Photosynthate partitioning in cultured marine phytoplankton: metabolic patterns in a marine diatom under constant and variable light intensities*

Gary L. Hitchcock1**, Joel C. Goldman2 & Mark R. Dennett2

1 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882-1197, USA
2 Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543, USA

ABSTRACT: Exponential phase cultures of the marine diatom Chaetoceros simplex (clone Bbsm) were cultured at 20°C and 636 µE m⁻² s⁻¹ to determine the rates at which photosynthesis and partitioning of carbon were altered in response to short-term fluctuations in light intensity. Carbon-specific uptake rates equaled cell specific growth rates for a minimum of 3 h at high light intensity (636 µE m⁻² s⁻¹). Low molecular weight (LMW) compounds were linearly labelled for up to 4 h under constant high light and accounted for nearly 70 % of total ¹⁴C fixed. Chloroform-soluble (lipid) and TCA-soluble (polysaccharide) fractions were uniformly labelled (for only 2 h, accounting for 9 to 15 % of total ¹⁴C fixed). Under low light intensity (30 µE m⁻² s⁻¹), the proportion of ¹⁴C decreased in the LMW, chloroform-soluble and TCA-soluble fractions, but increased in particulate materials relative to that occurring at high light. There was an increase in the carbon fixation rates of LMW, chloroform-soluble, and particulate fractions when these cells were re-exposed to high light; carbon partitioning into the TCA-soluble fraction was initially suppressed, but recovered within 30 to 60 min. After 2 h of alternating 30 min exposures to high and low light, cells lost the ability to maintain a carbon fixation rate at 636 µE m⁻² s⁻¹ equivalent to that found in control cultures. Carbon fixation into LMW, chloroform-soluble, and TCA-soluble fractions under fluctuating irradiance occurred only at high light, while protein labeling was unaffected. Based on these metabolic patterns, it appears that short-term (15 to 30 min) light fluctuations in situ may have a major influence on the pattern of carbon partitioning in marine phytoplankton.

INTRODUCTION

There has been a growing appreciation within the past few years that short-term fluctuations in light can have a major impact on primary production in the sea (Marra 1978, Marra & Heinemann 1982). For example, fluctuations in the in situ light field to which a phytoplankton cell is exposed can vary from milliseconds to months (Falkowski 1984). Based on recent estimates, it appears that phytoplankton in the sea can be transported from the surface to depths of tens of meters within 30 min (see Denman and Gargett 1983). A phytoplankton cell could, therefore, experience intensities varying from full to a few % of surface incident light during a 30 min cycle when stationed within a turbulent eddy or Langmuir cell.

The frequencies of light fluctuations which affect photosynthesis range from several cycles s⁻¹ (Walsh & Legendre 1983) to cycles min⁻¹ (Marra & Heinemann 1982, Savidge 1980) and h⁻¹ (Gallegos et al. 1982). Carbon fixation under fluctuating light sometimes is greater than under constant light (Marra 1978), but the importance of this effect under conditions in situ has been questioned (Falkowski & Wirick 1981). Although photosynthetic responses to fluctuating light and physiological mechanisms regulating these responses are well-documented (see Prezelin 1981, Marra & Heinemann 1982, Falkowski 1984), the partitioning of photosynthate between different classes of compounds...
under variable light conditions has not been investigated. Most studies of photosynthetic partitioning in marine phytoplankton have been conducted under constant light intensities, or with samples incubated at a constant isolume in the euphotic zone. We have, therefore, compared photosynthetic partitioning in the marine diatom *Chaetoceros simplex* under constant and variable light intensities to characterize the flow of carbon into major biochemical components.

