Short term variability in larval fish assemblages of the Sydney shelf: tracers of hydrographic variability

Kimberley A. Smith1,*, Mark T. Gibbs2,3, Jason H. Middleton2, Iain M. Suthers1

1School of Biological Science, University of New South Wales, Sydney, New South Wales 2052, Australia
2School of Mathematics, University of New South Wales, Sydney, New South Wales 2052, Australia
3Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand

ABSTRACT: The among- and within-night changes in the vertical and horizontal distribution of ichthyoplankton assemblages across the Sydney continental shelf, SE Australia, were examined in relation to concurrent changes in hydrography. Of the environmental factors examined, spatial position (sampling depth, distance from shore), water temperature and sampling depth relative to the base of the mixed layer gave the best explanation for variability in assemblage distributions. There was good agreement between observed changes in ichthyoplankton distributions and among-night variability in the cross-shelf temperature and current fields. Ichthyoplankton assemblages functioned as short term, biological tracers of hydrographic variability. Our observations suggest several cross-shelf advective processes, including a recirculation cell over the shelf, could retain passively drifting ichthyoplankton within the shelf region and also minimise longshore drift. The multivariate analysis used was an effective method of examining patterns within and between large, highly variable biological and environmental data sets.

KEY WORDS: Ichthyoplankton · Hydrography · Biological tracer · Larval retention · Multivariate

INTRODUCTION

The influence of advective processes on ichthyoplankton assemblages is dramatically illustrated in the coastal zone, where ichthyoplankton responses to dynamic events are often consistent with passive drift. In particular, many physical mechanisms have been proposed to retain shelf-spawned larvae within continental shelf regions. For example, in the Californian Current system, pelagic spawning of shelf species corresponds to a period of wind driven, onshore surface flow, thus retaining buoyant eggs and larvae within the coastal zone (Parrish et al. 1981). In the NW Mediterranean, a shelf break salinity front functions as a barrier to offshore dispersal of shelf species and may concentrate larvae in the productive frontal zone (Sabates & Olivar 1996). In the Middle Atlantic Bight, shelf spawned larvae may be transported southward by shelf flows, become entrained in the northward flowing Gulf Stream and may finally be returned to the shelf by regular, but unpredictable, shoreward intrusions of warm core eddies (Hare & Cowen 1991, Cowen et al. 1993). Dynamic events in the coastal ocean represent significant advective forces despite the fact that they are often of relatively short duration, compared with most ichthyoplanktonic durations. It
is instructive to examine the response of ichthyo-
plankton communities to local circulation processes
because of the considerable influence that short term
hydrodynamic variability may have on overall larval
dispersal.

Ichthyoplankton assemblages of the SE Australian
continental shelf have been examined in several
recent studies (Gray et al. 1992, Gray 1993, Gray
The community is characterised by high taxonomic
diversity (>110 families) and considerable assemblage
variability over short (daily, Dempster et al. 1997) and
long (monthly, Smith & Suthers 1999) time periods. The
responses to wind and ocean forcing in this region can
result in rapid hydrographic changes to both near-surface
and interior waters over the shelf. However, the
short term response of subsurface ichthyoplankton
assemblages, which includes the majority of ichthy-
oplankton in the shelf region, to hydrographic changes
is yet to be examined. Short term, advective processes
may account for much of the previously observed,
unexplained, ichthyoplankton variability in the region
(Gray et al. 1992, Gray 1993).

This study aimed to assess the short term (nightly)
impact of large scale (km) physical processes on Syd-
dney shelf ichthyoplankton. Sampling was timed to
coincide with a period of typically high East Australian
Current activity in the region. The approach of the
present study differs from many previous investiga-
tions of shelf ichthyoplankton assemblages in that we
concurrently considered horizontal and vertical distri-
butional patterns, and also compared these biological
patterns with hydrological gradients in the same
dimensions.

Oceanography of the Sydney region

Variability of the cross-shore current and density
fields over the narrow (~30 km) Sydney shelf is primar-
ily associated with 3 dynamical processes, namely: the
East Australian Current (EAC), the response to the
local wind stress and the unforced coastal-trapped
waves (CTWs) which propagate northwards along the
NSW coast. Recent studies have shown that Sydney
shelf and slope waters respond differently to each of
these forcing processes (Griffin & Middleton 1991,

South of around 32°S, the EAC is in the form of a
recirculating eddy field containing both warm and
cold-cored meso- and sub-meso-scale eddies and fila-
ments (hereafter referred to as EAC features). Most
energetic of these features are the warm-core, anti-
cyclonic, meso-scale eddies with diameters of around
100 km (Nilsson & Crosswell 1981) (Fig. 1a). Typically,
2 or 3 such eddies concurrently exist in the western
Tasman Sea. These sporadically intrude into Sydney
shelf and slope waters. Strong southward flowing outer
shelf and slope currents are often associated with these
intrusion events, and the shelf and slope cross-shore
temperature, and hence density, fields are significantly
altered as isotherms tilt up towards the coast (Gibbs et
al. 1998). The evolution of transient shelf-break-fronts
have also been associated with these warm intrusion
events (Condie 1995). Cold, nutrient-rich waters can
also be uplifted into the outer shelf region by small,
cold-core EAC eddies in a process similar to the nut-
rient enrichment of US east coast waters by Gulf Stream
instabilities (Csanady 1989, Gibbs et al. 1997).

