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ABSTRACT: In French Atlantic coastal ponds of the Charente, oysters can grow under conditions 
where phytoplankton production is limited by nutrient exhaustion. Such ponds typically show a high 
concentration of ciliates and flagellates during the growing season (1 X 104 to 3 X 105 cells 1-' in June 
1997). In order to evaluate the importance of the 'protozoan trophic link' for energy transfer from the 
'microbial food web' to large benthic suspension feeders, we offered a coastal pond comn~unity of cili- 
ates and flagellates as potential prey to the oyster Crassostrea gigas. Clearance rate, filtered particles 
and relative retention efficiency were evaluated. In the grazing experiment, 94 % of ciliates and 86% 
of flagellates (size between 4 and 72 pm), were retained by the oyster. Whatever their size, protists 
were similarly retained by the oyster gills. In terms of carbon, oysters retain on average 126 pg C h-' g-' 
dry weight, a value over 4 times h ~ g h e r  than reported for phytoplankton. These results indicate that a 
field community of protists can contribute in coastal oyster rearing ponds to the energy requirements of 
the oyster C. gigas. We report here the first experimental ev~dence of a significant retention of a protist 
community by oysters, supporting the role of protists as a trophic link between picoplankton and ben- 
thic filter-feeding bivalves. 
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INTRODUCTION 

Oysters obtain energy resources by filtering particles 
from seawater, and their growth depends upon the 
nutritive value of the retained seston (Berg & Newel1 
1986) and the trophic capacity of coastal waters (Heral 
1987). The natural habitats of the oyster Crassostrea 
gigas are open coastal ecosystems, rocky shores or 
mud flats. Charente-Maritime, on the French Atlantic 
coast, is the most important European oyster farming 
area. Shellfish culture has developed in muddy bays 
(rearing areas of 4800 ha) and in semi-closed coastal 
ponds (3000 ha), characterized by relative confinement 
and low water-renewal rates. 

The importance of phytoplankton in the nutrition of 
oysters is well documented (Heral 1987, Pastoureaud 
et al. 1996). However, in oyster rearing environments, 
such as the particularly light-limited turbid estuary of 
Marennes-Oleron, or in coastal ponds of the Charente 
where nutrients are quickly exhausted, phytoplankton 
cannot entirely account for the energy requirements of 
oysters (Heral 1987). 

In the oceans, more than 50% of the primary pro- 
duction is due to unicellular organisms less than 3 pm 
in size (Li et al. 1983, Platt et al. 1983, Glover et al. 
1986), which constitutes a nutrient source of particu- 
late and dissolved organic matter for heterotrophic 
organisms. Dissolved organic matter (DOM) present 
in coastal waters (Pomeroy & Wiebe 1993) provides a 
potential for high bacterial production. Thus, in the 
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Atlantic coastal ponds, bacterioplankton constitutes 
50% of the planktonic carbon biomass (Frikha et al. 
1987). Such heterotrophic bacterioplankters, with typ- 
ically high growth rates and growth efficiencies, rep- 
resent a significant energy pathway by recycling 
DOM into particles potentially available to upper 
trophic levels (Pomeroy 1974, Azam et al. 1983, 
Fenchel 1988). 

However, small-sized bacteria and autotrophic pico- 
plankton are not retained by gills of bivalves, particu- 
larly oysters (Shumway et al. 1985, H6ral 1987, Riis- 
gdrd 1988, Barille et al. 1993). Flagellate and ciliate 
protists, which consume bacteria and phytoplankton, 
are abundant in coastal ecosystems (Revelante & Gil- 
martin 1983, Sherr et al. 1986a, Fenchel 1988, Leakey 
et al. 1992) and are preyed upon by the numerous 
organisms of zooplankton, particularly copepods (Berk 
et al. 1977, Jonsson & Tiselius 1990, Gifford & Dagg 
1991, Hartmann et al. 1993). Protozoa have been sug- 
gested as a major trophic link between picoplankton 
and micro or macroplankton (Porter et al. 1979, 
Conover 1982, Sherr et al. 1986b, Stoecker & Capuzzo 
1990). 

