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INTRODUCTION

Life-table-response experiments (LTRE) provide
information on age-specific survival, growth, and
fecundity in individuals raised under controlled labo-
ratory conditions that can be translated to the popula-
tion level by calculating population growth rate (λ).

This experimental approach is a powerful tool in
analysing the responses of life-history variables to pol-
lutants and can be used to explore demographic con-
sequences of sublethal toxic effects on populations
(e.g., Levin et al. 1987, 1996, Caswell 1989, 1996,
Forbes & Calow 1999). λ expresses the population
multiplication rate per unit time; in an increasing pop-
ulation λ is >1, in a constant size population λ = 1, in a
declining population λ is <1. Toxic effects may include

© Inter-Research 2000

*E-mail: ipklinke@aol.com

Effects of chronic fluoranthene exposure on
sibling species of Capitella with different

development modes

Inez Linke-Gamenick1,*, Valery E. Forbes1, Nuria Méndez2

1Department of Life Sciences and Chemistry, Roskilde University, PO Box 260, 4000 Roskilde, Denmark
2Laboratorio de Invertebrados Bentónicos, Estación Mazatlán, Instituto de Ciencias del Mar y Limnología, UNAM,

Apartado Postal 811, Mazatlán, 82000 Sinaloa, Mexico

ABSTRACT: Toxic effects of the polycyclic aromatic hydrocarbon fluoranthene (FLU) on life-history
traits and their demographic consequences were investigated in 3 non-interbreeding Capitella sib-
ling species with different physiological tolerances and developmental modes: sensitive Capitella sp.
S from oxygen-rich intertidal sediments of the North Sea (Germany); tolerant Capitella sp. M from
sediments near shallow hydrothermal vents off Milos (Greece), a habitat low in organic matter with
steep abiotic gradients and high sulfide concentrations; tolerant Capitella sp. I from New York (USA),
known to dominate eutrophicated/polluted environments. Both Capitella spp. M and I can develop
into hermaphrodites and have lecithotrophic larval development. In contrast, Capitella sp. S appears
to be dioecious and has direct development with benthic juveniles. In life-table-response experi-
ments (LTRE), juveniles from the 3 species were raised under different FLU concentrations (0 to 95 µg
g–1 FLU), and data on age-specific survival, growth and life-history parameters were recorded at
weekly intervals. Under control conditions, the 3 Capitella species differed markedly in a number of
life-history traits and population growth rates (λ), with Capitella sp. S showing the lowest λ (1.05), and
Capitella sp. M the highest (1.42). Chronic exposure to inreasing FLU concentrations also revealed
species-specific differences in individual- and population-level toxic responses. Highest FLU con-
centrations (95 µg g–1) markedly reduced juvenile survival and completely inhibited reproduction in
Capitella sp. S, whereas individual life-history traits in Capitella spp. M and I were affected little, if
at all. At the population level, the highest FLU exposures resulted in λ values of effectively zero in
Capitella sp. S, whereas λ of Capitella spp. M and I remained >1. In conclusion, the combination of
opportunistic life-history features, reproductive flexibility, and physiological adaptations enables
Capitella spp. M and I to colonize habitats rapidly after local disturbance and to persist in stressed
and unpredictable environments; whereas in Capitella sp. S, population extinction under toxicant
stress mainly results from its physiological sensitivity. 
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reduced growth, increased mortality, delayed repro-
duction, and reduced reproductive output, leading to
declines in λ or even population extinction. Changes in
λ in response to changes in individual life-history traits
depend on the life-history of the study organism, the
severity of the toxic effect on each individual trait, as
well as on the sensitivity of λ to changes in the life-
history traits contributing to it (e.g., Levin et al. 1987,
1996, Caswell 1989, Kammenga et al. 1996, Hansen et
al. 1999). Recent studies have shown the importance of
density-dependendence (i.e., food limitation) that may
compensate or exacerbate negative toxic effects on
population dynamics, and have suggested that den-
sity-dependence should be incorporated into LTRE
analyses (Grant 1998, Linke-Gamenick et al. 1999,
Sibly 1999). 

The polychaete species complex Capitella capitata is
widely used as a pollution indicator, because it domi-
nates the benthic communities of organically enriched
or polluted marine sediments, where it can reach
extremely high population densities (e.g. Grassle &
Grassle 1974, 1976, Pearson & Rosenberg 1978, Mén-
dez et al. 1997). C. capitata plays an important role in
improving physicochemical properties of polluted
sediments through its bioturbating activities (Gardner
et al. 1979, Chareonpanich et al. 1993, 1994, Madsen et
al. 1997). C. capitata represents a cryptic species com-
plex, in which adult morphology is so similar among
species that no effort has been made to separate this
complex with proper taxonomical species-descriptions.
Nevertheless, the so-called Capitella sibling species
are reproductively isolated and differ substantially in
a host of other parameters, e.g., in karyotypes and
enzyme patterns (Grassle & Grassle 1976, Grassle et al.
1987, Wu et al. 1991), in ultrastructure of eggs and
ovarian follicle cells, in larval, genital spine and sperm
morphology (Eckelbarger & Grassle 1983, 1987), in eco-
physiological characteristics (Gamenick et al. 1998b),
in sediment-processing rates (Méndez et al. unpubl.
data), and in reproductive features. For several co-
occurring Capitella species of the North American East
Coast, Grassle & Grassle (1976) described differences
in numbers of larvae per brood, in egg size, in larval
dispersal mode, and in the occurrence of hermaphro-
dites. Capitella sibling species also show differences
in larval mode, i.e., planktotrophic, lecithotrophic, and
benthic development, depending on the larval stage
hatching from the maternal brood tube (Grassle et al.
1987). These differences have been further explored
by Méndez et al. (unpubl. data) to include Capitella
species from other geographical regions.

