Effect of climate on recruitment success of Atlantic Iberian sardine *Sardina pilchardus*

Cástor Guisande¹*, José Manuel Cabanas², Alba Ruth Vergara¹, Isabel Riveiro¹

¹Facultad de Ciencias del Mar, Universidad de Vigo, Lagoas-Marcosende, 36200 Vigo, Spain
²Instituto Español de Oceanografía, Centro Costero de Vigo, Aptdo. 1552, 36280 Vigo, Spain

ABSTRACT: The aim of this study was to determine how climatic (North Atlantic Oscillation winter index, NAO, December through March), oceanographic (upwelling intensity, turbulence, water column stability and larval offshore transport) and biotic (adult abundance) factors affect recruitment success of *Sardina pilchardus* off the northwest coast of the Iberian peninsula. Annual sardine juvenile landings in the port of Vigo (Spain) from 1980 to 2000 were used as an indicator of sardine recruitment success. Ekman transport along the x-axis (*Qₜ*) in February (*QₓF*), from March to April (*QₓMA*), from May to August over the preceding year (*QₓMJJA*), and NAO explained 86% of the variance observed in catches of sardine juveniles. Due to the north-south orientation of the west coast of the Iberian peninsula, upwelling intensity and larval drift offshore are higher the lower the *Qₓ*. Landings of sardine juveniles were higher in those years with moderate *QₓF*, high *QₓMA*, low *QₓMJJA* and low NAO values. There was a dome-shaped relationship between sardine juvenile landings and *QₓF*. Under both high and low *Qₓ* conditions, the upper layer is strongly mixed. Therefore, the reduced recruitment success observed at both high and low *QₓF* values could be due to a stratified upper layer in February enhancing primary production during the spring bloom and, hence, larval food availability. As March and April are the main spawning periods for sardine in this area, the reduced sardine recruitment success observed as *QₓMA* decreased was probably due to the transport offshore of eggs and larvae. In this area the main upwelling season is from May to August. Therefore, the positive relationship between upwelling intensity from May to August and nutrient concentration in surface layers could explain why landings of sardine were higher when *QₓMJJA* over the preceding year was lower. Finally, in years with low NAO sardine recruitment success was higher. When NAO is lower than average, the winter/spring temperatures are warmer and transport offshore is lower.

KEY WORDS: Sardine · Recruitment success · Larval transport offshore · Upwelling · NAO · Water column stability · Turbulence

INTRODUCTION

Food availability affects larval survival (Theilacker 1986, Canino et al. 1991, Kitahara & Matsura 1995). Food quantity and quality must be appropriate at the time of the spawning period to assure larval survival (Hjort 1914, Cushing 1975, Lasker 1978). In addition to food quantity and quality, food aggregation also seems to be important for larval condition. Long periods of stable oceanic conditions seem to lead to fine-scale particle aggregations, enhancing food availability and, hence, larval survival (Lasker 1981); this would explain why recruitment of pelagic fishes is affected by turbulence of the water (Cury & Roy 1989, Borja et al. 1996) and/or the existence of time/space windows within which turbulence does not exceed critical values (Peterman & Bradford 1987, Cury & Roy 1989). Finally, offshore transport can have a profound detrimental effect on larval survival by carrying eggs and larvae to
areas where there is not enough food to survive (Bailey 1981, Parrish et al. 1981). Food quantity and quality, turbulence in the surface layers and larval drift offshore are clearly influenced by the direction and speed of the wind, and, probably for this reason, models based on wind speed and direction explain a high proportion of the recruitment variability observed in pelagic fishes (Belvèze & Erzini 1983, Sinclair et al. 1985, Dickson et al. 1988, Wyatt & Pérez-Gándaras 1988, Cury & Roy 1989, Borja et al. 1996).