Likewise, protists might represent a trophic link 
between bacteria and filter-feeding bivalves. Some 
data support this assumption. Tintinnids were ob- 
served in the stomachs of oysters (Paulmier 1972). 
Moreover, filter-feeding benthic molluscs reta.in pro- 
tists, as exemplified by contaminations of bivalves by 
toxic flagellates (Sournia et  al. 1991). In a mixed cell 
suspension of phytoplankton and dinoflagellates, 6 
different species of bivalves were able to selectively 
clear and digest dinoflagellates (Shurnway et al. 
1985). Recently, Bardouil et al. (1996) showed that 
Crassostrea gigas easily consumes a nontoxic dinofla- 
gellate and Kreeger & Newel1 (1996) clearly demon- 
strated in mussels the ingestion and assimilation of 
bacterial carbon via heterotrophic flagellates. From 
experimental work, Le Gall et al. (1997) reported sig- 
nificant retention and ingestion of cultured bacterivo- 
rous ciliates, Uronema sp., by the oyster C. gigas. Het- 
erotrophic protists, which are abundant in coastal 
ecosystems, may thus constitute an alternative or 
complementary food resource for benthic filter feed- 
ers, allowing the indirect recuperation of DOM and 
picoplanktonic production otherwise not accessible to 
them. 

We present evidence of oyster grazing on protists: a 
ciliate and flagellate community from a coastal oyster 
rearing pond was offered to oysters in a laboratory 
experimental setup. Clearance rate, filtered particles 
and relative retention efficiency were determined by 
followmg the taxonomic composition and relative 
abundance of the protist community over time in the 
presence or absence of actively filtering oysters. 

MATERIALS AND METHODS 

Oyster collection and acclimation. Oysters were 
collected in June 1997 from our oyster pond research 
facility 'Marais du Plomb' (L'Houmeau, near La 
Rochelle, French Atlantic coast). Twenty adult Cras- 
sostrea gigas (1 yr old, shell length 5 cm and mean 
dry tissue weight 1.64 + 0.29 g)  were transported to 
the laboratory, freed of epibionts and acclimated 
overnight at the ambient field temperature of 18"C, in 
GF/C (Whatman) filtered coastal pond water. Just 
before the experiment, 10 actively filtering oysters 
were selected and placed in 1 1 Pyrex rectangular 
trays containing 800 ml of GF/C (Whatman) filtered 
coastal pond water. 

Protist community: sampling and enumeration. The 
field planktonic community provided as potential food 
to the experimental oysters came from the coastal 
pond. Natural unfiltered oyster pond water was col- 
lected, using a 2.5 1 'Van Doorn' sampling bottle 
(Wildco), and held in the laboratory at 18°C in an 
opaque carboy until use. Ciliates and flagellates were 
fixed, stained and enumerated according to methods 
modified from Haas (1982), Caron (1983) and Sherr et 
al. (1994). For ciliate examination, 20 m1 samples were 
stained live for 10 min by adding proflavin hemi- 
sulfate solution (Sigma, 0.033 % w/v, final concentra- 
tion 0.00066%): preliminary comparative experiments 
showed that live staining had no deleterious effects on 
the ciliate community. Ciliates were then preserved by 
adding glutaraldehyde (Sigma electron microscopy 
grade, 25% v/v in 0.2 pm filtered seawater, final con- 
centration 1 %). The cells were enumerated in Uter- 
mohl settling chambers (Hydro-Bios combined plate 
chambers), using a reverse epifluorescence micro- 
scope (Leitz DMIRB, 100 W mercury lamp and blue 
light excitation). Ciliate taxa were enumerated and 
identified under combined epifluorescence and inter- 
ference contrast illumination (magnification: x400 or 
x630). Sizes of all cells (length and width) were mea- 
sured through a calibrated ocular micrometer. Mean 
cell volume of each ciliate taxon was calculated by 
equating the shape to standard geometric configura- 
tions. The cell volume was converted into carbon units, 
using a theoretical carbon/volume ratio of 0.17 pg C 
pm-3 (Putt & Stoecker 1989), corrected for glutaralde- 
hyde fixative according to Leakey et al. (1994). 

For flagellate counting, 20 m1 samples were pre- 
served with formaldehyde (paraformaldehyde powder 
Sigma, 8 w/v in 0.2 pm filtered seawater, final con- 
centration 1%);  each sample was concentrated to 
10 ml in a filtration tower mounted with a black 0.6 
pm pore, polycarbonate membrane (Nuclepore) and a 
cellulosic backing filter (Whatman 1 v) and stained 
by primulin (direct yellow 59 from Sigma; working 



Dupuy et al.. Retention ot ciliates and flagellates by Crassostrea gigas 167 

solution was according to Sherr et al. [1994]: 250 pg 
primulin in 100 m1 of 0.1 M Trizma HCl at  pH 4.0; 50 
pg ml-' final concentration). The primulin method 
allows observation of cell outlines and permits distin- 
guishing autotrophic from heterotrophic flagellates by 
repeated interchange of the filter sets (Caron 1983): 
phototrophic cells (faint orange under UV 365 nm 
excitation and red colored under green 450 to 490 nm 
excitation) and heterotrophic cells (blue under UV 
excitation and invisible under green excitation) were 
separately enumerated. Fields were viewed first for 
primulin fluorescence to locate flagellates, and then 
for chlorophyll a fluorescence (by changing the filter 
set) to confirm which of these cells were pigmented. 
Length and width of 100 flagellates were measured 
(observation under UV 365 nm excitation and magni- 
fication x630) from triplicate samples. However, the 
presence of the black Nuclepore filter did not allow 
any observation of the flagellates under light micro- 
scopy and thus prevented identification of taxon or 
species. 