METHODS

Cultures methods. Batch cultures of *Chaetoceros simplex* (clone Bbsm) first were grown in artificial seawater (Goldman & McCarthy 1978) enriched with 200 μg-at l⁻¹ NH₄⁺, 20 μg-at l⁻¹ PO₄³⁻, 200 μg-at l⁻¹ Si, and trace metals and vitamins at half the concentration in T medium (Guillard & Ryther 1962). Cultures were maintained in 0.5 l vessels (see Goldman & McCarthy 1978) and harvested for experiments when cells were in late exponential phase. Light intensity was maintained at 636 μE m⁻² s⁻¹ of PAR from cool-white bulbs. Light intensities were measured with a QSL-100 quantum scalar irradiance meter (Biospherical Instruments, Inc.). The 4π collector was placed directly in the culture vessel filled with medium. Temperature was held at 20°C by circulating water from a regulated bath through glass jackets outside each vessel.

Two replicate series of experiments were performed, Expt 1 and Expt 2. To initiate an experiment, 50 ml aliquots were transferred from the 0.5 l culture vessel to several 250 ml water-jacketed vessels. One aliquot was maintained at 636 μE m⁻² s⁻¹ as a control ('High Light'), while a second was exposed to alternating 30 min periods at 636 and 30 μE m⁻² s⁻¹ ('Alternating Light'). A third aliquot was kept at 30 μE m⁻² s⁻¹ ('Low Light') and then at intervals of 30 min (Expt 1) or 60 min (Expt 2) subsamples were placed at 636 μE m⁻² s⁻¹ for 30 to 60 min periods. In preliminary experiments a light intensity of 636 μE m⁻² s⁻¹ had been found to be saturating for growth. Light intensity was reduced to 30 μE m⁻² s⁻¹ with neutral density PVC screening.

* Determination of growth rate and cell composition. The maximum specific growth rate (μ) was calculated for each intensity by daily measurement of optical density at 600 nm using a Bausch & Lomb Spectronic 88, or by cell counts at 100× with a Spencer Brightline hemacytometer. Maximum specific growth rates (μ) were estimated from the slope of the linear part of the curve of In absorbance (cell count) vs time. When an experiment was initiated, samples were taken for analyses of particulate carbon (PC) and nitrogen (PN) (Perkin Elmer 240 Elemental Analyzer), NH₄⁺ (McCarthy & Kamykowski 1972) and dissolved inorganic carbon (Dohrmann PR-1 carbon analyzer).

Inorganic carbon uptake. Carbon-14 (as H¹⁴CO₃⁻) was added to the 50 ml aliquots at a specific activity of 62 mCi mmol⁻¹. At intervals of 2 to 20 min, 0.5 ml aliquots were removed from each vessel and pipetted into scintillation vials containing 2 ml of 5% glacial acetic acid in EtOH. The vial contents were evaporated to dryness under a heat lamp. One sample was assayed for total ¹⁴C by liquid scintillation counting and a second was sealed and stored at −10°C for fractionation.

Specific carbon uptake rates (μ) were calculated from the expression:

$$μ = 1/time \cdot [\ln (C + C₀)/C₀]$$

where $C₀ = initial \ PC; C = total \ carbon \ fixed \ from \ ¹⁴C$ uptake. Specific carbon uptake rates were also measured by following the increase in PC in the original growth vessel over the duration of the ¹⁴C incubation to provide an independent measure of inorganic carbon fixation.

Fractionations were made (Expt 2 only) according to the method described by Li et al. (1980). The extraction scheme yields 4 fractions: methanol/water-soluble, chloroform-soluble, 5% TCA-soluble and particulate materials. These fractions are operationally defined as corresponding to low molecular weight (LMW), lipid, polysaccharide and protein materials, respectively, although the separation of polymers is not complete (Hitchcock 1983). The carbon content of each fraction was calculated with the assumption that the specific activity of each fraction was the same as that of the medium; since there was no means of evaluating the rate or activity of polymer precursors, the carbon content of each fraction is only an approximation.

RESULTS

Total inorganic carbon uptake.