Both year-class strength of sardines *Sardina pilchardus*, which is an indicator of sardine recruitment success, and annual catches of *S. pilchardus*, west of Iberian peninsula and northwest of Africa, seem to be also related with hydroclimatic factors, although contradictory results have been obtained. Belvèze & Erzini (1983) found a positive relationship between catches of the Moroccan sardine *S. pilchardus* and upwelling intensity. Wyatt & Pérez-Gándaras (1988) also showed that the year-class strength of sardines in the coastal waters off Portugal and western Galicia (Spain) were positively correlated with upwelling intensity. However, Dickson et al. (1988) showed a negative relationship between Iberian sardine catches, 1950 to 1984, and the average April upwelling index at Porto (Portugal) over the preceding 3 yr. These contradictory results can be explained because upwelling may influence larval success in 2 different ways (Wyatt & Pérez-Gándaras 1988, Cury & Roy 1989). On the one hand, increased upwelling rates can enhance primary production due to the nutrient-rich, subsurface waters which are brought to the euphotic layers, hence the positive relationship between upwelling and recruitment success. However, increased upwelling leads to an increase in offshore larval drift, which may reduce recruitment success by dispersing the larvae to areas with low quantities of and/or low-quality food. Increased upwelling could also produce highly mixed layers, which could have a detrimental effect on larval food availability due to light limitation. Despite the contradictory results mentioned above, all studies agree that recruitment success of *Sardina pilchardus*, in western coastal waters of the Iberian peninsula is affected by abiotic factors, mainly speed and direction of prevailing winds during the spawning season, but it is not clear how these abiotic factors affect the year-class strength of sardine. The aim of this study was to elaborate a model to explain how hydroclimatic factors affect the recruitment variability of sardine off the northwest coast of the Iberian peninsula.

METHODS

Recruitment estimation. Robles et al. (1992) showed that annual landings of Atlantic Iberian sardine juveniles (body length between 8 and 12 cm), in southern Galician ports (northwest of Spain) from 1980 to 1989, were significantly correlated with virtual population analysis recruitment estimates, calibrated by acoustic surveys and the catch per unit effort of the fishery. One of the most important Galician ports, in terms of sardine landings, is Vigo (southwestern Galicia, Spain), with a mean ± SD percentage of the total annual catch landed in Galicia from 1980 to 1989 of 57.7 ± 24.2%. Therefore, juvenile sardine landings in Vigo can be used as an indicator of sardine recruitment success off the northwest Iberian peninsula.

Table 1 shows total annual landings of adults and juveniles of sardine in the port of Vigo from 1980 to 2000. The annual catches of sardine were not corrected by effort of the fishery because (1) the number of nets deployed in the port is not known, and (2) the landings were significantly correlated with virtual population analysis recruitment estimates, calibrated by acoustic surveys and the catch per unit effort of the fishery.

Table 1. North Atlantic Oscillation winter index (NAO), the mean daily Ekman transport rates along the *x*-axis (in m s$^{-1}$ km$^{-1}$) in February (Q$_x$F), in March to April (Q$_x$MA) and from May to August (Q$_x$MJJA), and annual landings of adults and juveniles of *Sardina pilchardus* (in t) in the port of Vigo (Spain) from 1979 to 2000.