Experimental protocol for the study of protist 
retention. The possible influence of oyster filtration 
upon the natural protist community was studied for 
90 min in an experimental chamber at 18°C by com- 
paring the evolution of protist abundances in triplicate 
suspensions with or without filtering oysters. At the 
start of the feeding period, 6 oysters were transferred 
to individual 500 m1 Pyrex rectangular trays contain- 
ing 400 m1 natural unfiltered oyster pond water, gen- 
tly homogenized with a magnetic rod to prevent sedi- 
mentation. As protists are fragile organisms, only a 
moderate homogenization was carried out in order to 
avoid cell damage; because of this restriction, the vol- 
ume of the protist suspension was limited to 400 ml, to 
maintain a homogenous concentration of living pro- 
tists. 

Two experimental treatments were performed each 
in triplicate: the natural ciliate and flagellate suspen- 
sions were (1) allowed to evolve as controls, in the 
presence of 3 living but nonfiltering oysters, tightly 
tied up by a knotted string (controls for physical sedi- 
mentation of the suspension), or (2) delivered to 
3 actively filtering oysters. It should be noted that, at 
the natural food concentration used in this study, there 
was no visible production of pseudofaeces. Dry tissue 
weight of each oyster was recorded at the end of the 
experiment, and clearance rates and filtered particles 
were expressed per gram of oyster dry tissue. 

Calculation of clearance rate, filtered particles and 
relative retention efficiency. In order to control the 
normality of oyster filtration in our laboratory expen- 
ments, the clearance rate was estimated and compared 
to literature data. Defined as the theoretical water vol- 
ume entirely cleared from particles (assuming 100% 

retention) per unit time and per oyster dry tissue 
weight (1 h-' g-l) (Bayne & Widdows 1978), the clear- 
ance rate was calculated from the time course of the 
ciliate or flagellate cell concentration in the triplicate 
suspensions with filtering oysters. During the first 
5 min of the experiment, individual variations in estab- 
lishing a regular oyster filtration prevented a reliable 
study of the change in protist abundance in the tripli- 
cate suspensions: therefore, we selected the subse- 
quent sampling time (15 min) as the most appropriate 
'standard' time in our clearance experiment. Assuming 
exponential decline of the retained cells, the clearance 
rate was calculated according to Coughlan (1969) dur- 
ing the first 15 min: 

where F is clearance rate (1 h-'), V is volume of the sus- 
pension (l), CO is the initial concentration of the sus- 
pension (cells I-'), C, is the concentration at time t (cells 
I-') and (t-to) is the time interval (h). Taking into 
account that weight-specific filtration decreases with 
increasing body size, standardized clearance rates 
were calculated according to Riisgard (1988): F/Wb, 
where F is clearance rate (l h-'), W is dry tissue weight 
(g) and b equals 0.73 for Crassostrea virginica (Riis- 
giSrd 1988). 

The number of filtered particles, which is the num- 
ber of cells of each protist taxon retained per unit time 
and per gram of oyster dry tissue (cells h-' g-l), was 
calculated directly from the difference in the number 
of cells present between and t,, min. 

To investigate the possibility of differential grazing 
by the oyster among the various protist taxa, we com- 
pared the relative retention efficiencies for each ciliate 
taxon and each ciliate and flagellate order. Defined as 
the number of a specific cell type retained during 
15 min, relative to the initial available number of the 
same cell type at the beginning of the experiment, 
each relative retention efficiency (E,) was calculated as 
a percentage for the difference in abundances at to and 
t,, min over the abundance at  to: 

where C,, is the initial particle concentration (cells 1-l) 

at to and C, is the particle concentration (cells 1-l) at 
15 min. 