One of the best known species of the complex is the
opportunistic Capitella sp. I (Grassle & Grassle 1974,
1976). It has lecithotrophic development, and repro-
duces via dispersing larvae with high survivorship that

mature rapidly after settlement. Hence, this species
exhibits rapid population explosions following local
disturbances. From LTRE, Bridges et al. (1994) and
Levin et al. (1996) concluded that Capitella sp. I’s suc-
cessful persistence in disturbed and oil-polluted habi-
tats may result to a large extent from demographic
adaptations, i.e., reduced age at first reproduction and
increased fecundity under eutrophic conditions. In
terms of physiological mechanisms, Forbes et al. (1994)
stated that the physiology of Capitella sp. I is well-
adapted to exploit low oxygen, high food conditions.
Gamenick et al. (1998b) confirmed effective metabolic
regulation of this species under stressed conditions,
i.e., hypoxia and sulfide. For the first time, these
authors compared several species of the Capitella com-
plex, and found that Capitella sp. S originating from
oxygen-rich low-sulfide habitats (Gamenick & Giere
1994) has no such regulatory abilities (i.e., is an oxy-
conformer) and displays significantly lower survival
rates under hypoxia and sulfide. Interspecific physio-
logical differences were also found in response to
xenobiotic toxicants, i.e., the polycyclic aromatic
hydrocarbon fluoranthene (FLU), which is common in
oil-polluted sediments (Linke-Gamenick et al. 2000).
Capitella sp. I was found to be physiologically the best
adapted, and showed the highest survival rates,
whereas Capitella sp. S increased its metabolic rate
and simultaneously reduced its food intake, resulting
in high mortality rates. Morphologically the 2 species
are indistinguishable, but they differ markedly in
reproductive and larval modes. Capitella sp. S matures
into females and males and hatches benthic juveniles
that emerge from the parental brood tube after meta-
morphosis (= direct development) in low numbers of 16
to 50 (Gamenick & Giere 1994, Méndez et al. unpubl.
data). Capitella sp. I develops into females, males and
hermaphrodites, and reproduces via free-swimming
metatrochophore larvae (= lecithotrophic develop-
ment) with up to 220 larvae per brood (Grassle &
Grassle 1976, Méndez et al. unpubl. data). 

In this study, we used these 2 species as examples of
different life-history types and physiological toler-
ances, and compared the effects of toxic stress (i.e.,
exposure to sublethal FLU concentrations) on several
life-history parameters, and their demographic conse-
quences. For comparison, we included an additional
species with lecithotrophic development, Capitella sp.
M (Gamenick et al. 1998a,b). 

The purpose of this study was to determine whether
Capitella species that differ in physiological tolerance
and life-history features achieve similar λ under uni-
form conditions. Are life-cycle variables of a physio-
logically sensitive species necessarily more impaired
under toxic stress, and what are the implications for its
population dynamics? Knowing that Capitella species
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vary physiologically and with respect to their life-his-
tory, another objective was to determine the relative
importance of physiological adaptation versus life-
history strategies in explaining demographic effects of
toxic stress.

MATERIALS AND METHODS

Capitella spp. Three previously identified, non-
interbreeding sibling species from different geograph-
ical regions and habitat types were used in this study:
Capitella sp. S (Gamenick & Giere 1994), from inter-
tidal sediments of the Island of Sylt, North Sea, 
Germany; Capitella sp. M (Gamenick et al. 1998a)
obtained from shallow hydrothermal vent areas in the
Mediterranean Sea (Milos, Greece), an unpredictable
environment characterized by steep gradients of tem-
perature, salinity and pH and high sulfide concen-
trations (Dando et al. 1995, Thiermann et al. 1997);
Capitella sp. I (Grassle & Grassle 1976), originally
obtained from Setauket Harbor, New York, USA.
These species reproduce readily in culture, and have
been reared under identical conditions in our labora-
tory for many generations. 

Worms were cultured in aquaria (20 × 30 cm) con-
taining a 2 to 4 cm layer of azoic (i.e., frozen to –80°C
twice) natural sediment (grain size of < 250 µm) and
aerated seawater (32‰ S) at 16°C. The organic content
of the sediment on which the worms were cultured was
kept high by weekly additions of a 1:1:1 mixture of
commercial fish-food flakes (Tetramin©), baby cereal
(Beauvais©), and dried spinach (Forbes et al. 1996).
Approximately 1 wk prior to the start of the experi-
ment, several brood tubes from each species were
transferred to dishes with a small amount of sediment
and seawater and checked daily for larvae for use in
the experiment. 