By contrast, adjustments of the isotherms in the
nearshore zone (defined here as from the coast out to a
distance of an internal Rossby radius, around 5 km in
summer) are primarily in response to local wind stress
(Griffin & Middleton 1991, Gibbs et al. 1998). Hence,
earshore downwelling and upwelling events occur in
response to northward and southward local winds,
respectively, although the magnitude and response
time of nearshore temperature field adjustments are
also influenced by the offshore EAC field. For exam-
ple, particularly strong transient upwelling states may
be produced by the concurrent action of an intruding

Fig. 1. (a) Schematic of major features of East Australian Cur-
rent (EAC) system. (b) Sydney shelf and cross-shelf transect,
showing ichthyoplankton sampling Stns A to E, and current
meter moorings 1 to IV
EAC warm feature and southward, upwelling favourable local winds (Gibbs et al. 1998). Free propagating CTWs generated at the eastern end of Bass Strait (south of Sydney) and along the southern NSW coast have been shown to account for a significant amount of the background variability of barotropic currents in the Sydney nearshore zone (Griffin & Middleton 1991). However, the efficiency of this process as upwelling/downwelling forcing processes in the NSW coastal ocean is yet to be determined.

Other processes which influence the cross-shore density field across the Sydney shelf are the seasonal development of the summer mixed layer and rapid, transient adjustment of the mixed layer depth in response to strong local winds, in particular northward winds associated with atmospheric cold-fronts which propagate northwards along the NSW coast. Baroclinic tides have also been shown to produce semi-diurnal period vertical oscillations of up to 15 m in the base of the mixed layer in the nearshore zone (Gibbs & Middleton 1997).

Nearshore current velocities off Sydney have a long term mean of 0.1 to 0.2 m s⁻¹ southward, although fluctuations associated with northward and southward currents pulses of 0.2 to 0.3 m s⁻¹ occur regularly (Middleton 1987). Over the outer shelf and slope, longshore currents are predominantly southward in response to EAC forcing and velocities may exceed 1 m s⁻¹. Cross-shelf currents are typically 10 times smaller than longshore flows.

MATERIALS AND METHODS

Collection of data. Full details of ichthyoplankton sampling methods and processing of samples may be found within Smith & Suthers (1999). Briefly, data were collected during 2 cruises, in January and April of 1994, aboard the RV 'Franklin'. On both cruises, biological data were collected from 5 stations along a cross-shelf transect adjacent to Sydney, New South Wales, Australia. Oceanographic data were collected along a similar transect. The transect began 2.7 km offshore and ended 40 km from the coast. Plankton sampling Stns A, B and C were within shelf waters (bottom depths less than 150 m). Stn D was at the shelf break, (bottom depth 250 m), and Stn E occurred over the continental slope (bottom depth 600 m) (Fig. 1b, Table 1). The transect was sampled January on 22, 23 and 25, between 20:30 and 05:00 h. Sampling also occurred on April 5, 6, 7 and 8, between 19:00 and 06:00 h. The order of sampling was from Stn A to E on all nights except April 8, when sampling began at Stn E and ended at Stn A. Some locations were not sampled on April 7 due to bad weather. Sunset and sunrise were at approximately 20:00 and 06:00 h in January, and 17:45 and 06:00 h in April, respectively.

Within-night variability during the night of April 9 was examined by repeated sampling at Stns B and C. Stns B and C were each sampled 4 times between 19:00 and 05:00 h, alternating between stations throughout the night.

Surface plankton samples were collected using a 75 \times 75 cm square mouth net (330 μm mesh), fitted with a General Oceanics flow meter. Two surface hauls, each of 6 min duration, were conducted at each station. Near-surface temperature and salinity were recorded by shipboard instruments at a depth of 4 m.

Subsurface plankton samples were collected by a multiple, opening and closing net ('EZ net'), with a square mouth of 1 m² and mesh size of 330 μm. The net was fitted with temperature, conductivity and depth sensors and 2 General Oceanics flow meters—one inside and one outside the net mouth. Real time data was communicated to an operator onboard ship who electronically triggered each net release. Three depth strata were each sampled by a single haul at each station, and actual sampling depths varied according to water depth at each station (Table 1). Subsurface haul durations were 10 min and obliquely sampled each depth strata.

In addition to nightly hydrographic data collected by EZ sensors, day time hydrographic data was collected by deployment of a Neil-Brown CTD at up to 11 locations along the sampling transect. Four current meter moorings (I to IV) were positioned along the cross-shelf transect during January and 1 mooring (I) remained in position during April (Fig. 1b). Top and bottom current meters were positioned at moorings I to IV, at depths of 17, 22, 22 and 44 m (top) and 50, 65, 72 and 104 m (bottom), respectively. Water depth at each location is 65, 98, 104 and 337 m, respectively. Mooring I is a permanent facility operated by Australian Water Technologies Ensight, and known as the Ocean Reference Station. Mooring I also records wind velocity and direction from an anemometer positioned 5 m above the sea surface.

Table 1. Location, bathymetry and depth intervals for each ichthyoplankton sampling station.