<table>
<thead>
<tr>
<th>Year</th>
<th>NAO</th>
<th>Q$_x$F</th>
<th>Q$_x$MA</th>
<th>Q$_x$MJJA</th>
<th>Adult landings</th>
<th>Juvenile landings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>-2.25</td>
<td>570.0</td>
<td>-90.9</td>
<td>-455.0</td>
<td>5578.6</td>
<td>2820.4</td>
</tr>
<tr>
<td>1980</td>
<td>0.56</td>
<td>257.6</td>
<td>-76.9</td>
<td>1.4</td>
<td>10078.0</td>
<td>62.2</td>
</tr>
<tr>
<td>1981</td>
<td>2.05</td>
<td>-61.0</td>
<td>566.6</td>
<td>-426.3</td>
<td>6648.4</td>
<td>2922.0</td>
</tr>
<tr>
<td>1982</td>
<td>0.80</td>
<td>787.5</td>
<td>-240.8</td>
<td>-230.6</td>
<td>10078.0</td>
<td>62.2</td>
</tr>
<tr>
<td>1983</td>
<td>3.42</td>
<td>-170.7</td>
<td>17.7</td>
<td>-194.1</td>
<td>4746.7</td>
<td>4407.7</td>
</tr>
<tr>
<td>1984</td>
<td>1.60</td>
<td>-117.5</td>
<td>5.4</td>
<td>-622.9</td>
<td>6844.3</td>
<td>3857.0</td>
</tr>
<tr>
<td>1985</td>
<td>-0.63</td>
<td>1009.4</td>
<td>210.1</td>
<td>-239.8</td>
<td>6605.4</td>
<td>259.6</td>
</tr>
<tr>
<td>1986</td>
<td>0.50</td>
<td>324.5</td>
<td>-408.5</td>
<td>-391.6</td>
<td>5407.2</td>
<td>157.0</td>
</tr>
<tr>
<td>1987</td>
<td>-0.75</td>
<td>374.4</td>
<td>222.3</td>
<td>-451.5</td>
<td>3533.9</td>
<td>4493.8</td>
</tr>
<tr>
<td>1988</td>
<td>0.72</td>
<td>192.7</td>
<td>-153.0</td>
<td>-233.0</td>
<td>3836.3</td>
<td>255.6</td>
</tr>
<tr>
<td>1989</td>
<td>5.08</td>
<td>184.0</td>
<td>5.3</td>
<td>-448.4</td>
<td>2534.3</td>
<td>623.3</td>
</tr>
<tr>
<td>1990</td>
<td>3.96</td>
<td>1269.0</td>
<td>-436.5</td>
<td>-336.4</td>
<td>2935.8</td>
<td>772.2</td>
</tr>
<tr>
<td>1991</td>
<td>1.03</td>
<td>185.5</td>
<td>-50.4</td>
<td>-436.9</td>
<td>833.6</td>
<td>3459.1</td>
</tr>
<tr>
<td>1992</td>
<td>3.28</td>
<td>129.3</td>
<td>-389.6</td>
<td>-278.2</td>
<td>2621.3</td>
<td>1400.9</td>
</tr>
<tr>
<td>1993</td>
<td>2.67</td>
<td>-407.1</td>
<td>-47.6</td>
<td>-267.2</td>
<td>3252.7</td>
<td>343.4</td>
</tr>
<tr>
<td>1994</td>
<td>3.03</td>
<td>1061.6</td>
<td>-209.0</td>
<td>-207.9</td>
<td>3280.8</td>
<td>268.9</td>
</tr>
<tr>
<td>1995</td>
<td>3.96</td>
<td>629.7</td>
<td>-257.6</td>
<td>-434.8</td>
<td>3281.7</td>
<td>283.8</td>
</tr>
<tr>
<td>1996</td>
<td>-3.78</td>
<td>470.9</td>
<td>176.0</td>
<td>-342.9</td>
<td>2873.8</td>
<td>366.4</td>
</tr>
<tr>
<td>1997</td>
<td>-0.20</td>
<td>707.9</td>
<td>-154.5</td>
<td>-78.5</td>
<td>3372.3</td>
<td>486.3</td>
</tr>
<tr>
<td>1998</td>
<td>0.72</td>
<td>48.6</td>
<td>-49.7</td>
<td>-393.0</td>
<td>893.1</td>
<td>547.6</td>
</tr>
<tr>
<td>1999</td>
<td>1.70</td>
<td>-343.1</td>
<td>42.7</td>
<td>-139.3</td>
<td>1323.8</td>
<td>738.8</td>
</tr>
<tr>
<td>2000</td>
<td>2.80</td>
<td>248.9</td>
<td>12.2</td>
<td>-24.6</td>
<td>1559.9</td>
<td>485.0</td>
</tr>
</tbody>
</table>
ployed per vessel, (2) the kind of vessels and (3) the
count of vessels in the port of Vigo fishing in this
area (around 20 vessels) remained relatively constant
from 1980 to 2000. Fig. 1 shows monthly landings of
sardine juvenile from 1992 to 2000. The main spawn-
ing season of sardine in this area is between February
and April, with a smooth peak in September through
October (Ferreiro & Labarta 1988, Riveiro et al. 2000).
As juveniles are caught approximately 5 or 6 mo after
hatching, the first cohorts spawned in autumn and in
spring are caught approximately in January/February
and June/July, respectively. Therefore, there are 2 an-
nual peaks in the yield of juveniles in winter and sum-
er (Fig. 1). The latest cohorts are caught in Novem-
ber/December. Therefore, the combined monthly catch
from January to December is a good indicator of sar-
dine recruitment success in this area.