High Light. Under constant irradiance of 636 μE m⁻² s⁻¹, total inorganic carbon fixation was virtually linear for 3 to 4 h in both replicate experiments (Fig. 1A, B). In both experiments the specific carbon uptake rate μ was virtually equal to the respective specific growth rate μ over the initial (first 0.5 h) segments of the incubations, even though there were slight differences in μ in the 2 inoculum cultures; μ and μ' were respectively 0.067 h⁻¹ and 0.073 h⁻¹ in Expt 1 and 0.053 h⁻¹ and 0.048 h⁻¹ in Expt 2 (Table 1). Based on 210 min of continuous exposure to high light, μ in Expt 1 was sustained at 0.065 h⁻¹, but in Expt 2 it dropped slightly to 0.044 h⁻¹. The deviations from virtually linear car-
Fig. 1. *Chaetoceros simplex*. Time course of carbon fixation from 14C uptake (●) and particulate carbon increase (●) in duplicate experiments. Incubations were at 30 (○) and 636 (▲) μE m$^{-2}$ s$^{-1}$. (A, B) High Light and Alternating Light experiments. (C, D) Low Light experiment: labelling at 30 μE m$^{-2}$ s$^{-1}$ and subsequent carbon fixation in aliquots transferred to 636 μE m$^{-2}$ s$^{-1}$. Arrows in A and B represent end of linear 14C fixation under constant light.

Table 1. *Chaetoceros simplex*. Summary of specific carbon uptake rates (μ') as a function of duration of variable light-dark regimes after growth in continuous light. *Alternating Light*: exposure to alternating high-low light for 330 min in 30 min intervals; *Low Light*: exposure to high light after prolonged exposure to low light

<table>
<thead>
<tr>
<th>Expt 1</th>
<th>Alternating Light</th>
<th>Low Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>High light intervals during 14C incubation (min)</td>
<td>μ' (h$^{-1}$)</td>
<td>High light intervals during 14C incubation (min)</td>
</tr>
<tr>
<td>0–30</td>
<td>0.073</td>
<td>0–30</td>
</tr>
<tr>
<td>60–90</td>
<td>0.069</td>
<td>30–60</td>
</tr>
<tr>
<td>120–150</td>
<td>0.061</td>
<td>60–90</td>
</tr>
<tr>
<td>180–210</td>
<td>0.061</td>
<td>120–150</td>
</tr>
<tr>
<td>240–270</td>
<td>0.057</td>
<td>180–210</td>
</tr>
<tr>
<td>300–330</td>
<td>0.056</td>
<td>240–270</td>
</tr>
<tr>
<td>Expt 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High light intervals during 14C incubation (min)</td>
<td>μ' (h$^{-1}$)</td>
<td>High light intervals during 14C incubation (min)</td>
</tr>
<tr>
<td>0–30</td>
<td>0.048</td>
<td>0–30</td>
</tr>
<tr>
<td>60–90</td>
<td>0.040</td>
<td>30–90</td>
</tr>
<tr>
<td>120–150</td>
<td>0.030</td>
<td>60–120</td>
</tr>
<tr>
<td>180–210</td>
<td>0.027</td>
<td>120–180</td>
</tr>
<tr>
<td>240–270</td>
<td>0.022</td>
<td>180–240</td>
</tr>
<tr>
<td>300–330</td>
<td>0.023</td>
<td>240–300</td>
</tr>
</tbody>
</table>

* Based on pre-incubation growth measurements under continuous high light
** Based on exposure to continuous high light for 210 min during 14C incubation

Carbon uptake after 3 to 4 hours of labelling, and concomitant decreases in μ' over time, appeared to occur as ambient ammonium concentrations (measured only in Expt 2) decreased below the limit of detection (Table 2). In both experiments, increases in particulate carbon paralleled increases in 14C (Fig. 1A, B).