<table>
<thead>
<tr>
<th>Stn</th>
<th>Distance offshore (km)</th>
<th>Bottom depth (m)</th>
<th>Depth of sampling intervals (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deep</td>
</tr>
<tr>
<td>A</td>
<td>2.7</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>7.3</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>16.4</td>
<td>130</td>
<td>80–120</td>
</tr>
<tr>
<td>D</td>
<td>32.8</td>
<td>250</td>
<td>80–120</td>
</tr>
<tr>
<td>E</td>
<td>40.0</td>
<td>600</td>
<td>80–120</td>
</tr>
</tbody>
</table>
Analysis. The raw catches of each taxa were standardized to number of larvae per 100 m³. Standardised abundances were used in all statistical analyses. Similarities between larval assemblages at each sampling location were analysed by multivariate techniques.

Ichthyoplankton family abundances were fourth root transformed to enhance the contribution of less abundant taxa and a Bray-Curtis similarity matrix was generated from this data (Bray & Curtis 1957). Similarities between assemblages were graphically represented by non-metric multidimensional scaling (MDS, Clarke 1993). MDS ordinations may be arbitrarily rotated and so axes are not labelled. Stress values indicate how well the 2-dimensional ordinations represent relationships in multidimensional space. Stress values <0.15 indicate a good fit (Clarke 1993). Surface and subsurface assemblages were represented in separate MDS ordinations to assist in interpretation, and because slightly different sampling methods were used to collect surface and subsurface ichthyoplankton.

Relationships between assemblage distributions and hydrological variables were examined by ranked correlations ('BIO-ENV' procedure, Clarke & Ainsworth 1993). A set of 9 hydrological variables was recorded for each haul. These were (1) average haul depth, (2) bathymetric depth, (3) distance from shore, (4) average temperature during haul, (5) temperature variance during haul, (6) average salinity during haul, (7) sampling date, (8) depth of mixed layer, and (9) average haul depth relative to base of mixed layer. Euclidean distance similarity matrices were generated from all possible combinations of the above 9 variables for each sampling period. Rank correlations between each of these matrices and monthly biological similarity matrices were calculated. The combination of hydrological variables resulting in the maximum correlation was considered the 'best explanation' for the observed biological pattern. This technique is an exploratory tool and its assumptions do not allow a test of significance. Full details of this analysis are given by Clarke & Ainsworth (1993).

Hierarchical agglomerative clustering was used to group monthly samples into several ichthyoplankton assemblage groupings. January and April samples were arbitrarily clustered at a 40 and 30 % level of similarity, respectively, to provide a small number of groups which would function as conservative indicators of assemblage variability. Differences in taxonomic composition between groups were assessed by similarity percentages analysis (SIMPER), which determined the percentage contribution of individual taxa to the dissimilarity between groups (Clarke 1993).

Current meter data was preprocessed by resolving currents into principle along-shore and cross-shelf directions. Currents from each meter were rotated so as to align them with the bathymetry, which runs in an approximately northeast-southwest direction. Principle currents were then lowpass filtered using a Lanczos-cosine filter with a cutoff period of 2 h to remove high frequency contributions. Lowpassed currents were then decimated to hourly records. 24 h averages of cross-shelf current velocity and direction were also calculated for the midnight-midnight period prior to each sampling night. The magnitude of cross-shelf components are significantly smaller than along-shore components and caution must be exercised when interpreting cross-shelf flows, since a small error in the principle directions will contaminate the cross-shelf components. A time series of wind stress data was generated using the method of Large & Pond (1981). The filtering and decimating routines applied to current data were also applied to wind data.

Surface ichthyoplankton and hydrography have been discussed in an earlier paper by Dempster et al. (1997) but have been included here for comparison.

RESULTS

Factors influencing assemblage distributions

MDS ordinations of similarities between assemblages each month revealed trends in community distributions corresponding to spatial position (Figs. 2 & 3). In other words, assemblages close in geographical space (measured by cross-shelf position and haul depth) were also close in multidimensional space. However, the distribution of some assemblages, which have been circled in each plot, clearly do not conform to this pattern. In January, the shallow, Stn D assemblage (D3), which was sampled on January 25, was more similar to deep assemblages from shelf Stns B and C than to other shallow assemblages from offshore Stns D or E (Fig. 2). In April, 2 surface assemblages from Stn B, both sampled on April 8, were more similar to offshore surface samples from Stns C, D or E than to other inshore samples from Stns A or B (Fig. 3).

Results of rank correlations between assemblage similarity matrices and physical variable matrices showed the importance of depth and distance from shore, but suggested that hydrography was also an important influence on assemblage distributions (Table 2). In January, maximum correlations were obtained by correlating surface assemblage similarities with a matrix of temperature, distance from shore and depth relative to base of mixed layer ($r = 0.56$), and subsurface assemblage similarities with a matrix of temperature, distance from shore, depth relative to base of mixed layer and haul depth ($r = 0.69$). In April,
maximum correlations were obtained by correlating surface assemblage similarities with a matrix of temperature alone \(r = 0.66\), and subsurface assemblage similarities with a matrix of temperature, distance from shore and haul depth \(r = 0.61\).

Distance from shore featured in 3 of the 4 correlations and haul depth featured in both correlations with subsurface assemblages, confirming that spatial coordinates were partial descriptors of assemblage variability. Temperature was the only variable present in all of the above maximum correlations. The other physical variable, distance from the base of the mixed layer, featured only in January correlations. January was a period of greater vertical instability than April. During April, the depth of the mixed layer was less variable within and between nights and therefore a less likely source of ichthyoplankton variability at this time.