Initial ciliate and flagellate abundances from the 
triplicate experiments with filtering or closed oysters 
were compared using a Student's t-test (data were 
previously tested for normality by the Kolmogorov- 
Smirnov test). The ciliate and flagellate abundances 
in triplicate controls during the 90 min experiment 
were followed by comparing the 5 time points sam- 
pled (0, 5, 15, 45 and 90 min) with a regression test. 
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RESULTS 

Taxonomic composition and standing stocks of 
protists in the coastal oyster pond in June 1997 

In the summer period of the experiment, the ciliate 
community of the coastal pond was abundant (23700 * 
3600 cells l-') and dominated by members of the subclass 
Choreotrichia, mainly represented by the order 
Choreotrichida, with Tintinnopsis spp. (10000 to 
11 200 cells 1-l),  and by the order Oligotrichida, domi- 
nated by Strombidum spp. (5700 to 8500 cells 1-l). Other 
common taxa from the subclass Haptoria and order Hap- 
torida (Mesodinium sp., Askenasia sp.) were also repre- 
sentative of the assemblage (3400 to 5700 cells I-'). Cili- 
ate sizes ranged from 8 pm length for a Mesodinium sp. 
to 72 pm for Strombidium conicum (Table 1). Prevalant 
ciliate cell lengths were between 16 and 48 pm. 

Flagellate abundances in the coastal pond varied 
from 4.2 to 6.7 X 106 cells 1-' and flagellates accounted 
for about 99.5% of the protists enumerated in water 
samples. Mean flagellate sizes ranged from 4 pm for 
heterotrophic to 6 pm for autotrophic flagellates. 

Tintinnina biovolumes as well as cell carbon were 
much higher than those of Oligotrichida and Hap- 

torida (for the most abundant taxon in each order, 
19 181 pm3 for Tintinnopsis sp. [48 pm by 24 pm], 
5579 pm3 for Strombidium sp. [32 pm by 24 pm] and 
2145 pm3 for Mesodinium sp. [ l 6  pm by 16 pm]). By 
multiplying the taxon abundances at the beginning of 
the experiment by the carbon content per cell for each 
ciliate taxon, we estimated the quantity of ciliate car- 
bon available to oysters: on average, 63.5 1.19 C 1-'. In 
this study, the flagellate carbon was not evaluated 
because flagellate taxonomy and biovolumes could 
not be determined. 

Grazing experiments 

The initial concentration in the natural suspension 
sampled for the grazing experiment was 23000 + 
3900 ciliates 1-' and 4.5 X 106 + 1.12 X 106 flagellates 1-l. 
Since all suspensions originated from the same coastal 
pond sample, initial protist abundances in the experi- 
mental trays showed no significant difference between 
controls and oyster treatments (Student's t-test, n = 6, 
p >> 0.05). In the 3 control suspensions, ciliate and fla- 
gellate abundances remained relatively constant over 
90 min (Fig. 1) according to regression test (r2 = 0.17, 

Table 1 Taxonomic composition, sizes, biovolumes and carbon content per cell of the protists community in the coastal pond in 
June 1997. Taxa printed in bold type were abundant and represented in all samples. Taxa identified by ' were rare and/or not 

present in all samples. When species were not identifiable, taxa were typified by their size 

Oligotrichlda 

Codonellopsidae 

Halteriidae 
Strombidiida~ 

Haptorida Didiniidae 
Mesodiniidae 

Autotrophic flagellate 
Heterotrophic flagellate 

Order Family Species Species Width Biovolme Carbon per cell 
Suborder length (pm) (pm) (pm3) (pg cell-') 

Choreothrichida Codonellidae Tin tinnopsis sp. 35 24 13994 2379 
Tintinninia Tin tinn opsis sp . 40 24 15984 2717 

Tintinnopsis sp. 48 24 19181 3261 
Tintinnopsis sp. 48 40 53281 9 058 
Tintinnopsis sp. ' 5 1 4 0 56632 9627 
Tintinnopsis sp. 56 24 22378 3 804 

Stenosemella sp.' 24 22 7 603 1293 

Halteria sp. 27 19 3 024 514 

Strombidium sp. ' 24 19 2617 445 
Strombidiurn sp. 25 22.5 4 307 732 
Strombidium sp. 32 24 5579 948 
Strombidium sp. 35 25.6 6 863 1167 
Strombidlum sp. 4 0 28.5 9 569 1627 
Strorn bidium conicum 7 2 32 20 642 3 509 

Didinium sp. ' 64 54 97716 16612 

Unidentified 16 16 2 145 365 
Unidentified 27 14 2771 471 
Mesodinium sp. ' 8 8 268 45 
Mesodinium sp. 16 16 2 145 365 
Mesodinjum pulex 14 10 733 125 

Askenasia sp. 24 16 3217 54 7 

6.2 4.2 
4.1 3.5 
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20 40 60 80 100 

Time (minutes) 

Fig. 1 Time course of ciliate and flagellate 
abundances in control suspensions. Abundance 
data (mean + SD, n = 3) were collected from 3 
separate expenments, performed with a closed, 
nonfiltering oyster in a 400 m1 suspension of 

coastal pond water 

0 10 30 50 70 90 0 1 0  30 50 70 90 

Time (minutes) 

Fig. 2. Retention of various protist taxa by the oyster Crassostrea gjgas: Hap- 
tonda (a) ,  Tintinnina (b),  Oligotrichida (c) and flagellates (d).  Protist abun- 
dance data (mean + SD, n = 3) were collected from 6 separate experiments 
performed in 400 m1 marine pond water suspensions with a closed, nonfilter- 

ing oyster (*---+) or \nth a filtering oyster (H) 

Clearance rates, filtered particles 

p >> 0.05 for ciliates and r2 = 0.23, p >> 0.05 for flagel- 
lates). 

