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ABSTRACT: Lunar cycles are commonly observed in the
movement, feeding and reproduction of marine fishes and
invertebrates. The statistical techniques employed to exam-
ine these cycles are unstandardized, complex, and typically
lacking in statistical power. Here we suggest a simple, sen-
sitive and robust alternative for the detection of cyclical
patterns: periodic regression. We use Monte Carlo simulation
to demonstrate that periodic regression is more powerful
and less sensitive to missing data than categorical ANOVA
(the most commonly employed technique in the literature).
Finally, we use real seahorse bycatch data to show that
periodic regression is superior to categorical ANOVA for the
detection and description of more complex cycles. We encour-
age researchers to use periodic regression in the analysis of
lunar cycles and other cyclical patterns of known period.
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The lunar cycle provides a strong, predictable set of
environmental cues for marine species. Environmental
cycles (e.g., tidal water movement, moonlight) entrain
endogenous reproductive cycles, synchronizing gamete
release within a population and ensuring that move-
ment, feeding and reproduction occur under favour-
able conditions (Taylor 1984, Omori 1995). Lunar-
synchronized spawning, for example, is commonly
documented for species of shallow waters with large
tidal fluctuations (Korringa 1947, Taylor 1984). Reef
fishes often mass in spawning aggregations on a spe-
cific lunar and seasonal cycle (Johannes 1981, Robert-
son et al. 1990). In addition, lunar cycles have been
detected in spawning and settlement of intertidal
(Taylor 1984) and pelagic-spawning fish and inverte-
brates (Crabtree 1995, Robertson et al. 1999). Lunar
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cycles in fish behaviour have long been recognized
and exploited by artisinal and commercial fisheries
(Johannes 1981, Parrish 1999). The implications of
lunar cycles for the design of sampling programs are
discussed by Gaudreau & Boisclair (2000).

A bewildering array of statistical techniques has been
employed to test for lunar cycles. Most common is a
categorical treatment, in which the lunar cycle is
subdivided into phases. Examples include multiway
(Taylor et al. 1998), split-plot (Courtney et al. 1996) or
repeated measures ANOVA (Rooker & Dennis 1991),
Kruskal-Wallis nonparametric ANOVA (von Herbing
& Hunte 1991), chi-square contingency (Nakai et al.
1990), and correspondence analysis (Laroche et al.
1997). Most authors define 4 lunar phases, but this
ranges from 2 (Grau et al. 1981) to 25 (Coblentz 1995).
Examples of continuous treatments of lunar cycles are
less common, but include Kolmogorov-Smirnov good-
ness-of-fit (Rudloe 1985), Spearman's rank correlation
(Oxenford et al. 1995), time-series analysis (Robertson
etal. 1990), generalized additive models (Bigelow et al.
1999), and the Rayleigh test for uniform angular distri-
bution (Robertson et al. 1990). Finally, there are a large
number of papers that forego statistical analysis and
use simple graphical representations to demonstrate
lunar periodicity (Dufour et al. 1996).

Here we suggest a simple, sensitive, and robust
alternative to the above tests for the detection of cycli-
cal patterns of known period: periodic regression
(Batschelet 1981). In periodic regression (also called
linear-circular regression), the independent variable is
an angular representation of time. As with other forms
of regression analysis, this approach has clear advan-
tages over categorical tests when the independent
variable is continuous. Regression techniques are less
sensitive to missing data, and if the remaining data
are not evenly spaced, a categorical treatment will
probably be unbalanced, with the associated loss of
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statistical power. Regression also does not require the
arbitrary subdivision of a continuous variable into a set
of categories, an approach which discards information
and reduces statistical power. Furthermore, the de-
finition and allocation of such categories (phases) is
partially subjective and likely to influence statistical
outcomes. Periodic regression is simple, flexible, and
can be performed on any commonly used statistics
software.