Alternating Light. When cells were exposed to alternating intensities of 636 and 30 μE m$^{-2}$ s$^{-1}$ in 30 min
Table 2. Chaetoceros simplex. Proportion of ¹⁴C in labelled fractions incubated under constant or fluctuating irradiance (Expt 2)

<table>
<thead>
<tr>
<th>Irradiance (µE m⁻² s⁻¹)</th>
<th>Incubation duration (min)</th>
<th>Residual NH⁺⁺ (µg-at l⁻¹)</th>
<th>% ¹⁴C fixed</th>
<th>LMW</th>
<th>Lipid</th>
<th>TCA-sol.</th>
<th>Part.</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Light (636 constant)</td>
<td>0</td>
<td>2.55</td>
<td>-</td>
<td>69</td>
<td>13</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>0.23</td>
<td>-</td>
<td>63</td>
<td>12</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>330</td>
<td>0.03</td>
<td>-</td>
<td>64</td>
<td>12</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Alternating Light (636/30)</td>
<td>330</td>
<td>ND</td>
<td>-</td>
<td>64</td>
<td>12</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Low Light (30 constant)</td>
<td>30</td>
<td>ND</td>
<td>22</td>
<td>11</td>
<td>45</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>(Prolonged 636)</td>
<td>330</td>
<td>ND</td>
<td>39</td>
<td>13</td>
<td>19</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

ND = No data

intervals net carbon fixation occurred only at the higher light intensity. During each interval at low light there was a consistent but small net loss of carbon (Fig. 1A, B) with a corresponding negative µ' of approximately -0.002 h⁻¹. This loss rate was observed repeatedly in subsequent experiments under alternating light periods for up to 5 h (data not shown). In Expt 1 the magnitude of µ' decreased only slightly during successive intervals at high light: from 0.073 h⁻¹ during the first 30 min of high light exposure to 0.056 h⁻¹ in the 6th high light interval (330 min total incubation). There was, however, a greater decrease in µ' at high light intensities in Expt 2, where µ' decreased from 0.048 h⁻¹ in the first 30 min interval to 0.023 h⁻¹ in the 6th interval of high light. This decrease in µ' indicated a loss of recovery for potential carbon fixation when cells were re-exposed to saturating intensities.

Low Light. When cells were continuously incubated at low light (30 µE m⁻² s⁻¹) there was a small, but positive, net fixation of carbon in both experiments (Fig. 1C, D). These increases in fixed carbon correspond to low (0.01 to 0.02 h⁻¹), but positive, values of µ'. Following a prolonged exposure to low light, transfer to high light led to rapid increases in carbon fixation (Fig. 1C, D), although µ' was slightly lower than when cells were exposed to alternating light regimes and there was a trend of decreasing µ' during each successive transfer to high light (Table 1). Therefore, as the duration of exposure to low light increased there was a decrease in the potential to fix carbon when cells were re-exposed to high light.

Patterns of photosynthate partitioning

Patterns of photosynthate partitioning were directly related to incident light conditions.

High Light. Partitioning of inorganic carbon into the various fractions was approximately linear for 4 h under continuous and high (636 µE m⁻² s⁻¹) irradiation (Fig. 2A). Under these conditions, a major fraction of incorporated ¹⁴C was recovered from LMW materials, (nearly 65% of the total ¹⁴C fixed). The CHCl₃, TCA-soluble and particulate fractions each contained less than 20% of total ¹⁴C fixed (Table 2). After the initial
4 h, the rate of 14C fixation into TCA-soluble material increased (Fig. 2A). This change in the partitioning of 14C corresponded to the period when ammonium in the culture appeared to be depleted (Table 2).

Alternating Light. Patterns of inorganic carbon partitioning under alternating light (30 min each at 636 and 30 μE m$^{-2}$ s$^{-1}$) differed from those observed under continuous illumination. Synthesis of the LMW, TCA-soluble and particulate materials was highest when cells were exposed to 636 μE m$^{-2}$ s$^{-1}$, whereas labelling of CHCl$_3$-soluble material was rather erratic (Fig. 3). The 14C within the LMW and TCA-soluble materials decreased during the first 30 min at 30 μE m$^{-2}$ s$^{-1}$, while that in the protein fraction increased. The 14C activity of the LMW and CHCl$_3$-soluble fractions subsequently decreased during each period at 30 μE m$^{-2}$ s$^{-1}$ (Fig. 3). Only in the particulate fraction did 14C activity continue to increase during alternating periods of high and low irradiance. In comparison to the pattern found at continuous high light, the alternating light regime led to a 60% reduction of fixed 14C in the TCA-soluble fraction, but a 157% increase (from 7% to 18%) in the particulate fraction over the course of a 330 min incubation (Table 2).