In the 3 experimental trays with filtering oysters, cil- 
iates whose size was between 20 and 40 pm were 
100% retained; the relative retention efficiency in the 
experimental suspension within 15 min was 96% for 
Haptorida and Tintinnina (Fig. 2a, b) and 91% for 
Oligotrichida (Fig. 2c). Similarly, flagellates decreased 
by 86% within 15 min in the trays with the filtering 
oyster (Fig. 2d). At the end of the experiment (90 min), 
virtually all ciliates and 96% of the flagellates had 
been retained by the bivalves. 

The relative retention efficiency for each protist taxon, 
related to the protist sizes present in the suspension, re- 
mained constant in the size range dealt with in the study 
(Fig. 3), except for a slight decrease for the smaller and 
larger taxa: only 84 % of the 4 pm particles and 88 % of 
the 72 pm particles were retained. For concentrations be- 
low the pseudofaeces threshold, all protist from 4 to 
72 pm were similarly retained by the oyster gills. 

Clearance rates of oysters averaged 4.0 * 1.3  1 h-' g-' 
for flagellates and 7.2 k 3.5 1 h-' g-' for Oligotrichda cil- 
iates (Table 2). The number of filtered particles, calcu- 
lated between 0 and 15 min (Table 3), was dependent 
on protist taxon. Tintinnina were more readily retained 
(ca 27500 k 11 500 cells h-' g-l) than Haptorida 
(8900 * 4400 cells h-' g-') or Oligotrichida (19600 k 

Protist length (pm) 

Fig. 3. Relative retention efficiencies of protists related to 
their size class 
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Table 2. Cell abundances in experimental suspensions (cells 1-' at t,,) and standardized clearance rates by Crassostrea gigas (l h" 
g-l) for the different cihate and flagellate taxa (mean i SD, n = 3). When species were unidentifiable, taxa were typified by their 

size (length and width in pm) 

Taxon [lengthlwidth in pm) Cell abundances (I-') at to in experimental Standardized clearance rate (1 h" g-'1 
suspension with an actively filtering oyster 

Mean SD Mean SD 

Haptorida 
Mesodiniuirn sp. (16/16) 1178 237 3.6 0.7 
MesodinBdae (16/16] 1748 776 7.9 4.3 
Mesodiniuim pulex (14/10) 2736 3178 4.1 4.5 
Askenasia sp. (24/16) 76 132 2.5 4.4 
Haptorida average 5738 4192 5.5 2.3 

Oligotrichida 
Strombidinum sp. (25/22.5) 1026 1777 3.7 6.5 
Strombidinum sp. (32/24] 3648 3288 4 9 6.4 
Strombidinum sp. (35/25.6) 2318 4015 4 1 7.1 
Strom bidinum sp. (40/28.5) 114 197 2.7 4.7 
Strom bidinum conicum (72/32) 1064 628 4.9 3.5 
Halteria sp. (27/19) 76 132 0.0 0.0 
Oligotrichida average 8284 2028 7.2 3.5 

Tintinnina 
Tintinnopsis sp. [35/24) 152 174 4 9 4.3 
Tintinnopsis sp. (40/24) 1102 1425 8.7 2.2 
Tintinnopsis sp. (48/24) 9082 3933 6.5 5.8 
Tintinnopsis sp. (48/40) 7 60 1316 3.6 6.2 
Tintinnopsis sp. (56/24) 114 114 4.7 4.1 
Tintinnina average 11210 2146 7.8 1 .S 

Flagellates 
Autotrophic flagellate 1.38 X 10' 1 07 X 106 4 9 3.0 
Heterotrophic flagellate 3.55 X 106 5.00 X l o 4  3.1 1.8 
Flagellate average 4.93 X 106 2.47 X 106 4.0 1.3 

10200 cells h-' g-l). By multiplying filtered particles 
(cells h-' g-') by the carbon content per cell for each 
taxon, we obtained the quantity of ciliate carbon re- 
tained per hour per gram oyster dry weight (pg C h-' 
g-l), which averaged 126 pg C h-' g-' (Table 3). 

