rate of denitrification with acetylene was equivalent to the amount of NO\(_3^-\) uptake being reduced to gases

\(^c\)Calculated assuming that any excess mineralised N not accounted for by denitrification measured with acetylene blockage (\(D_m\)) or the measured NH\(_4^+\) flux was equivalent to the rate of coupled denitrification (\(D_H\)). (See main body of text)

\(^d\)Calculated assuming the difference between the measured rate of denitrification with acetylene and the amount of NO\(_3^-\) uptake was equivalent to NO\(_3^-\) ammonification

\(^e\)Sum of mineralised carbon

Fig. 8. Denitrification against overlying estuarine nitrate concentrations at sites 4 to 9. (●) Data measured in spring and summer; lines represent data fitted to Michaelis-Menten function, \(V = V_m \frac{[S][S + K_m]}{[S] + K_m}\), \(r^2 = 0.69\) (p < 0.05). (○) Data measured in autumn and winter, no significant relationships. Each point is the mean of triplicate determinations.
tobenoths were visibly present. Subsequent seasonal measurements of both light and dark nutrient exchange and of chlorophyll a showed that light had no significant effect on the nutrient flux and that concentrations of chlorophyll a were consistently <3 μg g⁻¹ dry sediment (data not shown).

In the upper estuary the NH₄⁺ efflux accounted for only 8% of the total sedimentary N flux (Nedwell & Trimmer 1996), but in the lower estuary accounted for 51%. In the upper estuary (Nedwell & Trimmer 1996) mineralised N, derived from the oxidation of organic matter by O₂ and SO₄²⁻ respiration, accounted for 15% of total benthic N flux, but for 40% (average for all sites) in the lower estuary. The greater significance of the NH₄⁺ efflux in the lower estuary, compared to the upper estuary, can be related in part to their different sediment C:N ratios (molar). In the upper estuary the average C:N ratio was 33:1 compared to 15:1 in the lower estuary. Oxidation of organic matter with these C:N ratios will result in a greater amount of organically bound N being ammonified from the organic matter with the lower C:N ratio. In addition to this, if the difference between the total flux of NO₃⁻ to the sediment and the rate of uncoupled denitrification was used as a measure of NO₃⁻ ammonification (see above), NO₃⁻ ammonification could, on average, account for 55% of the annual NH₄⁺ efflux at sites 4 to 9. At site 7, NO₃⁻ ammonification could account for 93% of the annual NH₄⁺ efflux and at this site the organic C content was highest and the correlation between the flux of NO₃⁻ to the sediment and flux of NH₄⁺ from the sediment was strongest (r = 0.78). Under such conditions NO₃⁻ reduction to NH₄⁺, rather than to gases, would have been favoured (Koike & Hattori 1978, Nedwell 1982, King & Nedwell 1985).

In order for the steady state N budget to balance, it was assumed that any N not accounted for as either NH₄⁺ or lost via uncoupled denitrification must have been lost via the coupling of nitrification to denitrification. The discrepancy between the total sedimentary N flux and that measured effluxing from the sediment as NH₄⁺ suggested that, on an annual basis, 49% of the N flux was denitrified and lost from the sedimentary system as N gases (Table 3). There was therefore a distinct difference between the N budget of the lower estuary compared to the upper, where >90% of the total benthic N flux was denitrified and lost from the sedimentary system as N gases (Nedwell & Trimmer 1996). Benthic primary production, coupled to the settlement from the water column of both pelagic primary production and riverine inputs of organic matter, contributes to sedimentary organic matter and therefore to the overall loss of N within the estuary either by direct (uncoupled) or coupled denitrification. The estuary would therefore appear to have a large potential, as a filter, to attenuate the N flux through the estuary. This filter or ‘processing zone’ in the Great Ouse estuary is concentrated in the sediment region of the turbidity maximum, seaward of site 4.

The sedimentary N budget of the lower estuary (Table 3) demanded that 79% of the total amount of denitrification was driven by coupled nitrification-denitrification (D_c). This value is high compared to others reported in the literature. For example, Risgaard-Petersen et al. (1994) reported values for coupled denitrification (D_c) of between 4% and 16% and Nielsen (1992) approximately 19% to 42%. However, Ogilvie et al. (1997) reported values for D_c of between 31% and 51% in the upper estuary and 5% to 16% in the lower estuary (Nedwell & Trimmer 1996). For example, Risgaard-Petersen et al. (1994) reported values for coupled denitrification (D_c) of between 4% and 16% and Nielsen (1992) approximately 19% to 42%. However, Ogilvie et al. (1997) reported values for D_c of between 31% and 51% in the upper estuary and 5% to 16% in the lower estuary (Nedwell & Trimmer 1996). The discrepancy between the total sedimentary N flux and that measured effluxing from the sediment as NH₄⁺ suggested that, on an annual basis, 49% of the total benthic N flux was denitrified and lost from the sedimentary system as N gases (Nedwell & Trimmer 1996). Therefore, the budgetary calculations reported in this study generated an artificially high excess of NH₄⁺ and in turn high rates of D_c.