Low Light. During the first 30 min of incubation under continuous low light 45% of 14C incorporated went into the TCA-soluble fraction, 22% into each of the LMW and particulate fractions and only 11% into the CHCl$_3$-soluble fraction (Table 2; Fig. 2B). The rate of 14C incorporation into the TCA-soluble fraction slowed considerably with further incubation and even became negative after 240 min. In contrast, 14C labelling in both the LMW and particulate fractions, and to a lesser degree in the CHCl$_3$ fraction, increased throughout the incubations so that by 330 min 39% of total 14C fixed was in the LMW fraction, 29% in the particulate fraction, 13% in the CHCl$_3$ fraction and only 19% in the TCA-soluble fraction (Table 2; Fig. 2B).

In cells maintained at low light and subsequently transferred to high light, labelled carbon primarily went into the LMW (Fig. 4A), CHCl$_3$-soluble (Fig. 4B) and particulate fractions (Fig. 4C), although the rate of net carbon synthesis in each fraction decreased during the successive high light periods (Table 2). TCA-soluble compounds were rapidly labelled during the first exposure to high light, but thereafter the pattern of 14C
labelling of this material was erratic (Fig. 4D). By 300
min incubation, 62% of label was present in the LMW
fraction, 12% in the CHCl₃-soluble fraction, 21% in
the particulate function, and only 5% in the TCA-
soluble fraction (Table 2).

DISCUSSION

Total carbon fixation rates

Chaetoceros simplex (Bbsm) was selected for this
study because in previous experiments it displayed
short-term carbon-specific uptake rates (µ) that were
virtually equal to specific growth rates (µ) under a
variety of environmental conditions (Li & Goldman
between µ and µ provides some assurance that the
variability in µ was real, and not an artifact of cul-
turing.

The photosynthetic patterns we observed in
Chaetoceros simplex were in response to 'square wave'
fluctuations in the light field. The alternating 30 min
exposures to high and low intensities were of sufficient
duration to provide accurate estimates of specific car-
bon uptake rates (µ) and carbon partitioning patterns.
These exposure times approximate first order transit
times of water parcels (and presumably of entrained phytoplankton) from the surface to depths on the order
of 40 m when surface wind velocities are approxi-
mately 10 m s⁻¹. Thus the carbon partitioning we
observed in the laboratory may be representative of field conditions in which diatom populations are trans-
ported through Langmuir cells or turbulent eddies.

Specific carbon uptake rates (µ) of Chaetoceros sim-
pex were nearly equivalent to corresponding cell growth rates during repeated transitions from low
(30 µE m⁻² s⁻¹) to high (636 µE m⁻² s⁻¹) intensities. If
natural diatom populations exhibit a similar response,
then rapid movement of cells through the mixed layer
would have little impact on µ. For total inorganic car-
bon fixation is, essentially, a function of total light
received. In particular, cells entrained for long periods
at low light would still retain the capacity to revert
rapidly back to an earlier higher growth rate once
more favorable light conditions prevailed. Marra &
Heineman (1982), in contrast, found that maximum
rates of oxygen production in the diatom Launderia borealis occurred before maximum light intensities
were attained on days with extremely variable sun-
light, while rates of O₂ production on cloudy days
showed a close correspondence with incident irradianc.
A major difference, however, between their work and ours was that O₂ production in L. borealis
was measured at light variations with frequencies of
≤5 cycles s⁻¹, while ¹⁴C fixation in C. simplex was
measured at only 2 cycles h⁻¹. The physiological
mechanisms regulating O₂ evolution at these higher
frequencies of light variability (fluorescence yield,
reactions of electron carriers) are indirectly coupled to
carbon fixation. The differences in sampling frequen-
cies prevents a direct comparison of the responses
between C. simplex and L. borealis. Walsh & Legendre
(1983), similarly, found that variations of 2 to 5 cycles
s⁻¹ increased carbon fixation in natural populations.
However, it is clear from our results that µ of C.
simplex varies as a direct function of ambient irradianc when light variations occur at frequencies of at least 2 h⁻¹.