The period of a lunar cycle is fixed a priori at 29.53 d.
Parameters to be estimated in periodic regression are
the amplitude of the rhythm (the range of oscillation
of Y) and the phase angle (the point on the circular
time scale at which Y is maximum). The procedure is
simple: the lunar month is divided into 360° (or 2mtradi-
ans) to give each day an angular equivalent, 8. The
transformed data are then analyzed by simple linear
regression, using the model:

Y = by + b;-sinB + by-cosB

where Yis the dependent variable, b, is the mean level
of Y, and b; and b, are model coefficients which to-
gether define the phase shift and amplitude (Batschelet
1981). A cosine term is sufficient to describe a phase
shift near 0° or 180° and a sine term is sufficient to
describe a phase shift near 90° or 270°. In these cases,
the coefficient is simply the amplitude of the oscilla-
tion. Other cycles require both terms, but the phase
shift and amplitude may be readily calculated from b
and b, (Batschelet 1981). A semilunar cycle (2 peaks
per lunar month) may be analyzed using the terms
sin20 and cos26; if the 2 peaks are substantially
unequal in amplitude, the latter model will also require
either sin0 or cos0 (e.g. Davis & West 1993).

We used a Monte Carlo simulation to compare the
abilities of ANOVA and periodic regression
to detect a lunar cycle. A simulated 29 d a
cycle was generated with the function:

as many data as possible. Each phase comprised 7 d,
centered on the peak day of the lunar phase. To com-
pare the 2 techniques across a range of sampling inten-
sities, analyses were performed on complete data (n =
29), on only even days (n = 14), and on only every
fourth day (n = 7). Each simulation was repeated
250 times. The simulated cycle is shown in Fig. 1. We
estimated the power of regression and ANOVA to
detect the simulated cycle as the proportion of the 250
simulations in which the technique returned a p-value
less than the standard alpha level of 0.05. We did not
compare the techniques by the coefficients of deter-
mination (rz), as 12 is sensitive to the model degrees
of freedom and these differ between regression and
ANOVA.

With 29 data per cycle, ANOVA displayed good sta-
tistical power (>0.8) at signal:noise ratios as low as 1.2.
At lower sampling densities, the power of this tech-
nique declined precipitously (Fig. 2). Power of ANOVA
exceeded 0.8 at only the highest signal:noise ratio with
14 data, and never exceeded 0.1 with 7 data. Periodic
regression displayed excellent power to detect the
cycle at signal:noise ratios as low as 0.86 (complete
data). Moreover, it was relatively insensitive to more
widely spaced data, retaining good power at signal:
noise ratios of 1.2 with 14 data and 3 with only 7 data
(Fig. 2).

Next, we compared regression and ANOVA by ana-
lyzing daily catch per unit effort (CPUE) for seahorses
Hippocampus spp. caught as bycatch in a Vietnam
trawl fishery (A. Vincent unpubl. data). We analyzed
data collected from June to December 1996 (n = 201
nights), a period that includes both the high CPUE
season (June-October) and the low CPUE season
(November—-December). The categorical ANOVA model

Y = A-cosb + s-rand

where A was the desired amplitude of the
cycle, s the desired standard deviation
of the cycle, and rand a number randomly
selected from a normal distribution with
mean 0 and standard deviation 1. Including
only the cosine term fixed the phase shift of

the resulting cycle at 0°. Amplitude was
held constant at 6, while s was varied from
1 to 9, giving a series of cycles with sig-
nal:noise ratios ranging from 6 to 2/3. The
9 cycles were then analyzed (1) by simple
linear regression of Y on cos6, and (2) by
1-way ANOVA of lunar phase (4 levels).
Lunar phase categories were defined to
maximize the power of ANOVA while using

day 500

Fig. 1. Simulated lunar cycle (solid line) and an example of simulated data
with standard deviation equal to the amplitude of the cycle (points). The
mean elevation of the Y variable is shown as a dashed line. Simulated data
are plotted across a lunar cycle, (a) on linear axes, and (b) on polar axes,
where day is expressed as the angle 8 and Y is distance from the origin.
The shift between circles in (b) is a circular representation of the differ-
ence between a constant value (dashed) and a cosine function (solid)
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Fig. 2. Statistical power of categorical ANOVA (®) and peri-
odic regression (0) to detect a simulated lunar cycle. Results
are shown for analyses of complete data (upper panel), every
second day (middle panel), and every fourth day (lower panel)