Table 2. Results of BIOENV analysis, listing combination of hydrographic variables providing the ‘best explanation’ for similarities among ichthyoplankton assemblages. (‘Best explanation’ = highest correlation with ichthyoplankton similarity matrix)

<table>
<thead>
<tr>
<th>Month</th>
<th>Sampling depth</th>
<th>Maximum (r) value</th>
<th>Hydrographic matrix variables of maximum correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>Surface</td>
<td>0.56</td>
<td>Temperature, distance from shore, depth relative to base of mixed layer</td>
</tr>
<tr>
<td></td>
<td>Subsurface</td>
<td>0.69</td>
<td>Temperature, distance from shore, depth relative to base of mixed layer, haul depth</td>
</tr>
<tr>
<td>April</td>
<td>Surface</td>
<td>0.66</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Subsurface</td>
<td>0.61</td>
<td>Temperature, distance from shore, haul depth</td>
</tr>
</tbody>
</table>
Composition of ichthyoplankton groups

The ichthyoplankton assemblages represented in the MDS ordinations were clustered into 7 groups in January and 6 groups in April (Figs. 4 & 5). Groups were characterised by both taxonomic composition and total ichthyoplankton density (Table 3). Information regarding adult distributions and spawning locations is taken from Kailola et al. (1993) and Gommon et al. (1994).

In January, group J1 assemblages were characterised by low total larval density (<50 larvae per 100 m3) and occurred in deep waters, below the thermocline, over the outer shelf and slope (Table 3). The small number of larvae which occurred in this region were predominantly oceanic taxa, such as myctophids, gonostomatids and paralepidids. Groups J2 and J4 comprised assemblages of high density (>500 larvae per 100 m3). These groups occurred in subsurface waters above or in the thermocline. Group J2, which occurred over the shelf, was distinguished by an abundance of coastal and shelf spawned larvae, including carangids, clupeids, berycids and sillaginids. Group J4, which occurred over the slope, was distinguished by an abundance of mesopelagic taxa, including myctophids, gonostomatids, paralepidids and *Howella* spp.

In January, all surface groups (J5 to J7) were characterised by relatively low densities. Group J5 consisted of one assemblage (sampled at Stn A) and was distinguished by the presence of pomacentrids and girellids, which spawn in the very nearshore zone. Group J6 assemblages comprised a mixture of coastal and oceanic taxa, particularly carangids and myctophids, and were distributed across surface waters of the shelf and shelf break. Group J7 assemblages occurred in surface waters over the shelf break and slope, and were distinguished by an abundance of gonorynchids, which occur as demersal adults across the continental shelf.

In April, surface groups (A1 to A3) were again characterised by relatively low densities...
Table 3. Composition and distribution of ichthyoplankton groups in January and April 1994. Symbols correspond to those given in Figs. 6 & 7. Groups J1, J6 and A3 were characterised by low larval density rather than taxonomic composition.