Sediment. For the experiment, we used sieved
(<63 µm), pre-frozen (to –80°C for several weeks) sed-
iment from Roskilde Fjord (Denmark) with a water
content of 67.79 ± 0.43% and an organic content of
6.62 ± 1.30% (n = 6). FLU sediment was prepared in 6
nominal concentrations: 0 [= control], 5, 10, 20, 40 and
80 µg g–1 dry wt sediment (= µg g–1). A known volume
of FLU stock solution (crystalline FLU [98% GC grade,
Aldrich] in acetone carrier) was added to a known vol-
ume of thawed sediment in a glass flask that was sub-
sequently shaken overnight (18 h) at room tempera-
ture. Nominal FLU concentrations were estimated by
accounting for water content of the sediment. The sed-
iment was homogenized and portioned (2 g portions).
Sediment samples for FLU analysis were taken (see
below), and the sediment was stored frozen (–20°C)
until use in the experiment.

Experimental design. A total of 180 Capitella sp. S,
156 Capitella sp. M, and 144 Capitella sp. I juveniles
(3 to 6 d old) were taken from the brood tubes and, for
each species, randomly assigned to 6 FLU treatment
groups (30 Capitella sp. S per group, 26 Capitella sp. M
per group, and 24 Capitella sp. I per group). Each
group was transferred into a petri dish containing 4 g
of experimental sediment (with nominal concentra-
tions of 0, 5, 10, 20, 40, and 80 µg g–1 FLU, respectively)
and 7 ml seawater (30‰ S). The sediment and overly-
ing seawater were 0.5 cm in height to enhance oxygen
diffusion and prevent anoxia in the sediment. The 18
dishes were placed in a moisture chamber to reduce
evaporation and kept in the dark at 18°C. The salinity
was controlled every few days. 

When juveniles became sexually mature (female =
appearance of ovaries; male = appearance of genital
spines), a female and a male were paired and transferred
to new separate experimental dishes (= replicate pairs of
worms per FLU concentration, i.e., up to 9 pairs), each
with 2 g of experimental sediment and seawater, as de-
scribed above. All dishes were monitored once a week
for 175 d (Capitella sp. S), 133 d (Capitella sp. M), and
161 d (Capitella sp. I). On each census day, worms were
removed from the sediment. The remaining sediment
(pellets, tubes, mucus) was fixed in 75% ethyl alcohol,
and data on worm survivorship, body size, wet weight,
and reproduction were recorded. Worms were returned
to their corresponding treatments with new experi-
mental sediment and seawater. The following life-table
parameters were estimated: age-specific survival, body
volume over time until sexual maturity (= last mea-
surement), juvenile specific growth rate (SGR), age at
maturity, age at first reproduction (appearance of brood
tubes), percentage of reproducing females/hermaphro-
dites, numbers of broods per female/hermaphrodite,
age-specific fecundity, numbers of offspring per brood,
time between broods, λ, and size-specific sediment pro-
cessing rate (SSPR, feeding rate). Age at sexual maturity
was distinguished from age at first reproduction in order
to test whether FLU influenced the fraction of worms
reaching maturity as well as the fraction of mature
worms that actually reproduced.

FLU extraction and analysis. To measure FLU con-
centrations in the experimental sediments, 4 replicate
sediment samples (0.5 g) were taken from each nomi-
nal FLU concentration and extracted with methanol
and ethylacetate as described by Linke-Gamenick et
al. (1999). Subsequently samples were processed and
analyzed by HPLC (Kelley et al. 1993, Linke-
Gamenick et al. 1999). 

Data analysis. For each species, the body volume of
randomly chosen individuals was measured at the start
of the experiment (n = 10) and subsequently every
2 wk (n = 5) for each FLU treatment, until worms
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reached the mature stage. Individual worms were
videotaped with a camera connected to a dissecting
microscope. Body length (L ) and area (A) were mea-
sured (3 replicates per individual) using an image-
analysis software program (Sigma Scan Pro, Jandel
Inc., Erkrath, Germany). Worm body-volume (V ) cal-
culations were based on Forbes et al. (1994): 

V = πA2/4L (1)

Juvenile SGR until maturity was estimated as

SGR = (lnS2 – lnS1)/(t2 – t1) (2)

where S1 and S2 are body volumes at times t1 (start)
and t2 (maturity) in days, giving the proportion grown
per day. 

Age-specific fecundity (mx) was expressed as the
number of offspring per week per reproducing female
and hermaphrodite (modified after Levin et al. 1987).

For demographic analysis, λ was calculated directly
from age-specific data on longevity and fecundity in
the different FLU treatments using a simplified 2-stage
model (Calow et al. 1997):

1 = nSjλ–t j + Saλ–ta (3)

where n = average number of offspring per brood per
reproductive individual, Sj = juvenile survival (propor-
tion surviving from birth to first reproduction), t j =
mean age at first reproduction, Sa adult survival (aver-
age proportion of adult females/hermaphrodites sur-
viving between broods estimated over reproductive
period) and ta = average time between broods. All time
units used to calculate λ are in weeks. The reproduc-
tive period is defined as the time between first and last
breeding attempt averaged for each treatment. In
cases of 1 brood per female, the second term to the
right of the plus sign drops out of Eq. (3).