Photosynthate partitioning

Specific patterns of inorganic carbon fixation
observed in Chaetoceros simplex varied with the ini-
tial light intensity at which the cells were labelled.
Cells cultured at 636 µE m⁻² s⁻¹ maintained a low,
yet positive µ when initially transferred and labelled at
30 µE m⁻² s⁻¹ ('Low light' experiment). However, if
cells were initially labelled at 636 µE m⁻² s⁻¹ for 30 min
and then transferred to low light ('Alternating light'
experiment), they maintained a small, negative µ. The
loss of fixed carbon at low light occurred in either the
LMW or CHCl₃-soluble fractions, but was most preva-
ent in LMW compounds. The decrease in cellular ¹⁴C
following transfer of cells from saturating to near-
compensating intensities was similar to the loss of ¹⁴C
observed in freshwater phytoplankton when they were
initially labelled at a near-saturating intensity (140 µE
m⁻² s⁻¹) and then transferred to the dark (Bidwell 1977).
Bidwell (1977) hypothesized that the loss of ¹⁴C in
some freshwater species was due to the transfer of
labelled photosynthate from the chloroplast to the
cytoplasm where photosynthate was respired. If a simi-
lar metabolic response occurs in C. simplex, the export
of recently-labelled materials from the chloroplasts
mainly occurs when cells are transferred from high
light. At 30 µE m⁻² s⁻¹ the catabolic needs for carbon in
C. simplex may have exceeded the photosynthetic rate
for a brief period, so a net loss of label occurred as
labelled photosynthate was exported from the chloro-
plast into the cytoplasm and subsequently respired.
This hypothesis deserves further study to document if
recent photosynthate is principally exported to the
cytoplasm when cells are exposed to near-compensat-
ing intensities.

The proportion of ¹⁴C fixed into LMW compounds
was reduced and that into proteins increased in
Chaetoceros simplex incubated at low light relative to
that at high light. The metabolic pattern observed in
C. simplex is similar to that in natural populations, although polysaccharide materials generally account for a greater proportion of total 14C fixed at intensities saturating photosynthesis (Morris 1981). The only obvious deviation from linear incorporation in our study was that the proportion of 14C in TCA-soluble materials increased as μ declined in response to apparent nitrogen depletion when cells were exposed to high light after 240 min. An increase in the proportion of 14C fixed into TCA-soluble materials could reflect an increased production of 'reserve' polysaccharide which, at least in diatoms, increases in response to nitrogen limitation (Myklestad 1974). The increased synthesis of polysaccharide materials after N depletion at 240 min is, to our knowledge, the first demonstration of the time course of photosynthetic partitioning in response to nutrient limitation. Given the rapid alteration in the pattern of labelling, time courses of photosynthetic partitioning in response to nutrient additions may provide qualitative information on relative nutrient deficiency in natural populations.

The partitioning of 14C into LMW materials was tightly coupled to irradiance. In cells initially labelled at high light the activity of the LMW fraction decreased following transfer to low light. The decrease in the proportion of 14C fixed into the LMW materials can be attributed to catabolic processes (respiration), excretion, and the incorporation of LMW compounds into polymers such as proteins. The proportion of 14C fixed in LMW compounds represented the majority of carbon fixed in cells initially labelled at low light and transferred to high light; at that time the specific carbon uptake exceeded the growth rate (μ > ρ). This pattern of carbon partitioning may not be unique to diatoms, for in the chlorophyte *Chlorella* similar 'bursts' of specific carbon uptake exceeding growth rate have been attributed to the temporary overflow of fixed carbon in storage products such as starch (Myers 1970).