<table>
<thead>
<tr>
<th>Month</th>
<th>Group</th>
<th>Range of distribution (depth / station)</th>
<th>Taxa responsible for >60% of dissimilarity between groups, as determined by SIMPER analysis</th>
<th>Average no. of larvae (+ SE) per assemblage 100 m⁻³ (n = no. of samples)</th>
<th>Six most abundant taxa in group (*less than 6 taxa present)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>J1 (▼)</td>
<td>80–120 m / C,D,E</td>
<td>Characterised by low larval density</td>
<td>39.1 ± 17.1 (n = 7)</td>
<td>Myctophidae, Gonostomatidae, Paralepididae, Callionymidae, Argentinidae, Labridae</td>
</tr>
<tr>
<td></td>
<td>J2 (〇)</td>
<td>15–50 m / A,B,C</td>
<td>Carangidae, Clupeidae, Berycidae, Sillaginidae, Platycephalidae, Engraulidae, leptocephali larvae, Gobiidae, Gerreidae, Scorpaenidae, Paralichthyidae, Creedidae, Cepolidae, Mugilidae, Mullidae</td>
<td>581.3 ± 100.0 (n = 15)</td>
<td>Carangidae, Myctophidae, Clupeidae, Gonostomatidae, Berycidae, Sillaginidae</td>
</tr>
<tr>
<td></td>
<td>J3 (▲)</td>
<td>15–80 m / B,C,D</td>
<td>Triglidae, Callionymidae, Moridae</td>
<td>100.6 ± 24.6 (n = 10)</td>
<td>Myctophidae, Carangidae, leptocephali</td>
</tr>
<tr>
<td></td>
<td>J4 (●)</td>
<td>15–120 m / D,E</td>
<td>Myctophidae, Gonostomatidae, Labridae, Paralepididae, Bothidae, Howella spp., Synodontidae, Bregmaceroidea, Chiasmodontidae</td>
<td>735.6 ± 257.4 (n = 12)</td>
<td>Myctophidae, Gonostomatidae, Labriddae, Paralepididae, Bothidae, Howella spp.</td>
</tr>
<tr>
<td></td>
<td>J5 (■)</td>
<td>Surface / A</td>
<td>Pomacentridae, Girellidae, Pleuronectidae, Holocentridae, Exocetidae, Trachichthyidae, Cynoglossidae</td>
<td>43.3 (n = 1)</td>
<td>Pomacentridae, Myctophidae, Girellidae, Carangidae, Platycephalidae, Clupeidae</td>
</tr>
<tr>
<td></td>
<td>J6 (×)</td>
<td>Surface / A,B,C,D</td>
<td>Characterised by low larval density</td>
<td>42.7 ± 4.5 (n = 18)</td>
<td>Myctophidae, Carangidae, Pomacentridae, Gonorynchidae, Sillaginidae, Berycidae</td>
</tr>
<tr>
<td></td>
<td>J7 (〇)</td>
<td>Surface / D,E</td>
<td>Gonorynchidae</td>
<td>50.4 ± 7.9 (n = 11)</td>
<td>Myctophidae, Gonorynchidae, Carangidae, Mullidae, Scombridae, Synodontidae</td>
</tr>
<tr>
<td>April</td>
<td>A1 (▲)</td>
<td>Surface / A</td>
<td>Sillaginidae, Dactylopteridae</td>
<td>8.5 (n = 1)</td>
<td>Sillaginidae, Carangidae, Dactylopteridae, Serranidae, Mugilidae*</td>
</tr>
<tr>
<td></td>
<td>A2 (〇)</td>
<td>Surface / B</td>
<td>Scaridae</td>
<td>0.7 (n = 1)</td>
<td>Carangidae, Scaridae*</td>
</tr>
<tr>
<td></td>
<td>A3 (×)</td>
<td>Surface / A,B</td>
<td>Characterised by low larval density</td>
<td>4.5 ± 0.9 (n = 8)</td>
<td>Carangidae, Pomacentridae, Sillaginidae, Platycephalidae, Calлиonymidae, Mullidae</td>
</tr>
<tr>
<td></td>
<td>A4 (●)</td>
<td>40–120 m / C,D,E</td>
<td>Mugilidae, Macrouridae, Notosudidae</td>
<td>5.0 ± 1.0 (n = 9)</td>
<td>Leptocephali larvae, Myctophidae, Mugilidae, Macrouridae, Argentinidae, Moridae</td>
</tr>
<tr>
<td></td>
<td>A5 (〇)</td>
<td>15–120 m / A,B,C</td>
<td>Platycephalidae, Creedidae, Cepolidae, Calлionymidae, Percophidae, Aulopidae, Bothidae, Mugilidae</td>
<td>34.6 ± 4.9 (n = 25)</td>
<td>Calllionymidae, Cepolidae, Sillaginidae, Platycephalidae, Creedidae, Serranidae</td>
</tr>
<tr>
<td></td>
<td>A6 (▼)</td>
<td>Surface –120 m / B,C,D,E</td>
<td>Carangidae, Berycidae, leptocephali larvae, Pomacentridae, Gobiidae, Myctophidae, Scorpaenidae, Gonostomatidae, Gonorynchidae, Cheilodactylidae, Macrurans, Serranidae, Mullidae</td>
<td>63.9 ± 6.2 (n = 42)</td>
<td>Gonorynchidae, Myctophidae, Berycidae, Serranidae, leptocephali larvae, Scorpaenidae</td>
</tr>
</tbody>
</table>
of larvae (Table 3). Groups A1 and A2 each comprised a single assemblage, sampled at Stns A and B, respectively. The A1 assemblage was distinguished by a dominance of sillaginids, a taxon typical of the nearshore zone. The A2 assemblage was distinguished by the presence of scarids, a taxon typical of tropical waters. Group A3 comprised all other assemblages occurring in surface waters of the inner shelf, and most larvae within this group (e.g., carangids and pomacentrids) are coastally spawned. The inner shelf was not, however, the location of maximum density for any of the dominant taxa within this group, and the group was characterised by low larval density rather than taxonomic composition.

Group A4 was also characterised by assemblages of low larval density. These occurred in deep waters, in and below the thermocline, over the outer shelf and slope. The group was characterised by the presence of pinguiipedids and macrourids, which occur as demersal adults over the shelf and slope, and notosudids, which are mesopelagic as adults.

Groups A5 and A6 were characterised by assemblages of relatively high total density. Group A5 assemblages occurred in subsurface waters of the inner to mid-shelf, and comprised larvae such as platycephalids, creedids, callionymids and cepolids, the adults of which occur demersally in coastal and shelf waters. Group A6 contained a large number of assemblages from surface and subsurface waters of all regions except the nearshore zone. These assemblages were characterised by the presence of coastal and shelf spawned larvae, such as carangids, berycids and pomacentrids, but also contained numerous oceanic larvae, particularly myctophids.

Distribution of ichthyoplankton groups

The distribution of groups were superimposed over shelf temperature profiles from respective sampling nights to illustrate the major features of among-night variability in the cross-shelf distribution of ichthyoplankton assemblages.

In January, a discontinuity between inshore and offshore groups occurred over the shelf break, between Stns C and D (Fig. 6b–d). The offshore distributions of surface groups J5 and J6, and subsurface groups J2 and J3, were limited to the shelf break, except on January 25 when J3 and J6 extended as far as Stn D. The shoreward distributions of surface group J7 and subsurface group J4 were also limited to the shelf break, except on January 25 when the movement of group J3 appeared to displace group J4 from Stn D. Group J3 also underwent considerable vertical displacement on January 25, rising to a depth of approximately 25 m, although this group had previously occurred at depths of 50 m or greater.