included lunar phase (4 equal-size levels, defined as
above), season (2 levels), and the interaction term.
Regression was performed as an analysis of covariance
(ANCOVA), with the continuous variable 6 represent-
ing day of the lunar month, a categorical variable for
season, and the interaction term.

Categorical ANOVA revealed a significant main
effect of season (F = 14.7; p = 0.00017), a significant
main effect of lunar phase (F = 2.75; p = 0.044), and an
interaction (F = 2.85; p = 0.039). One-way ANOVA of
each season, followed by Tukey multiple comparisons,
indicated an effect of lunar phase in the high season
(F = 4.07; p = 0.00834), with lower CPUE around the
new moon than either the first quarter (p = 0.045) or
full moon (p = 0.004). ANOVA could detect no main
effect of lunar phase in the low season (F = 2.06; p =
0.12).

Regression analysis (ANCOVA) also revealed a main
effect of season (F = 15.6; p = 0.00011), but this ap-
proach detected a semilunar cycle (r* = 0.19) described
by sin20 (F= 17.1; p = 0.00005) and cos® (F=3.95; p =
0.048):

logCPUE = 0.13 - sin26-0.14 - cosH

This indicates a periodicity in CPUE with 2 unequal
peaks per lunar cycle. Regression analysis also indi-
cated a marginally significant interaction between
cos B and season (F = 3.23; p = 0.07), indicating that the
inequality of the 2 peaks may differ between seasons.
We therefore performed a simple multiple regression
analysis for each season separately. The high season
exhibited a cycle similar to that described above
(sin28, cos®; r* = 0.17; Fig. 3), but no cycle was de-
tected in the low season (p = 0.09).

Periodic regression is a more powerful and robust
technique than categorical ANOVA for the detection of
cyclical patterns of known period. Periodic regression
was able to detect a weaker simulated lunar cycle and
was less sensitive to missing data than ANOVA. When
applied to real data, periodic regression readily de-
tected and described a semilunar cycle in seahorse
bycatch, where ANOVA was able to detect only a
single peak. Furthermore, periodic regression pro-
vided an equation describing the cycle. Such an equa-
tion may be used to estimate the value of the Yvariable
on any day in the cycle, whereas ANOVA only pro-
vides estimates of the mean value of Y for each phase.
Incorporating a categorical effect of season into the
periodic regression analysis was simple, and a con-
tinuous seasonal cycle could have been added to the
model as a second set of periodic terms (spherical
regression).

We must stress that as with any regression analysis,
it is critically important not to overfit a periodic model.
A number of more complex terms can be added to peri-
odic regression to more closely describe the shape (e.g.
skewness and kurtosis) of observed cycles (Batschelet
1981). Additional terms can always improve regression
model parameters, but this improvement is frequently
spurious. Overly complex models sacrifice ecological
realism and defy interpretation. We recommend restrict-
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Fig. 3. Daily catch per unit effort
(CPUE) of seahorse bycatch in
a Vietnam trawl fishery during
the high-CPUE season, shown
on (a) linear and (b) polar axes.
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ing the model to those terms employed here, unless
data (or theory) strongly support the inclusion of more
complex terms.

We encourage researchers to use periodic regression
in the analysis of lunar cycles. Our findings based on
simulated data are consistent with previous work, in
which ANOVA failed to detect an ‘obvious cyclic
trend’ in reproduction of Australian penaeid prawns,
while periodic regression was able to explain 93 % of
the variation among samples (Courtney et al. 1996).
Furthermore, our analysis of seahorse data demon-
strates how regression provides more information than
ANOVA about the nature of the lunar cycle.
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