For SSPR, the fixed sediment samples were sieved
through a 130 µm mesh to retrieve the fecal pellets
(= sediment processed), and tubes and mucus without
attached pellets were removed with forceps. The pellet
samples were dried at 105°C (24 h) and subsequently
weighed. Worm wet wt was converted to dry wt by
multiplying by 0.13 (Méndez et al. unpubl. data). We
estimated SSPR (feeding rate) as:

SSPR = (dry wt of pellets)/
(mean worm dry wt × time in days) (4)

This gives a measure of feeding rate per unit worm
body-size per day.

Statistics. Effects of FLU exposure on age and size at
maturity, age at first reproduction, brood size, time

between broods, and SSPR were analyzed separately
for each species using 1-way ANOVA. Multiple com-
parisons were performed using Tukey’s HSD test. In
most cases the data deviated somewhat from normality
and were not improved by transformation. Therefore
ANOVA results were confirmed by Kruskal-Wallis
analyses and by examination of notched box plots
(McGill et al. 1978). These analyses were performed
using SYSTAT Version 8.02. Effects of FLU exposure
on survival were analyzed using Statistica Version 5,
Survival Analysis Module, which is designed to handle
censored data. To compare survival times among treat-
ment groups, a score was first assigned to each sur-
vival time using Mantel’s procedure; next a chi-square
value was computed based on the sums (for each
group) of this score. A significance level of 0.05 was
employed throughout. 

Parameters for which we obtained single values per
treatment (i.e., survival times, percent total females, %
reproducing females and/or hermaphrodites, fecun-
dity, and λ) were compared qualitatively.

RESULTS

Fluoranthene

The measured FLU concentrations in the experimen-
tal sediments were generally close to nominal concen-
trations (Table 1). They differed considerably only
from nominal 40 and 80 µg g–1 FLU, and these will be
referred to as 50 and 95 µg g–1 FLU treatments, respec-
tively.

Survival

No significant differences in the age-specific sur-
vival curves of the 3 Capitella species among the con-
trols and lower FLU exposures (up to 50 µg g–1 FLU:
Fig. 1) could be detected. At 95 µg g–1 FLU; median
survival time (LT50) was lowest in Capitella sp. S,

194

Nominal FLU Measured FLU

0 01.79 ± 1.07
5 06.61 ± 1.46
10 10.24 ± 0.77
20 21.50 ± 1.64
40 51.83 ± 4.60
80 094.79 ± 25.09

Table 1. Nominal and average (±1 SD) measured fluoran-
thene concentrations (FLU; µg g–1) in the experimental sedi-

ent (n = 4 repeated measurements)
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whereas Capitella sp. M showed a considerably higher
LT50, and Capitella sp. I was most tolerant to FLU
(Table 2). 

Chronic FLU exposure significantly reduced survival
time in Capitella sp. S (χ2 = 11.986, df = 5, p = 0.035),
but not in Capitella sp. M (χ2 = 7.112, df = 5, p = 0.213)
or Capitella sp. I (χ2 = 7.097, df = 5, p = 0.214). 

Growth

At the start of the experiments (Day 0), the average
body volume of 10 randomly chosen juveniles was
0.007 ± 0.003 mm3 in Capitella sp. S (3 to 4 d old),
0.015 ± 0.024 mm3 in Capitella sp. M (5 to 6 d old), and
0.009 ± 0.002 mm3 in Capitella sp. I (5 to 6 d old).

Body volumes over time differed significantly among
species (Fig. 2). In all treatments (n = 6) Capitella sp. S
grew more slowly and became mature at the small-
est size, whereas Capitella sp. M and Capitella sp.
I matured at larger body volumes. FLU had no
detectable effect on body volume at maturity in Capi-
tella sp. S (ANOVA: df = 5, 23; F = 1.374; p = 0.270)
or in Capitella sp. M (ANOVA: df = 5, 24; F = 2.021;
p = 0.112), but significantly reduced body volume at
maturity in Capitella sp. I (ANOVA: df = 5, 24; F =
3.762; p = 0.012), with worms exposed to 50 and
95 µg g–1 FLU having smaller body volumes than
control-group worms.

Juvenile SGR until maturity was lowest in Capitella
sp. S, whereas Capitella sp. I showed highest growth
rates (Fig. 3). FLU exposure significantly reduced juve-
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Fig. 1. Capitella sp. S, Capitella sp. M, and Capitella sp. I. Age-specific survivorship in different fluoranthene (FLU) treatments.
Dashed lines = graphic median survival times (LT50)
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nile SGR in Capitella sp. S (ANOVA: df = 5, 23; F =
7.666; p = 0.0002) and Capitella sp. I (ANOVA: df = 5,
24; F = 22.208; p < 0.0001), with worms exposed to
95 µg g–1 FLU having significantly lower growth rates
than worms in all other treatment groups. In Capitella
sp. M toxic exposure did not significantly reduce the
control SGR (ANOVA: df = 5, 24; F = 1.463; p = 0.239).