Freshwater flushing times and attenuation of riverine N load

Freshwater flushing times (i.e. the time taken for the freshwater in an estuary to be replaced with ‘new’ freshwater) for the Great Ouse estuary ranged from 25 d to 2 d in January (1992 data). Nixon et al. (1996) presented freshwater residence times for numerous estuaries. However, it was difficult to compare our calculations of freshwater flushing times for the Great Ouse estuary with the Nixon et al. (1996) data because of confusion over definitions in the literature, i.e. flushing rate, mean freshwater replacement time, mean residence time and freshwater flushing time. If these terms in fact describe similar estuarine processes, then the Great Ouse is similar in terms of residence times to Boston Harbour (USA), Narragansett Bay (USA), Norsminde Fjord (Denmark) and Ochlockonee Bay (USA) (Nixon et al. 1996).

The input of total oxidised nitrogen (TOxN, which was 99% NO₃⁻) was equivalent to an areal sediment N load in the upper Great Ouse estuary of 455 mol N m⁻² yr⁻¹ for 1993. Based on simple areal calculations there was only a very small attenuation (~1%) of this TOxN load by the sediments of the estuary (Nedwell & Trimmer 1996). However, when the 50 km² of sediment at the mouth of the estuary was also considered, the annual areal N load decreased from 455 to 20 mol N m⁻² yr⁻¹. The total amount of denitrification for the entire estuary was calculated to be 4400 mol N h⁻¹ or 3.2 Mmol N m⁻²·yr⁻¹ or 38.4 Mmol N yr⁻¹. The monthly denitrification rate was then compared to the monthly TOxN loads and the per-
Percentage attenuation calculated (Fig. 9). Attenuation of the TOxN load ranged from 1% in the middle of winter to 56% at the height of summer, when pelagic primary production and N demand would have been maximal. Similar relationships were reported for the Tamar, UK (Law et al. 1991). Nixon et al. (1996) suggested that the percentage of an estuarine Total Nitrogen (TN) load denitrified was related to the log mean residence time (months) of an estuary. Using the relationship $y = 20.8 \log(x) + 22.4$, Nixon et al. (1996) predicted that 21 and 2% of TN load for the Great Ouse (99% TOxN) would be denitrified for residence times of 25 d (0.8 mo) and 3 d (0.1 mo) respectively. These values are at least comparable to our calculated values of 56 and 2% respectively.

As well as the direct removal by sediments of NO$_3^-$ from the water column, sediments can be significant sources of fixed inorganic N (Billen & Lancelot 1988). Assigning the annual NH$_4^+$ efflux values (Table 3) to each sector of the estuary suggests that the sediments recycle back to the water column 128 Mmol N yr$^{-1}$ as NH$_4^+$, an amount equal to 9 times the annual riverine NH$_4^+$ load flowing into the Great Ouse estuary. Using an estimate for net primary production in the Southern North Sea (North British Coastal Waters, ICES region 3) of 75 g C m$^{-2}$ yr$^{-1}$ (Joint & Pomroy 1993), the amount of N required to support a proportionate amount of primary production in the area of the Wash could be calculated (595 Mmol N yr$^{-1}$; assuming Redfield C:N ratios of 7:1; Redfield et al. 1963). The calculated total efflux of NH$_4^+$ from the sediments of the lower Great Ouse estuary (50 km2) could potentially provide 22% of the annual primary production N requirement in the Wash.

Acknowledgement. This work was part of the JoNuS (Joint Nutrient Study) programme funded by the Ministry of Agriculture, Fisheries and Food, the Department of the Environment and the Environment Agency (all UK). The views expressed are those of the authors and do not reflect the policies of the funding departments.

LITERATURE CITED

Blackburn TH, Lund BA, Krom MD (1988) C- and N- mineral-

Kirkwood DS (1996) Nutrients: practical notes on their determination in seawater. Techniques in marine environmental science no. 17. ICES, Copenhagen

Submitted: September 5, 1997; Accepted: January 2, 1998
Proofs received from author(s): February 18, 1998