DISCUSSION 

Marine planktonic protists (ciliates and flagellates) 
have recently been shown to be abundant in Atlantic 
coastal ponds: our estimations of protist abundances in 
our coastal pond at the time of the grazing experiment 
were respectively 23700 + 3600 ciliates 1-' and 
4.5 X 106 * 1.12 X 106 flagellates 1-l. These protist abun- 
dances fell within the range estimated for the same 
pond by 0. Robin (pers. comm.), 10000 to 30000 cells 
I-' for ciliates and 53 X 104 to 2.2 X 106 flagellates I-' . 

In the absence of published data on ciliate abun- 
dances in the Atlantic coastal ecosystem near the 
coastal pond, we compared our data to results from 
distant estuaries and bays. In other temperate estuar- 
ies, ciliate abundances were in the same range, from 
200 to 19000 cells 1-' (St. Lawrence estuary, Sime- 

Ngando et al. 1995) and from 220 to 56000 cells 1-' 
(northern Adriatic, River PO estuary, Revelante & Gil- 
martin 1983). However, in the Gulf of Maine, ciliate 
abundances were higher: 350000 to 6000000 cells 1-' 
(Montagnes et al. 1988). 

In our study, the ciliate community was dominated by 
the order Choreotrichida with Tintinnops~s spp. (10 000 
to 11 200 cells I-') and by the order Oligotrichida with 
Strombidium spp. (5700 to 8500 cells I-'). 0 .  Robin 
(pers. comm.) observed up to 300000 Tintinnina I-' in 
June 1996 in the same coastal pond of L'Houmeau. 
Tintinnina are also abundant in the Mediterranean Sea: 
10000 ciliates 1-' in Villefranche-sur-mer (Ras- 
soulzadegan & Gostan 1976) and 8000 cells 1-' in the 
southeastern Mediterranean (Alger Bay, Vitiello 1964). 
On the other hand, in a northern Mediterranean coastal 
lagoon (Etang de Thau), Tintinnina abundance was 
only 75 cells 1-l (Lam-hoal et al. 1997), a value much 
lower than ours. Oligotnchida abundances (5700 to 
8500 cells I-') were in the range of values collected by 
0. Robin (pers. comm.) during the spring of 1996 (4300 
to 11500 cells I-') but lower than abundances 
(90000 cells 1-l) during the summer in Mediterranean 
Sea (Rassoulzadegan 1977). 
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Table 3. Retention of various ciliate taxa by Crassostrea gigas expressed as flltered particles per unit time and unit oyster dry 
weight (cells h-' g ' or ng C h-' g-l). When species were unidentifiable, taxa were typified by their size (length and width in pm) 

Taxon (length/width in pm) Filtered particles (cells h-' g-') Carbon per cell Filtered particles (ng h-' g-') 
Mean SD (pg cell-') Mean SD 

Haptorida 
Mesodiniuim sp. (16/16) 2 707 823 365 988 301 
Mesodiniidae (1 6/16) 4441 2 933 365 1621 1070 
Mesodiniuim pulex (14/10) 1488 1394 125 186 174 
Askenasia sp. (24/16) 227 393 547 124 215 
Haptorida sum 8 863 4 390 2 919 1583 

Oligotrichida 
Strombidinum sp. (25/22.5) 3 063 5305 732 2 242 3 883 
Strombidinum sp. (32/24) 7811 7 739 94 8 7 405 7 337 
Strombidinum sp. (3V25.6) 6919 11 985 1167 8 075 13986 
Strombidinum sp. (40/28.5) 276 479 1627 450 779 
Strombidinum conicum (72/32) 2 154 1126 3509 7 560 3 953 
Halteria sp. (27/19) 158 274 514 81 14 1 
Oligotrichida sum 19 643 10285 25812 8 643 

Tintinnina 
Tintinnopsis sp. (35/24) 432 528 2379 1029 1256 
Tintinnopsis sp. (40/24) 2 382 2 899 27 17 6472 7 876 
Tintinnopsis sp (48/24) 22770 14798 3261 74 254 48 257 
Tintinnopsis sp (48/40) 1583 2742 9058 14 342 24841 
Tintinnopsis sp. (56/24) 318 342 3804 1210 1303 
Tintinnina sum 27487 11584 97 307 32 081 

Mean sum for all ciliates 55 993 126038 

Our values for flagellate abundances were close to 
those obtained in the St. Lawrence estuary, 1.9 X 106 to 
6 X 106 cells 1-' (Lovejoy et al. 1993), and in the marine 
shallow-water Lirnfjorden in Denmark, 2 X 106 cells 1-' 
(Andersen & Sarensen 1986). 