In April a discontinuity again occurred between inshore and offshore assemblage groups, although the location of this discontinuity was now located over the mid-shelf region, between Stns B and C (Fig. 7a–d). The offshore distributions of surface group A3, and
Within-night ichthyooplankton variability

Within-night variability was assessed by repeated sampling at mid-shelf Stns B and C between sunset on April 9 and sunrise on April 10. Sampling was conducted 4 times at each station and similarities between ichthyooplankton assemblages taken during this period are represented in MDS ordinations. Firstly, between-station differences in assemblages were clearly evident in both surface and subsurface waters, with Stn B assemblages grouping apart from those at Stn C (Fig. 8). At the surface, pairs of replicate samples, taken a few minutes apart, tended to be more similar to each other than to other pairs of replicate samples, taken a few hours apart within the same station (Fig. 8a). Below the surface, the 4 samples within each depth, taken over a 9 h period, grouped together on the MDS ordination, suggesting persistent among-depth differences within each station during the sampling period (Fig. 8b).

A description of averaged, near-surface cross-shelf flows observed during the study periods may be found in Dempster et al. (1997). To identify processes and
resulting transports throughout the interior of the water-column, averaged, deep cross-shelf flows were also calculated for the 24 h period (midnight to midnight) preceding each sampling night. These daily current averages, along with nightly, cross-shore temperature sections, were used to examine the cross-shelf current field (Figs. 6 & 7).

A strong, warm EAC feature had encroached into Sydney slope waters immediately prior to the January sampling period (AVHRR remote sea surface temperature images, not shown). This influence was evidenced in the shelf/slope temperatures and cross-shore currents which showed a strong tilting of the isotherms, upwards towards the coast, and onshore flows over the outer shelf (Fig. 6a-d). Prior to biological sampling, there were also indications of a shelf-break front over the outer shell where horizontal temperature stratification was evident (Fig. 6a). AVHRR images showed that the EAC feature moved back offshore during the study period. This offshore migration was reflected in the flattening out of offshore isotherms and a weakening, or reversal (deep at moorings II and III), of the outer shelf cross-shelf flows during the study period.

The nearshore temperature and current fields also showed considerable variability in January. A strong northward, downwelling favourable wind event on January 21 and 22 flattened out previously upward tilting isotherms over the inner and middle shelf regions (Figs. 6a & 9). Shoreward near-surface flow over the mid-shelf was consistent with wind and EAC forcing. Weak, offshore flow in the nearshore zone on January 22 and 23 may be an indication of forced or unforced CTW activity (Fig. 6h). It is probable that an offshore flow was also present in the bottom boundary layer during this period of downwelling favourable winds which may have helped to maintain the shelf-break front apparent earlier. As the wind abated on January 23, the isotherms again tilted up as the EAC became the only acting forcing process (Fig. 6b). The winds during January 23 to 25 were weak coastal sea breezes. This light forcing appeared to have little influence on shelf waters as the nearshore isotherms remained flat as both the wind and EAC forcing abated (Figs. 6d & 9). Hence, during the January sampling period, the cross-shore flows in the mixed layer remained mainly directed onshore. Meanwhile, the interior cross-shore flows weakened and in some cases reversed from onshore-flowing to offshore-flowing as the EAC feature migrated offshore and the isotherms relaxed to a nearly horizontal state.

The April sampling period was one of considerably greater oceanographic stability by comparison with conditions during January although, again, a strong EAC feature was influencing the shelf and slope waters. Isotherms remained relatively fixed between April 5 and 9, sloping upwards towards the coast over both the shelf and slope (Fig. 7). A dip in isotherms over the mid-shelf on April 6 may have been associated with the passage of an internal wave or baroclinic tide (Fig. 7b). Nearshore isotherm displacement corresponded to nearshore wind activity. Winds were from the north-east (upwelling favourable) between April 5 and 6, during which time nearshore isotherms sloped upward toward the coast, but from the south (downwelling favourable) between April 7 and 8, during which time isotherms relaxed (Figs. 7 & 10). Current data was only available for the nearshore zone (mooring I) in April. Between April 5 and 6 near-surface and bottom currents were flowing offshore, but decreased in magnitude during this period.

Fig. 9. Vector stick plots, January 1994. Direction of all vectors follows oceanographic conventions. Top of page is north. (a) Hourly wind stresses (Pa) at mooring I. Near-surface current velocities and bottom current velocities (m s⁻¹) at (b), (c) mooring I; (d), (e) mooring II; (f), (g) mooring III; (h), (i) mooring IV.
Fig. 10. Vector stick plots, April 1994. (a) Hourly wind stresses (Pa), (b) near-surface current velocities (m s⁻¹), and (c) bottom current velocities (m s⁻¹) at mooring I. Wind and current data only available from mooring I in April.

Ichthyoplankton and oceanography

Considerable agreement existed between ichthyoplankton assemblage movements and water movements during both sampling periods. Firstly, on January 23, the introduction of assemblage group J5 into Stn A waters corresponded to persistent offshore surface flow during the previous 48 h (Fig. 6b–c). Group J5 consisted of taxa spawned in the very nearshore zone. The disappearance of this group on January 25 corresponded to a reversal in the near-surface current direction at this time, returning surface water (and ichthyoplankton) to the very nearshore zone (Fig. 6d).