Reproductive parameters

In all treatments, Capitella sp. S matured either into
females (F) (Table 3) or males. In Capitella spp. M and
I, also hermaphrodites (H) were found in the controls
as well as in the toxic exposures (except for no H in
Capitella sp. M at 95 µg g–1 FLU). It is interesting to
note that in Capitella sp. I all H showed genital spines
first (protandrous), whereas in H of Capitella sp. M
female features appeared first (proterogynous), before
developing into simultaneous H. 

The average age at maturity (n = 6) was highest in
Capitella sp. S, whereas Capitella sp. M and Capitella
sp. I matured earlier (Table 2). Exposure to FLU signif-
icantly increased age at maturity in Capitella sp. S
(ANOVA: df = 5, 95; F = 3.173; p = 0.011; 95 µg g–1 FLU
significantly longer than control) and in Capitella sp. I
(ANOVA: df = 5, 100; F = 13.104; p < 0.001; 50 and
95 µg g–1 FLU significantly longer than control and

5 µg g–1 FLU significantly shorter than all higher con-
centrations). FLU had no detectable effect on age at
maturity in Capitella sp. M (ANOVA: df = 5, 39; F =
0.605; p = 0.696).

In Capitella sp. S a low percentage of F reproduced
successfully (Table 3), whereas in Capitella sp. M a
higher percentage of F/H reproduced and in Capitella
sp. I almost all F/H reproduced successfully. Highest
FLU exposures completely inhibited reproduction in
Capitella sp. S, whereas no significant FLU effect on
the fraction of individuals that reproduced was
observed in the 2 other species.

In all treatments, Capitella sp. S started to reproduce
latest, whereas first reproduction occurred markedly
earlier in Capitella spp. M and I (Table 2). For those
worms that reproduced, exposure to FLU had no
detectable effect on age at first reproduction in
Capitella sp. S (ANOVA for 0 to 50 µg g–1 FLU: df = 4,
14; F = 0.236; p = 0.914). Exposure to FLU had no
detectable effect on age at first reproduction in
Capitella sp. M (ANOVA: df = 5, 17; F = 1.221; p =
0.342), but significantly increased age at first repro-
duction in Capitella sp. I (ANOVA: df = 5, 37; F = 2.767;
p = 0.032).

Capitella sp. S reproduced only once per female,
whereas Capitella spp. M and I females and hermaph-
rodites made several breeding attempts during their
adult period (Table 3). Time between broods in these 2
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Parameter FLU (µg g–1)
0 5 10 20 50 95

Capitella sp. S
LT50 (d) 108 101 101 104 94 10
Sj (proportion) 0.20 0.20 0.47 0.30 0.30 ×
Sa (proportion) 0 0 0 0 0 ×
Age at maturity (d) 59 ± 10 63 ± 70 61 ± 50 062 ± 500 062 ± 500 67 ± 70
tj (d) 115 ± 200 129 110 ± 170 115 ± 200 115 ± 210 ×
ta (d) 1 1 1 1 1 1

Capitella sp. M
LT50 (d) 90 105 90 90 94 83
Sj (proportion) 0.77 0.77 0.54 0.65 0.54 0.35
Sa (proportion) 0.61 0.76 0.75 0.75 0.75 0
Age at maturity (d) 053 ± 110 55 ± 30 55 ± 30 51 ± 80 52 ± 90 59 ± 80
tj (d) 58 ± 50 070 ± 230 080 ± 340 74 ± 14 67 ± 10 84 ± 21
ta (d) 11 ± 40 08 ± 30 12 8 16 ± 11 1

Capitella sp. I
LT50 (d) 104 124 103 124 110 131
Sj (proportion) 0.79 0.83 0.50 0.58 0.67 0.67
Sa (proportion) 0.79 0.72 0.68 0.70 0.63 0.74
Age at maturity (d) 41 ± 10 0 44 ± 11. 056 ± 130 54 ± 10 058 ± 120 62 ± 13
tj (d) 76 ± 10 085 ± 12 088 ± 110 97 ± 13 88 ± 14 96 ± 14
ta (d) 19 ± 90 13 ± 5 13 ± 60 11 ± 40 10 ± 40 07 ± 10

Table 2. Capitella sp. S, Capitella sp. M, and Capitella sp. I. Median survival times (LT50) and average (±1 SD) vital rates in dif-
ferent FLU treatments (Sj : juvenile survival, Sa : adult survival, age at maturity (n = 6 to 24 worms), tj : age at first reproduction
(n = 2 to 15 worms), ta: time between broods (n = 2 to 16 broods), 1: 1 brood, ×: no reproduction). See ‘Materials and methods’ 

for further details
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species was similar (Table 2). Capitella sp. I was the
only species for which enough data were available for
statistical analysis (in Capitella sp. M only 1 individual
had >1 brood in the 10 and 20 µg g–1 FLU exposure
groups, and no individuals reproduced more than once
at 95 µg g–1 FLU). Effects of FLU on time between
broods in Capitella sp. I were not significant (ANOVA:
df = 5, 52; F = 2.174; p = 0.071).