The erratic yet continuous increase of 14C in the particulate fraction was, most likely, due to a continued synthesis of proteins under fluctuating irradiance. Since protein production (e.g. Eppley et al. 1967, Hitchcock 1980) and 14C labelling of the particulate fraction (Morris & Skea 1978, Cuhel et al. 1984), continues in the dark at rates comparable to those in the light, the partitioning of 14C into the particulate fraction would be expected to continue at a constant rate under a fluctuating light regime. From previous studies, as reviewed by Morris (1981), it appears that the capacity of phytoplankton to synthesize proteins is conserved under environmental stress; our observations with *Chaetoceros simplex* also indicate that the labelling of the protein fraction is 'conserved' during the short-term fluctuations in irradiance.

The partitioning of 14C into 'storage materials' – polysaccharides and lipids – indicates the physiological role these compounds have under a fluctuating light regime. The activity of 14C fixed into the lipid fraction increased and decreased under alternating periods of high and low light, respectively. A decrease in the activity of 14C in the lipid fraction when cells were exposed to low light shows that these compounds provide carbon and energy for the cell at a near-compensating light intensity. Furthermore, *Chaetoceros simplex* maintained its ability to synthesize lipids following transfer from low to high light as the incubation period at low light increased (Fig. 4B). Unlike the TCA-soluble compounds (polysaccharides), lipids were readily synthesized after a prolonged exposure to a subsaturating intensity.

The activity of 14C in the TCA-soluble fraction, in contrast, did not increase at high light when cells were exposed to fluctuating irradiance. Although diatom reserve polysaccharides are synthesized in the light and respired in the dark (Handa 1969, Hitchcock 1980), there was no consistent synthesis or utilization of the TCA-soluble materials when cells of *Chaetoceros simplex* were incubated under alternating high-low irradiances of 30 min each. Furthermore, the loss of 14C from TCA-soluble material in *C. simplex* following re-exposure to high light after a prolonged incubation at low light (Fig. 4D) was surprising. Both responses indicate that *C. simplex* requires continued exposure to a high, or perhaps saturating, intensity to maintain an ability to synthesize polysaccharides.

In higher plants the synthetic mechanism for starch production is light-dependent (Champigny & Bismuth 1976, Buchanan 1980); a continued synthesis of starch requires exposure to high light intensities to maintain activated enzymes. In *Chaetoceros simplex* the reduction of 14C activity within the TCA-soluble fraction after re-exposure to high light (Fig. 4D) may have resulted from a catabolic demand for polysaccharides (respiration, carbon for synthesis of other compounds) which exceeded the rate of synthesis rates as synthesis mechanism(s) were being re-activated. The interdependence of light intensity and exposure period on the rate of synthesis and utilization of reserve polysaccharides during transfer from one light intensity to another is obviously poorly understood. Measurements of glucan synthase activity and exo-(β-1, 3)-glucanase activity (Myklestad et al. 1982) during prolonged incubation at subsaturating intensities are necessary to confirm if catabolic activity exceeds synthetic capacity under fluctuating light regimes. From previous studies it appears that algae preferentially utilize reserve carbohydrates before lipids (Handa 1969, Li & Harrison 1982). If there is a requirement for light-activation of polysaccharide synthesis, however, then lipids could also have an important function in providing energy in
an environment with a rapidly-varying light field. In future studies the physiological role of reserve lipids and polysaccharides in providing energy and carbon for continued protein synthesis should be examined under fluctuating light conditions similar to those which phytoplankton cells may experience in the ocean.

Acknowledgements. This study was supported by NSF Grants OCE-80-17272 (GLH) and OCE-8219578 (JCG).

LITERATURE CITED

This article was submitted to the editor; it was accepted for printing on December 20, 1985