Ekman transport. Daily Ekman transport at 43°N,
11°W were calculated following the methodology de-
scribed by Bakun (1973) and adapted for the Iberian
peninsula by Lavín et al. (1991):

\[
Q_x = \frac{\tau_x}{f \rho} \times 1000 \quad Q_y = \frac{-\tau_y}{f \rho}
\]

where \(Q_x\) and \(Q_y\) represent the Ekman transport rates
along the x- and y-axes (in m³ s⁻¹ km⁻¹), \(f = 9.94 \times 10^{-5}\)
° s⁻¹ (Coriolis factor), \(\rho = 1025\) kg m⁻³ (water density) and
\(\tau_x\) and \(\tau_y\) are the wind stress over the sea, which were
calculated by the following equations:

\[
\tau_x = \rho_a C_d \frac{\alpha \rho \delta p}{f \delta y} \quad \tau_y = \rho_a C_d \frac{\alpha \rho \delta p}{f \delta x}
\]

where \(\rho_a = 1.2\) kg m⁻³ (air density), \(C_d = 1.4 \times 10^{-3}\)
(empiric resistance coefficient) and \(u\) and \(v\) are the x-
and y-components of the geostrophic wind (in m s⁻¹):

\[
u = \frac{-\alpha \delta p}{f \delta x} \quad v = \frac{\alpha \delta p}{f \delta y}
\]

where \(\alpha = 1/\rho_a = 0.816\) m² kg⁻¹ and \(\delta p/\delta x\) and \(\delta p/\delta y\)
are the mean pressure gradient between the opposite borders in a 1° × 1° cell centred at 43°N, 11°W obtained
at 6, 12 and 18 h.

The northwestern Atlantic coast of the Iberian
peninsula shows a north-south orientation, and, hence,
northern winds produce offshore transport. The mag-
nitude of offshore transport in the upper layer is con-
sidered to be an indication of the amount of water
upwelled along the coast into the surface layers (Mann
& Lazier 1991) and, also to affect larval drift offshore
(Bailey 1981, Parrish et al. 1981). Therefore, off the
northwest coast of the Iberian peninsula Ekman trans-
port along the x-axis (\(Q_x\)) is a good indicator of both
larval drift offshore and upwelling intensity (input of
nutrients into the euphotic layers).

Turbulence. The energy transferred through the
water column by the wind creates turbulence in the
surface layers. Therefore, a wind-mixing index in the
upper layer is usually calculated as the cube of wind
speed (Bakun & Parrish 1982). We used this index as an
indicator of turbulence in the surface layers.

Water column stability. Monthly CTD data have
been available since 1990 from a station located at
43°7.8’N, 9°7.5’W, which is close to the place we
selected Ekman transport to calculate rates, although
the data for some months were missing as sampling
was not carried out due to climatic conditions. The
Brunt-Väisälä or buoyancy frequency equation (\(N\))
was used to measure the strength of the density gra-
dients:

\[
N = \left(\frac{g \rho}{\overline{\rho}} \frac{\delta p}{\delta z}\right)^{1/2}
\]

where \(\rho\) is the density at depth (in kg m⁻³), \(\overline{\rho}\) is the
mean \(\rho\) of the water column, \(g\) is the acceleration due
to gravity, \(z\) is the depth and \(d\) is the derivative. The
integrated buoyancy frequency estimated by the tra-
pedal method was used as an indicator of stability of the
water column (\(S\)):

\[
S = \frac{z_0}{f} \int \frac{\delta \rho}{\delta z} dz
\]

where \(z_0\) is the depth where \(N\) becomes equal to zero.

Low values of \(S\) indicate that the water column is
mixed, whereas high values indicate that the water
column is stratified.