Comparisons of age-specific fecundity in the con-
trols indicate that Capitella sp. S with benthic juve-
niles had the lowest reproductive output, with a low
lifetime fecundity per reproducing female and the
shortest reproductive period (Fig. 4). In contrast, the
lecithotroph Capitella spp. M and I showed sub-
stantially higher fecundities and longer reproductive
periods.
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Fig. 2. Capitella sp. S, Capitella sp. M, and Capitella sp. I. Average (+1 SD, n = 5 worms) body volume (mm3) over time in differ-
ent FLU treatments
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In all treatments, Capitella sp. S had smallest brood
sizes, whereas Capitella spp. M and I reproduced with
substantially higher numbers of larvae per brood
(Fig. 5). So few individuals of Capitella sp. S repro-
duced that statistical analysis of FLU effects could not
be performed. Exposure to FLU had no effect on brood
size in Capitella sp. M (ANOVA: df = 5, 25; F = 0.784;
p = 0.571), but significantly reduced number of larvae
per brood in Capitella sp. I (ANOVA: df = 5, 86; F =

3.705; p = 0.004; control higher than 20 and 95 µg g–1

FLU).
Under control conditions, Capitella sp. S showed the

lowest λ, having values just above 1, whereas Capitella
spp. M and I had higher λ values, indicating increasing
population sizes (Fig. 6). At the highest FLU exposure,
λ of Capitella sp. S dropped to zero (indicating popula-
tion extinction), whereas λ of Capitella spp. M and I
were reduced by ~11% but remained above 1.
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Fig. 4. Capitella sp. S, Capitella sp. M, and Capitella sp. I.
Age-specific weekly offspring per reproducing female and

hermaphrodite (= fecundity, m x) in control treatments

Parameter FLU (µg g–1)
0 5 10 20 50 95

Capitella sp. S
Total F (%) 69 63 84 74 69 75
Reproducing F (%) 17 7 19 6 18 ×
Broods/reproducing F 1 1 1 1 1 ×
Total offspring 41 18 41 13 55 ×
n 10.3 18 4.6 13 13.8 ×

Capitella sp. M
Total F (%) 25 10 14 12 12 19
Total H (%) 20 20 21 12 6 0
Reproducing F/H (%) 67 83 20 50 67 33
Broods/reproducing F/H 1.5 2.0 2.0 1.5 2.0 1.0
Total offspring 843 657 119 210 85 52
n 15.6 13.1 59.5 35 10.6 52

Capitella sp. I
Total F (%) 5 6 8 8 7 6
Total H (%) 42 39 42 39 53 50
Reproducing F/H (%) 78 100 100 100 100 78
Broods/reproducing F/H 2.1 2.7 2.0 2.2 2.0 2.3
Total offspring 1408 1842 541 516 1181 524
n 13.4 8.5 7.5 6.6 12.1 4.7

Table 3. Capitella sp. S, Capitella sp. M, and Capitella sp. I. Fraction of females (F) and hermaphrodites (H), and reproductive
parameters in different FLU treatments (n: number of offspring per brood per reproductive individual, ×: no reproduction)

Fig. 3. Capitella sp. S, Capitella sp. M, and Capitella sp. I.
average (+1 SD, n = 5 worms) juvenile-specific growth rate

(SGR) until maturity in different FLU treatments
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Feeding rates

There were marked differences in SSPR among the
Capitella species (Fig. 7). In all treatments, Capitella
sp. S showed lower feeding rates than Capitella spp. M
and I. There were no detectable effects of FLU on SSPR
in Capitella sp. S (ANOVA: df = 5, 31; F = 1.035; p =
0.414). For Capitella sp. M (ANOVA [no data for 50 µg
g–1 FLU]: df = 4, 14; F = 3.231; p = 0.045; control rates
>10 µg g–1 FLU) and Capitella sp. I (ANOVA: df = 5, 39;
F = 5.091; p = 0.001; 5 µg g–1 FLU feeding rates >10 µg
g–1 FLU, and 10 and 20 µg g–1 FLU feeding rates
<95 µg g–1 FLU), FLU had a significant effect on SSPR
but the effects were not monotonic with respect to
increasing FLU exposure (Fig. 7). 

DISCUSSION

Interspecific differences 

This study has shown that the 3 Capitella species dif-
fer markedly in a number of life-history traits and
hence in their λ under identical non-toxic and density-
independent laboratory conditions (see also summary
in Table 4). Capitella sp. S with direct larval develop-
ment grew slowest, matured at the smallest body vol-
ume, and reproduced latest with lowest fecundity, thus
having the lowest λ. The lecithotrophic Capitella sp. M
matured at an intermediate body volume, reproduced
earliest with an intermediate fecundity, and had the
highest λ under control conditions. Capitella sp. I, also
with lecithotrophic free-swimming larvae, showed
highest juvenile SGR, and matured at the largest body
volume. This species had an intermediate reproductive
age, the highest fecundity, longest reproductive
period, and intermediate λ under control conditions.
Despite the occurrence of hermaphrodites in Capitella
spp. M and I, the proportion of potential egg-laying
individuals was not higher in these 2 species than in
Capitella sp. S. However, the percentage of F/H that
actually laid eggs was substantially lower in Capitella
sp. S than in the other 2 species (Table 3). 