The wide range of these data shows the natural vari- 
ability of protist abundances in the field. Moreover, 
since the coastal ponds are periodically closed systems 
in which the plankton community undergoes rapid 
fluctuations, it remains difficult to establish valid crite- 
ria for comparisons with open coastal systems. Never- 
theless, in terms of potential carbon resources avail- 
able to the oysters, the amounts calculated for ciliates 
(63.5 pg C I-') were at the high level found for protozoa 
in coastal waters (St. Lawrence Estuary: 0.23 to 51.6 pg 
C I-', Sime-Ngando et al. 1995). 

When a coastal pond planktonic community was pro- 
vided as potential food, clearance rates of oysters for 
protists (4.0 + 1.3 1 h-' g-' for flagellates and 7.2 * 
3.5 1 h-' g-' for Oligotrichida ciliates) were in a range 
similar to values measured for phytoplankton by 
Gerdes (1983): 4.8 1 h-' g-', Deslous-Paoli et al. (1987): 
4.7 1 h-' g-' , RiisgArd (1988): 6.8 1 h-' g-' and Soletchnik 
et al. (1991): 3 to 4 1 h-' g-'. However, in our expenmen- 
tal closed system, the concentration of particles rapidly 
declines during the experiment (Fig. 2); the standard 
time for our clearance experiment (15 min), selected to 
avoid drawbacks related to the irregular establishment 
of oyster filtration during the first 5 min, is too long to 

allow an accurate evaluation of clearance rates. Never- 
theless, the possible negative effects of our suboptimal 
laboratory conditions on bivalve filtering efficiency 
(Jsrgensen 1996) would only have resulted in the un- 
derestimation of our experimental values; field clear- 
ance rates of oysters for protists might be even higher. 

The relative retention efficiency was 94 % for the cil- 
iates and 86% for the flagellates within 15 min from 
400 m1 suspensions. This finding supports the results of 
Le Gall et al. (199?), who demonstrated that the oyster 
Crassostrea gigas retained Uronema sp., a cultured cil- 
iate isolated from the oyster pond, with a 85 % relative 
retention efficiency when present at a concentration 
close to field ciliate abundances. It also corroborates 
the observations by Paulmier (1972), who reported 
tintinnids to be abundant in the stomachs of wild oys- 
ters from the Atlantic coast. Likewise, Kreeger & 
Newel1 (1996) estimated that 58% and 4 4 %  respec- 
tively of cultured heterotrophic nanoflagellates were 
retained by Geukensia demissa and Mytilus edulis, 
compared to values of 66 % and 77 %, respectively, for 
the autotroph Isochrysis galbana. Ciliates and flagel- 
lates thus represent a potentially valuable food source 
and might be a significant component in the natural 
diet of suspension-feeding bivalves, provided their rel- 
ative abundance is sufficiently high in the available 
seston. 

To investigate the possible influence of particle size 
on oyster retention, we followed the abundance for 
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the size, volume or carbon content of 
each species (size between 3.65 and 
9 pm ESD). They observed, neverthe- 
less, that some algae were preferen- 
tially filtered or rejected, due to cell 
shape and flexibility. 

Conversely, mussels are able to 
retain even picoplankton-size parti- 
cles (Kemp et al. 1990, Kreeger & 
Newel1 1996): in particular, in high- 
quality food suspensions (expressed 
as the percentage of particles with 
chlorophyll fluorescence) prey reten- 
tion and selection in Mytilus edulis is 
not dependent on the prey size 
(Newel1 et al. 1989). Reduction in food 
quality induced a drop in the ability to 
select living cells from silt particles, 
independent of size. As for oysters, 
however, these investigations demon- 
strated a selectivity based on cell 
shape (Newel1 et al. 1989). In contrast 
to the mussel, Crassostrea gigas can- 
not retain picoplankton-size particles 
at natural concentrations; therefore, 
the picoplankton-protozoa trophic 
pathway (Le Gall et al. 1997) may rep- 
resent a significant energy source for 
the oyster (Fig. 4). 

Ciliates are more nutritious prey 
heterotrophs mixotrophs photoautotrophs than phytoplankton cells. They are 

Fig. 4. Hypothetical microbial food web in an oyster growing area (modified rich in (C:N ratio 
from Le Gall et al. 1997) near 4, Putt & Stoecker 1989, Ohman 