Fig. 1. Monthly juvenile landings of *Sardina pilchardus* (in t) in
the port of Vigo from 1992 to 2000
North Atlantic Oscillation winter index. The values of the North Atlantic oscillation winter (December through March) index (NAO), based on the difference of normalized sea level pressures between Lisbon (Portugal) and Stykkisholmur/Reykjavik (Iceland), were obtained from http://www.cgd.ucar.edu/cas/climind/nao_winter.html (Hurrell 1995). The mean ± SD of the NAO values from 1979 to 2000 (Table 1) is 1.54 ± 2.02.

Statistical methods. The SPSS program was used to estimate linear and non-linear regressions. As temporal series of recruitment studies can be influenced by autocorrelation (Marshall & Frank 1999), the Durbin-Watson test was used to determine whether there was autocorrelation between the time series:

\[
d = \frac{\sum_{t=2}^{w} (y_t - \hat{y}_{t-1})^2}{\sum_{t=1}^{w} (y_t - \bar{y})^2}
\]

where \(w \) is the number of years, and \(y \) and \(\hat{y} \) are the observed and predicted annual juvenile landings for each year \(t \), respectively.

RESULTS

From all variables considered (adult landings, turbulence, water column stability, NAO, monthly \(Q_x \) and \(Q_y \), and the combined mean \(Q_x \) and \(Q_y \) of several consecutive months), only NAO, the mean \(Q_x \) in February (\(Q_xF \)), the mean \(Q_x \) from March to April (\(Q_xMA \)), and the mean \(Q_x \) from May to August over the preceding year (\(Q_xMJJA \)) (Table 1) were significantly related with annual landings of juvenile sardines.

Fig. 2 shows that high annual landings of sardine were only observed in those years with \(Q_xF \) values within –300 and 500 m³ s⁻¹ km⁻¹. For non-optimal \(Q_xF \) values (lower than –300 m³ s⁻¹ km⁻¹ and higher than 500 m³ s⁻¹ km⁻¹), the juvenile landings were low, with a mean ± SD of 397.9 ± 231.7 t. As both Ekman transport and turbulence of the water are affected by the speed of the wind, there is a clear relationship between Ekman transport and turbulence (Fig. 3). Therefore, the low values of juvenile landings, under both low (lower than –300 m³ s⁻¹ km⁻¹) and high (higher than 500 m³ s⁻¹ km⁻¹) \(Q_xF \) values (Fig. 2), could be due to a high intensity of turbulent wind-mixing and/or the absence of time/space windows within which turbu-
lence does not exceed critical values. However, an analysis of variance showed that there were no significant differences in the turbulence of the water in February ($F_{1,18} = 0.1, p > 0.5$) and in the combined Lasker events (defined as the number of 4-d periods during which the wind speed did not exceed 6 m s$^{-1}$) in February, March and April ($F_{1,18} = 0.3, p > 0.5$) between years with landings of juveniles equalling more or less than 2000 t. However, Fig. 4 shows that there was a relationship between Q_x and stability of the water column. Therefore, the reduced juvenile landings at both low and high Q_x values (Fig. 2) might be due to strongly mixed layers, which could negatively affect primary production due to light limitation.

Fig. 5 shows that, in those years within the range of optimal Q_xF values (within -300 and 500 m3 s$^{-1}$ km$^{-1}$), higher landings were obtained when Q_xMA was lower. Annual juvenile landings were significantly higher in years with low NAO and/or low Q_xMJJA than in years with high NAO and/or high Q_xMJJA (Fig. 6), taking the covariate Q_xMA into account (ANCOVA, $F_{1,9} = 19.9, p = 0.002$). The relationship between Q_xMA (in m3 s$^{-1}$ km$^{-1}$) and juvenile landings (L, in t) observed in years with low NAO and/or Q_xMJJA is described by Eq. (1) ($F_{1,6} = 15.1, r^2 = 0.72, p = 0.008$) and in years with high NAO and/or high Q_xMJJA is described by Eq. (2) ($F_{1,2} = 166.2, r^2 = 0.99, p = 0.006$) (Fig. 5):

$$L = 3346.8 + 7.11 \times Q_xMA$$ (1)

$$L = 601.9 + 406 \times Q_xMA$$ (2)

There was no autocorrelation in either Eq. (1) (Durbin-Watson test, $d = 1.65 > d_{0.01} = 0.91, p > 0.05$) nor Eq. (2) (Durbin-Watson test, $d = 2.42 > d_{0.01} = 0.72, p > 0.05$).