The marked differences in life-history variables, as
shown in detail in this study, are of particular interest
for this taxonomically difficult species group. They
confirm interspecific differences within the complex in
reproductive biology as first shown by Grassle &
Grassle (1976) and recently by Méndez et al. (unpubl.
data) that should be included in further species
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Fig. 5. Capitella sp. S, Capitella sp. M, and Capitella sp. I.
Average (+1 SD, n = 2 to 23 broods) number of offspring per

brood (= brood size) in different FLU treatments

Fig. 6. Capitella sp. S, Capitella sp. M, and Capitella sp. I.
Population growth rates (λ) in different FLU treatments

Fig. 7. Capitella sp. S, Capitella sp. M, and Capitella sp. I.
Average (+1 SD, n = 3 to 17 worms) size-specific sediment-
processing rate (SSPR = feeding rate) in different FLU treat-

ments
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descriptions. In the Capitella complex a third develop-
mental mode exists, with extremely high numbers of
planktotrophic trochophore larvae leaving the mater-
nal tube (Grassle & Grassle 1976, Méndez et al.
unpubl. data), which are believed to have greatest dis-
persal capabilities. Attempts to get such larvae to
metamorphose in the laboratory failed, and thus life-
table data are not available. However, these species
have an enormous fecundity with brood sizes of >3500
larvae, and the potential for a long-dispersal larval
stage (up to several weeks). Following the early study
of Grassle & Grassle (1974), in which different benthic
polychaete species were ranked in terms of their
degree of opportunism defined by early maturation,
their ability to increase rapidly to large population
sizes, and their dispersal capabilities, we suggest a
similar ranking in order of decreasing degree of oppor-
tunism within the Capitella complex according to life-
history type. We suggest that the majority of described
Capitella species for which reproductive data exist can
be assigned to 1 of 3 groups: (1) Most opportunistic —
Capitella spp. Ia, III (Grassle & Grassle 1976), Capitella
capitata Type 2 (Pearson & Pearson 1991), Capitella sp.
L (Gamenick & Giere 1994), Capitella Types K and Ct
(Méndez et al. unpubl. data), with large brood sizes of
small eggs and trochophore larvae that have a long
dispersal time in the plankton; (2) Capitella spp. I, II
(Grassle & Grassle 1976, this study), Capitella sp. M
(Gamenick et al. 1998a, and this study) with lecitho-
trophic metatrochophore larve, with a shorter dispersal

stage (up to several days); (3) less
opportunistic — Capitella spp. IIIa, II
(Grassle & Grassle 1976), and Capi-
tella sp. S (Méndez et al. unpubl. data,
and this study), with direct benthic
development and small brood sizes. 

In the present study, the combina-
tion of differences in vital rates among
species led to different population
growth rates under identical non-toxic
conditions. Capitella sp. S showed the
lowest λ of (1.05), suggesting that
this species has a low recolonization
potential. From an ecological perspec-
tive this means that as a consequence
of its demographic characteristics Ca-
pitella sp. S, and presumably the other
species of this complex with a benthic
developmental mode, may not belong
to the ‘typical’ early colonizers follow-
ing habitat disturbances. 

In contrast, both lecithotrophic spe-
cies Capitella spp. M (λ of 1.42) and I
(λ of 1.30) have higher λ under iden-
tical conditions, which can be basically

explained through earlier reproduction (Capitella sp.
M), and higher fecundity (Capitella sp. I), as indicated
previously for Capitella sp. I (Bridges et al. 1994, Levin
et al. 1996). The lecithotrophic larvae of Capitella sp. I
are able to delay metamorphosis and can select suit-
able settlement habitats, thus enhancing their survi-
val capabilities (Grassle & Butman 1989, Pechenik &
Cerulli 1991). All these life-history characters favour
the ability of Capitella sp. I, and presumably Capitella
sp. M, to achieve high population densities within
short time periods, enabling them to colonize and
persist in extreme habitats, such as unpredictable
hydrothermal vent areas and eutrophic sewage out-
falls.

Toxic effects 

Chronic exposure to inreasing FLU concentrations
revealed species differences in individual- and popula-
tion-level toxic responses (Table 4). The highest FLU
concentrations of 95 µg g–1 reduced juvenile survival
markedly, and completely inhibited reproduction only
in Capitella sp. S. The toxicant reduced juvenile SGR
and delayed maturation in Capitella spp. S and I, and
delayed reproduction as well as adult body size and
brood size in Capitella sp. I, whereas individual life-
history traits of Capitella sp. M were not affected. In
terms of λ, this means that highest FLU exposures
would be likely to lead to population extinction in
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Capitella sp. S Capitella sp. M Capitella sp. I

Larval mode Direct Lecithotroph Lecithotroph
Reproductive mode F, M F, M, H F, M, H
Maturation size (mm3) 2.0 ± 0.4 5.0 ± 2.2 06.2 ± 1.7
SGR (% d–1) 9.7 ± 1.0 14.0 ± 1.00 15.3 ± 2.4
Reproduction age (d) 115 ± 200 58 ± 50 076 ± 10
Lifetime fecundity 22 97 0221
(offspring per reproduc-
tive individual)

Offspring per brood 22 ± 6 77 ± 62 103 ± 63
Population growth rate 1.05 1.42 001.30

FLU effects
LT50 – ne ne
Maturation size ne ne –
SGR – ne –
Maturation age + ne +
Reproduction age ne ne +
Inhibition of reproduction yes ne ne
Brood size ne ne –

Table 4. Capitella spp. Summary of differences in developmental modes and
life-history parameters under control conditions and FLU effects. F: female; M:
male; H: hermaphrodite; SGR: juvenile specific growth rate; –: reduced;

+: increased; ne: no effect
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Capitella sp. S, while population dynamics of Capitella
spp. I and M would suffer less impairment. We expect
these patterns to be more complicated under density-
dependent field conditions (i.e., food limitation), which
might mask toxic effects on population dynamics at
low FLU concentrations and magnify them at high lev-
els (Linke-Gamenick et al. 1999). 