Secondly, on January 25, the offshore and upward displacement of group J3, from deep shelf waters to shallow slope waters, corresponded to offshore, interior transport over the shelf and upward isotherm displacement over the shelf break (Fig. 6d). Group J3 was characterised by a medium density of larvae, and the introduction of this group into shallow slope waters resulted in a dramatic decrease in total ichthyoplankton density in a region of formerly high density.

Thirdly, on April 8, the shoreward distribution of group A6 extended into Stn B waters, displacing groups A3 and A5. This corresponded to the commencement of onshore, near-surface flow on April 7, which continued during April 8 (Fig. 7c–d).

The assemblage variability corresponding to the latter 2 dynamic events was also evident in the monthly MDS ordinations, in which the change in assemblage type at each location has been circled (Figs. 2b & 3a).

A feature in both study periods was the discontinuity between ‘inshore’ and ‘offshore’ groups which occurred over the shelf break in January and over the midshelf region in April. The position of this biological discontinuity did not correspond to any obvious hydrodynamic boundary in January but did correspond to the shoreward extent of the 23°C isotherm in April (Figs. 6 & 7). The hydrographic regime was also reflected in similarities among surface assemblages (Figs. 2 & 3). In January, there was a gradual continuum from Stns A to E in the MDS ordination of surface assemblages (Fig. 2a). However, in April, there was a sharp discontinuity between inshore assemblages (A and B), which occurred in water generally <23°C, and offshore assemblages water (Stns C to E, and B on April 8), which occurred within water generally >23°C (Fig. 3a). Furthermore, in April there was less variability among offshore assemblages than among inshore assemblages, reflecting hydrographic variability in each region.

DISCUSSION

Factors influencing ichthyoplankton distributions

There were strong vertical and horizontal trends in the distributions of ichthyoplankton assemblages over the Sydney shelf. The cross-shelf distribution of assemblages, particularly in January, was in general agreement with the presumed spawning locations of component taxa. However, assemblage distributions were also influenced by changes in hydrography. Of the environmental factors examined, a combination of spatial position (sampling depth, distance from shore), water temperature (the primary cause of density variability over the Sydney shelf) and sampling depth relative to the base of the mixed layer best explained variability in assemblage distributions during each sampling period. The significance of water column structure to Sydney shelf ichthyoplankton has been previously emphasised by the finding that highest larval density and taxonomic diversity is generally associated with the interface between mixed layer and thermocline, and longer term (between-month) changes in the location of this interface correspond to longer term changes in vertical and cross-shelf distributions (Smith & Suthers 1999).

Among-night ichthyoplankton variability

In the Sydney shelf region, considerable vertical, cross-shelf and longshore movement of water may occur over a 24 h period (Huyer et al. 1988, Griffin &
Middleton 1991). The correlation of ichthyoplankton distributions with hydrographic features here and in earlier work, suggested that these short term changes in hydrography may result in concurrent shifts in larval fish distributions.

There was, indeed, a high level of agreement between observed ichthyoplankton variability and among-night variability in the cross-shelf temperature and current fields. The between-night movement of surface and subsurface assemblages, at both inshore and offshore locations, followed paths that might be expected of passively drifting particles responding to cross-shelf circulation. The high level of agreement was remarkable, considering our assumption of negligible along-shore variability. The cross-shelf currents over the Sydney shelf (and other shelves) are often nearly an order of magnitude less than the along-shore currents (Middleton 1987). This disparity between the magnitudes of cross-shelf and along-shore currents places an upper bound on the validity of simple, 2-dimensional, cross-shore studies of around 1 wk before the assumption of no along-shore variability becomes invalid. Over longer periods, planktonic organisms may be advected along-shore over distances greater than the characteristic along-shore length scales of most dynamic processes. The good biological-physical agreement found in our study, and by Dempster et al. (1997), was thus partly due to the relatively short study periods, as well as the high cross-shelf resolution of sampling.

The ichthyoplankton assemblages presented here function as short term, biological tracers of physical processes across the continental shelf. In earlier observations of Sydney shelf surface ichthyoplankton, good agreement was found between nightly changes in hydrography and ichthyoplankton distributions (Dempster et al. 1997) although results of the present study indicate that these surface communities are often taxonomically distinct from adjacent communities below the surface. Previous agreement has also been found between monthly changes in hydrography and subsurface ichthyoplankton distributions (Smith & Suthers 1999). However, the results of the present study indicate that both surface and subsurface ichthyoplankton assemblages show an almost immediate response to physical forcing, and that observations of ichthyoplankton distributions are likely to reflect very recent hydrodynamic regimes.

The responses of assemblages to physical forcing observed during this study were consistent with passive transport, which does not, however, constitute evidence for a lack of larval behaviour. The maintenance of larval position within a well defined, hydrographic region may sometimes be consistent with the distribution of passive particles, although behaviour, such as diurnal migration or responses to hydrographic cues, may still occur within that region (e.g. Lobel & Robinson 1986, Kim & Kendall 1989). Regardless of the underlying mechanisms, however, the similarity between ichthyoplankton responses to hydrodynamic variability and that predicted for passive dispersal is likely to be a useful feature in explaining, or predicting, short term ichthyoplankton variability.

A coastal retention mechanism?