Fig. 7 shows that observed juvenile landings were similar to juvenile landings predicted by Eqs (1 & 2) in years within the range of optimal Q_xF values, and those predicted by the mean annual juvenile landings (mean ± SD: 397.9 ± 231.7 t) obtained in years when Q_xF was not in the optimal range.

DISCUSSION

Along the Atlantic coast of Spain the most important spawning area for sardine is on the north coast of

![Diagram](https://via.placeholder.com/150)

Fig. 5. Relationship between mean daily Ekman transport rates along the x-axis in March to April (Q_xMA, in m3 s$^{-1}$ km$^{-1}$) and total annual juvenile landings of *Sardina pilchardus* (in t) in the port of Vigo from 1980 to 2000. Years with low values (●, Eq. 1 shown in the text) or high values (○, Eq. 2 shown in the text) of North Atlantic Oscillation winter index and/or mean daily Ekman transport along the x-axis in February to May lower than −300 or higher than 500 m3 s$^{-1}$ km$^{-1}$ are not included in the figure.

Fig. 6. North Atlantic Oscillation winter index (NAO) versus mean daily Ekman transport along the x-axis from May to August over the preceding year (Q_xMJJA, in m3 s$^{-1}$ km$^{-1}$) from 1980 to 2000. Symbols as described in Fig. 5. Years with a mean Ekman transport along the x-axis in February lower than −300 or higher than 500 m3 s$^{-1}$ km$^{-1}$ are not included in the figure.

Fig. 7. Relationship between observed and predicted juvenile landings of *Sardina pilchardus* (in t) in the port of Vigo from 1980 to 2000 ($F_{3,17} = 36.1, r^2 = 0.86, p < 0.001$, slope = 1.0 and intercept = −0.06).
Spain (Cantabrian Sea), while little spawning takes place on the west coast of Spain (in Galician waters) (Solá & Franco 1984, Chesney & Alonso-Noval 1988, López-Jamar et al. 1995). For this reason, Robles et al. (1992) suggested that recruitment in Galicia mainly originates from spring spawning in the Cantabrian Sea and Chesney & Alonso-Noval (1988) suggested that upwelling indices calculated for the west coast of the Iberian peninsula are unlikely to adequately assess the relationship between upwelling and recruitment of sardines along the Galician coast of Spain. However, Wyatt & Pérez-Gándaras (1988) suggested that there is an important spawning area for the sardine on the northern Portuguese coastal platform. This hypothesis is supported by the high concentration of sardine eggs and larvae observed in the North of Portugal (Ré et al. 1990) and along the southwest Galician coast (close to the Spanish border) (Ferreiro & Larbarta 1988, García et al. 1988, Riveiro et al. 2000). This spawning area for the sardine on the northern Portuguese coast could explain why catches of sardine along the Galician coast are related with upwelling calculated for the west coast of the Iberian peninsula and, moreover, supports the hypothesis that sardine juveniles captured in Galician waters originated from spawning areas along the north coast of Portugal (López-Jamar et al. 1995).

The results obtained in the present study agree with the optimal environmental window hypothesis proposed by Cury & Roy (1989). A reduced recruitment success was observed at both high and low upwelling conditions in February, whereas recruitment success was higher under moderate upwelling conditions (Fig. 2). Upwelling intensity in February could be important to assure a high input of nutrients for the phytoplankton spring bloom. Therefore, the reduced recruitment success under low upwelling conditions in February (high $Q_x F$) might be explained as the result of a low input of nutrients into surface layers and, hence, reduced primary production. However, the relationship between Q_x and water column stability (Fig. 4) seems to indicate that $Q_x F$ could also be important for sardine recruitment success, because the stability of the water column in February could affect primary production during the spring bloom. It is well known that stratified upper layers, before the onset of the spring bloom, enhance primary production. However, a strongly mixed layer could have a negative effect on primary production due to light limitation, and, hence, larvae could be food limited (Huntsman & Barber 1977). Moreover, a strong mixed layer could negatively affect larval survival due to the dilution of food aggregations (Lasker 1981). Therefore, both high and low Q_x in February could have a detrimental effect on year-class strength of sardine because such values are associated with a strongly mixed layer.