However, the demographic results of this study basi-
cally mirror data on individual physiological perfor-
mance (i.e., survival, respiration rates, anaerobiosis)
under FLU exposure, and indicate a high sensitivity of
Capitella sp. S relative to Capitella spp. M and I
(Linke-Gamenick et al. 2000). At FLU concentrations
of 100 µg g–1, Capitella sp. S showed enhanced total
metabolism associated with decreased survival. Linke-
Gamenick et al. postulated that increased metabolic
costs combined with apparently negligible food intake,
as observed in Capitella sp. S, could explain the high
mortality rates. In this study, slightly lower FLU levels
were used, and adult survival and feeding rates of
Capitella sp. S (and of the other 2 species) were not
affected, as shown also by Méndez et al. (unpubl. data)
under similar conditions. However, these sublethal
concentrations nevertheless inhibited reproduction
completely, leading to population extinction. Thus,
toxicity tests of mortality alone would have severely
underestimated population-level consequences of
toxic exposure. 

Some life-history traits of Capitella sp. I were
affected by FLU exposure, whereas reproductive para-
meters in Capitella sp. M showed no toxic response. In
Capitella sp. I, reproduction was delayed and brood
size impaired, parameters that are important contribu-
tors to λ in this species (Levin et al. 1996, Hansen et al.
1999). However, in both species an 11% decline in
λ with increasing toxic exposure was observed. We
believe the reason why for Capitella sp. M we detected
no significant effects on individual vital rates but a
decline in λ, is the result of reduced sample size with
increasing toxic concentration, resulting in very low
statistical power for some of the vital rate comparisons.

In ecotoxicological terms, this case study on different
Capitella species confirms that toxic responses of sin-
gle individual-level traits cannot directly be translated
to population-level responses as shown by several
authors using decomposition and sensitivity analyses
(Caswell 1989, Kammenga et al. 1996, Levin et al.
1996, Hansen et al. 1999), and recently reviewed by
Forbes & Calow (1999). We would like to postulate this
also for the linkage of individual feeding rates to λ. In
this study, no clear toxic effects on individual feeding
rates were detected, even at FLU exposures that led
to population extinction in one of the species (i.e.,
Capitella sp. S). This is of particular interest in the use
of energy budget models as a tool for linking individ-

ual-level effects on e.g., energy intake, to population-
level consequences (Kooijman 1985). If based on the
general assumption that toxic exposure results at first
in a decrease in food intake, such models could under-
estimate population-level effects. 

If we assume that all the differences in λ among spe-
cies under control conditions are entirely due to differ-
ent life-history strategies, and that changes in λ (within
species) with increasing toxic exposure are due to
physiological sensitivities of one or more vital rates,
then changes in the magnitude of λ differences among
species as toxic concentration increases can be attrib-
uted to differences in physiological sensitivity among
species. This is shown conceptually in Fig. 8, where
species A represents Capitella spp. M or I, while spe-
cies B represents Capitella sp. S. We assume in the
present study that there are no major differences
among species in which vital rates are affected by toxic
exposure and that these have different elasticities with
respect to λ. This schematic approach allows us to par-
tition the effects of life-history and physiology effects
on λ differences among species in relation to toxic
exposure. With respect to Capitella spp. I and S, the
higher physiological sensitivity of Capitella sp. S exac-
erbates life-history differences under toxic exposure. A
total of 67% of the λ differences found between
Capitella spp. I and S at the highest toxic exposure
could be attributed to physiology, whereas 33% could
be attributed to life-history (Fig. 8). 

Conclusions

In Capitella spp. M and I, the combination of oppor-
tunistic life-history features, reproductive flexibility,
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Fig. 8. Schematic approach to partition effects of life-history
strategy and physiological sensitivity on λ differences in Spe-
cies A and B in relation to toxicant exposure. (Species A rep-

resents Capitella spp. M or I, Species B Capitella sp. S)
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and physiological adaptations enables them to colo-
nize habitats rapidly after local disturbance and to 
persist in stressed and unpredictable environments,
whereas in Capitella sp. S population extinction under
FLU stress results mainly from the physiological sensi-
tivity of this species.

Examining changes in λ differences among Capitella
species with increasing toxic exposure may provide
insight into the relative importance of life-history and
physiology in explaining differences in population
dynamics.

In addition, we would like to stress that some species
of this complex, e.g., Capitella sp. S, cannot be
regarded as a ‘typical’ opportunistic species, because
of their physiological sensitivity in combination with
their demographic characteristics (i.e., low population
growth-potential). 
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