Our observations suggest several physical processes may lead to the retention or recirculation of ichthyoplankton over the Sydney shelf. Firstly, ichthyoplankton over the shelf appears to be primarily distributed within the mixed layer and upper thermocline (Smith & Suthers 1999). This general pattern of vertical distribution appears to be maintained both night and day (Smith unpubl. data). Over the mid-outer shelf, cross-shelf currents at these depths are predominantly onshore during EAC intrusion events. Hence, the maintenance of this vertical position may be sufficient to transport and retain many plankton organisms within inner-mid shelf waters. Near-surface organisms could experience further shoreward transport during onshore, mixed layer, Ekman transport during coastal downwelling events.

Near-surface processes are probably sufficient to retain the majority of ichthyoplankton within the shelf region. However, some ichthyoplankton were observed in deeper shelf waters. The deep distribution of some larval taxa corresponded to the deep distribution of adults of these species. The vertical position of these larvae was, therefore, likely to be typical and reflect spawning locations. Occasional individuals of other taxa were also found in deep samples, representing less typical distributions for these species. Such larvae may have been accidentally entrained by physical processes over the shelf. For example, deepening of the mixed layer in response to strong downwelling favourable winds would encourage mixing between the surface and interior and could entrain some larvae. A second physical mechanism may assist in retaining these deeply distributed larvae within shelf waters. Results from this study suggest that the concurrent action of a downwelling favourable wind and the EAC may lead to a closed recirculation cell across the shelf (Fig. 11). This would act as follows: (1) surface layer onshore flow as a result of surface Ekman drift forced by local wind stress and the onshore flow typically associated with EAC encroachment events; (2) interior and bottom boundary layer offshore return flow as a result of the wind-driven downwelling circulation; (3) the recirculation cell would be completed by verti-
greater than 1 m s\(^{-1}\) are common (Gibbs et al. 1998). In contrast, nearshore currents are typically weaker and the direction of near-surface, alongshore currents over the inner shelf fluctuate in response to nearshore winds, coastal-trapped waves and EAC intrusion events. Thus, expected net alongshore transport in the nearshore zone would be considerably less than on the outer shelf. At an average nearshore velocity of around 0.1 m s\(^{-1}\) southward, a larva would be advected approximately 240 km after 1 mo in the plankton. The same period spent over the outer shelf could advect a larva several times this distance. In this way, physical processes which transport ichthyoplankton shoreward may also minimise longshore drift.

Implications

The results obtained here are significant, firstly, as a guide to future studies of ichthyoplankton variability, in the choice of effective sampling scales and in the type of data which should be collected. Secondly, our results provide further insights into the importance of physical mechanisms in the retention/dispersal of planktonic organisms of continental shelf regions.

It is clear that, during the study period, within-night ichthyoplankton variability was less than among-night variability, indicating that our conclusions are robust, and that our sampling regime is effective for a large spatial scale study of this nature. The spatial scale, i.e. the entire cross-shelf region, is important because it is at this scale that major distributional trends may be observed in ichthyoplankton communities and also at this scale that relevant dynamic processes are operating. Implications for future studies which attempt to explain ichthyoplankton variability are clear. Even in cases where the area of interest is small, e.g. a few kilometres, as in the assessment of a localised environmental impact, physical and biological data should be collected over a larger spatial scale because the sources of small scale ichthyoplankton variability include numerous large scale physical processes.

Our simple, 2-dimensional approach, which ignored longshore variability, proved adequate in examining short term, cross-shelf variability. Rates of longshore advection and the characteristic along-shore lengths of most dynamic processes in the coastal ocean tend to ensure longshore variability will be minimal within relatively short study periods. Within observational periods greater than 1 wk, longshore variability could be a confounding influence. Within our study periods of 4 d, we found a high level of agreement between observed ichthyoplankton variability and cross-shelf hydrodynamic variability.
As predicted, ichthyoplankton assemblages functioned as short term, biological tracers of water movement over the shelf. This seemingly passive response of ichthyoplankton to physical forcing may prove a useful feature in future attempts to model large scale, short term ichthyoplankton dispersal. At smaller spatial scales, or longer temporal scales, there may be less agreement between ichthyoplankton and hydrodynamic variability, due to the potential influence of biological factors. In particular, the early stage of development (preflexion and flexion) and small size (<10 mm) of most larvae encountered in this study is likely to have encouraged passive dispersal (Smith unpubl. data). Over longer temporal scales, larval behaviour may modify the cross-shelf distribution of some taxa.

Cross-shelf, advective processes observed during our study, including the recirculation of shelf water, may represent significant mechanisms for the retention/dispersal of many shelf-spawned or coastal-recruiting larvae of fish and other organisms. Whilst our observations do not exclude the possibility of larval behaviour in the shelf region, the existence of physical mechanisms which retain neutrally buoyant particles over the shelf and minimise longshore drift suggests that the influence of behavioural patterns could be of secondary importance for larval dispersal/retention in this shelf region.

Acknowledgements. We thank Dr A. Miskiewicz for many hours spent assisting with identifications, D. Rissik for thought-provoking discussions and assistance with analyses, and anonymous reviewers for helpful criticism. We gratefully acknowledge the support provided by the captain and crew of the RV 'Franklin'. Funding was provided by an Australian Research Council small grant to I.M.S.

LITERATURE CITED

Bruce BD (1962) A seasonal study of ichthyoplankton at two coastal stations off Port Hacking. MSc thesis, University of NSW

Editorial responsibility: Otto Kinne [Editor], Oldendorf/Luhe, Germany

Submitted: June 22, 1998; Accepted: October 22, 1998
Proofs received from author(s): March 5, 1999