The results of this study also explain the contradictory results obtained between recruitment variability of *Sardina pilchardus* in the west of Iberian peninsula and upwelling intensity: a positive (Belvèze & Erzini 1983, Wyatt & Pérez-Gándaras 1988) and a negative (Dickson et al. 1988) effect of upwelling on sardine recruitment success. High upwelling intensity from May to August in this area increases nutrient concentration in surface water layers (Tenore et al. 1995) and, hence, favors primary production during the next spring; this would explain the negative relationship observed in the present study between Q_x MJJA over the preceding year and sardine recruitment success. However, a high upwelling intensity during March and April has a negative effect on sardine recruitment success due to the offshore transport of eggs and larvae.

This study also has shown that lower than average NAO values enhanced sardine recruitment success; this can be explained in terms of the direction of prevailing winds in winter/spring under low and high NAO values. When NAO values are lower than average, equatorial trade winds from the south or southwest blow over the west coast of the Iberian peninsula, and, hence, the winter/spring temperatures are warmer than normal and the flow of water is towards the west (Fig. 8). However, when NAO values are higher than average, westerly winds from the north and northwest affect the west coast of the Iberian peninsula, and, hence, the winter/spring temperatures are colder than normal and the flow of water is offshore (Fig. 8). The positive effect of low NAO values on sardine recruitment could, thus, be due to the low offshore drift of eggs and larvae (Fig. 8).

In agreement with other studies (see Lasker 1978), our model shows that the size of spawning stock is not important for the size of its resultant year-class. In the present study, the year-class strength of the sardine is
mainly governed by hydroclimatic factors. However, it is important to point out that even under sub-optimal conditions (highly mixed layer, low upwelling and/or high larval drift offshore) a certain quantity of juvenile sardines is always caught (mean ± SD: 397.9 ± 231.7 t); this seems to indicate that a minimum population replacement is assured even in ‘bad’ years as long as fishing pressure does not push the adult stock below a minimum threshold value.

Fig. 9 summarizes the effect of physical factors on recruitment success of *Sardina pilchardus* on the northwest coast of the Iberian peninsula. Under both strong upwelling (low Q_F) and low upwelling conditions (high Q_F) in February, recruitment is low, probably due to strong winds producing a strongly mixed upper layer, which could have a detrimental effect on spring bloom primary production and/or on larval food aggregation. It is not possible to reject the hypothesis that the reduced recruitment success under low upwelling conditions (high Q_F) might also be due to strong southerly winds, leading to a low input of nutrients into the euphotic layers. Under moderate winds in February, recruitment success could be high if upwelling intensity was high during the upwelling season (from May to August) over the preceding year, climatic conditions favor primary production (low NAO) and, finally, larval drift offshore in March and April is low.

As mentioned by Lasker (1978), to manage a fishery, it is necessary to predict whether and to what degree any particular spawning will result in successful recruitment. In this case, as a high proportion of its recruitment variability can be explained by a few factors, it would appear possible to predict the recruitment success of this pelagic fish species (*Sardina pilchardus*) in this particular area (northwest Iberian peninsula).

Acknowledgements. We thank the División de Operaciones Pesqueras de la Autoridad Portuaria de Vigo for supplying the landings of adult and juvenile sardines. This research was supported by the project MAR99-0328-C03-01, a grant from Fundación Provigo to I.R. and a grant from AECI to A.R.

LITERATURE CITED

Hjort J (1914) Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapp P-V Reun Cons Perm Int Explor Mer 20:1–228
Lasker R (1978) The relationship between oceanographic conditions and larval anchovy food in the California
current: identification of factors contributing to recruitment failure. Rapp P-V Reun Cons Int Explor Mer 173: 212–230

Editorial responsibility: Otto Kinne (Editor), Oldendorf/Luhe, Germany

Submitted: October 6, 2000. Accepted: March 15, 2001
Proofs received from author(s): November 19, 2001