& Snyder 1991; as compared to > S  for 
phytoplankton, Heinbokel et al. 1978, 

each separate protist taxon in the experimental sus- Burkhardt & Riebesell 1997), and contain more carbon 
pensions. In our experiments, ciliates and flagellates in per cell than phytoplankton: our estimations of cell car- 
a size range from 4 to 72 pm were retained by the oys- bon contents, which are comparable to values previ- 
ter, but the smallest heterotrophic flagellates (4 W) ously reported in the literature (3100 pg C cell-' for 
and the largest ciliates (Strombidium conicum, 72 pm Strombidium sp. (43 pm by 42 pm], Stoecker & Egloff 
by 32 pm) displayed a slightly lower relative retention 1987; 1100 pg C cell-' for Strombidium sp. (43 pm by 
efficiency than the ciliates with sizes between 20 and 30 pm], Jonsson & Tiselius 1990) were much higher 
40 pm. Indeed, the flagellate sizes in our suspensions than phytoplankton carbon content per cell from 10 to 
were at the lower end of the particle size spectrum 21 pg C cell-' for Skeletonema costatum (Strathmann 
known to be retained by Crassotrea gigas. Barille et al. 1967, Burkhardt & Riebesell 1997, Bougrier et al. 1997), 
(1993) showed that this oyster has a limited capacity to 1.61 pg C cell-' for Phaedactylum tncornatum (Fiala- 
retain small particles: 4 pm particles (equivalent spher- Medioni et al. 1983) and 10.3 pg C cell-' for Navicula 
ical diameter, ESD) were retained with 100% retention filata (Bougrier et al. 1997). In our experiment, on aver- 
efficiency when sestonic load was low, but the limlt age, oysters retained 126 pg ciliate C h-' g-' for a cili- 
increased to 12 pm for hlgher sestonic loads; for partl- ate concentration of 25 000 t 3900 cells 1-'. Fiala- 
cles below these thresholds, retention efficiency Medioni et al. (1983) estimated that oyster filtering 
quickly decreased. Similarly Deslous-Paoli et al. (1987) Phaedactylum tricornatum retained 27.5 pg C h-' g-' 
demonstrated that the oyster is not able to retain small for a phytoplankton concentration of 1 X 106 cells 1-l. 
particles. Bougrier et al. (1997) reported that the selec- Ciliates may thus contribute to the carbon require- 
tion of algae by the oyster C. gigas was independent of ments of Crassostrea gigas in the same way as do het- 
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erotrophic flagellates for the mussels Geukensia 
demissa and Mytilus edulis (Kreeger & Newel1 1996). 

Most studies that have examined the nutritional 
importance of protists as a 'trophic link' have focused 
on pelagic consumers, such as zooplankton (Berk et al. 
1977, Porter et al. 1979, Sherr et al. 198613, Jonsson & 

Tiselius 1990, Gifford & Dagg 1991, Hartmann et al. 
1993). However, only few studies have done the same 
for benthic consumers (Kreeger & Newel1 1996, Le Gall 
et al. 1997). Trophic coupling between pelagic protists 
and benthic suspension-feeders is poorly documented 
in aquatic food models (e.g. see Legendre & Le Fevre 
1995). 

In open water oyster beds, primary producers, in 
particular phytoplankton and resuspended microphy- 
tobenthos, can be considered important food sources 
for bivalve suspension feeders (Blanchard et al. 1997). 
In coastal ponds, on the other hand, even though 
microphytobenthic biomass may attain up to 25 times 
the higher levels of water column phytoplankton 
(Zanette 1980, Robert 1983), it is unlikely that the 
microphytobenthos is an important direct resource 
because its resuspension is low, due to a lack of turbu- 
lence. However, the DOM released by these auto- 
trophs contributes to the important bacterial biomass 
that develops in coastal ponds: bacterioplankton con- 
stitutes 50% of the planktonic C biomass in oyster 
ponds of the Charente (Frikha et al. 1987). The bacte- 
ria, in turn, are a primary food source of hetero- 
trophic/mixotrophic ciliates and flagellates which 
develop biomasses comparable to phytoplankton: in 
our coastal pond, the protist biomass was similar to the 
phytoplankton biomass of coastal oyster ponds from 
Bourgneuf Bay (Robert 1983). Since bacterivorous cili- 
ates have a gross growth efficiency of about 40 (John- 
son et al. 1982, Ohman & Snyder 1991), relatively large 
amounts of bacterial C must be recovered by oysters 
via the protist trophic link. 

In coastal pond habitats, bivalve molluscs are abun- 
dant and may be the dominant consumers of seston. 
Oysters are most likely opportunist omnivores, bal- 
ancing their C (and N) requirements by utilizing a 
wide variety of living and dead material (Riera & 

Richard 1996), including protists. In addition to phy- 
toplankton which cannot entirely account for the 
energy requirements of Crassostrea gigas (Heral 1987), 
oysters may derive nutrients from microzooplankton, 
in particular from protists. Our experiment presents 
the first data on oyster nutrition through grazing on a 
field community of protists. These results clearly show 
that suspension-feeding bivalves feed on ciliates and 
flagellates. Such a trophic relationship could be of 
primary importance for the transfer of C, and prob- 
ably N, from the microbial food web to higher trophic 
levels in the benthos. 
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