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ABSTRACT: Populations of sea urchins often fluctuate greatly 
in density. The density of sea urchins is usually inversely 
correlated with the abundance of macrolagae. It is argued that 
fluctuations in density are a predictable consequence of the 
unique morphology and physiology of sea urchins. An extraor- 
dinary ability to accomodate food Limitation through variations 
in growth rate means that surv~vorship and food abundance 
are largely decoupled. These features of sea urchins differ 
from those of the herbivorous gastropods. The ecological 
implications of these differences are discussed. A different 
perspective is required for the interpretation of the population 
dynamics of sea urchins. 

Sea urchins are relatively large, conspicuous mem- 
bers of marine communities. They are often aggregated 
(see Lawrence 1975, Warner 1979, Sloan 1980, Law- 
rence & Sammarco 1982 for reviews) and populations 
may fluctuate in density with time (Lang & Mann 1976, 
Foreman 1977, Andrew & Choat 1982; see Lawrence 
1975, Lawrence & Sammarco 1982, Ebert 1983 for 
reviews). Because of these general features of their 
ecology sea urchins have been conspicuous in studies 
that seek to isolate and explain the processes that 
structure marine communities. These studies have 
shown that sea urchins can have a profound influence 
on the structure of benthic communities (Ogden et al. 
1973, Estes & Palmisano 1974, Duggins 1980, Andrew 
& Choat 1982, Dean et  al. 1984, Dayton 1985; see 
Lawrence 1975, Lawrence & Sammarco 1982 for re- 
views). 

In this note I argue that the great, though variable, 
impact sea urchins can have on communities is a pre- 
dictable consequence of their unique morphology and 
physiology. It is suggested that the contribution of the 
morphology and physiology of sea urchins in determin- 
ing the strength and consequences of interactions both 
within and between trophic levels has been largely 
unexplored. A greater appreciation of the conse- 
quences of morphology in sea urchins, and by exten- 
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sion asteroids, will promote a different perspective for 
the interpretation of their population dynamics. 

The uniqueness of the sea urchins may be  illustrated 
by contrasting them with an ecologically similar, yet 
fundamentally different group of animals, the herbivor- 
ous gastropods. Echinoderms have a simple body plan, 
with relatively little development of muscle and small 
investment in soft tissue (see references in Jangoux & 

Lawrence 1982). Gastropods have a more highly 
developed musculature, especially in the large muscles 
on which they are reliant for locomotion and adhesion 
to the substratum (see references in Fretter & Graham 
1962, Branch 1981). 

High densities of sea urchins may persist for many 
years in situations of low food availability (Lang & 
Mann 1976, Wharton & Mann 1981, Andrew & Choat 
1982, Himmelman et  al. 1983; see Lawrence 1975 for 
review). Much of this ability may be explained by 
reference to their morphology and physiology. Sea 
urchins show a great sensitivity to the availability of 
nutrients (Lawrence & Lane 1982). Under conditions of 
limiting food they differentially allocate resources to 
various components of the body (Ebert 1980, Black et 
al. 1982, 1984). If the shortage of food is sufficiently 
great they resorb skeletal material and shrink (Ebert 
1967, 1968, Dix 1972, Moss & Lawrence 1972, Levitan 
1988). Moreover, they can quickly capitalise on situa- 
tions in which food is readily available, either by rapid 
production of gametes or by rapid somatic growth 
(Vadas 1977, Larson et  al. 1980, Keats e t  al. 1982, 
Andrew 1986; see Lawrence & Lane 1982 for review). 
These facts give the impression of a general architec- 
ture and level of morphological and physiological com- 
plexity that is well equipped to cope with limited 
availability of food (see also Johnson & Mann 1982, 
Dean et al. 1984). The great plasticity of growth in 
echinoids should mean that they are less vulnerable to 
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density-dependent mortality than gastropods. In short, 
it should be  much harder to starve a n  echinoid to death 
than a herbivorous gastropod. 

Many experimental studies have produced evidence 
consistent with density-dependent mortality in species 
of gastropod molluscs: Patella cochlear (Branch 1975), 
Acmaea scutulatum (Stimson & Black 1975), Acmaea 
digitalis (Choat 19??), Nenta atramentosa (Underwood 
1976, 1978), Patelloida latistngata (Creese 1980, 1982), 
P. alticostata (Fletcher & Creese 1985), Cellana tramo- 
senca (Underwood 1978, Creese & Underwood 1982, 
Underwood et  al. 1983, Fletcher & Creese 1985), Bem- 
bicium auratum (Branch & Branch 1980), Notoacmea 
petterdi (Creese 1980), Littorina unifasciata (Branch & 
Branch 1981), Siphonaria denticulata and S. virgulata 
(Creese & Underwood 1982), Fissurella virescens 
(Ortega 1985), Tegula aura tum (Schmitt 1985), Cellana 
stellifera (Choat & Andrew 1986; see also Underwood 
1979, Branch 1981, 1984 for reviews). 

Although experimental studies of the effects of 
intraspecific competition for food in echinoids are few, 
the available information supports the contention that 
density-dependent mortality is less prevalent in sea 
urchins. Only Keller (1984) presented experimental 
evidence for density-dependent mortality, in the tropi- 
cal echinoids Tripneustes ventricosus and Lytechinus 
variegatus. In the latter species little mortality occurred 
until densities reached 16 times their natural levels. It is 
difficult, therefore, to ascribe any importance to intra- 
specific competition for food as a process regulating the 
abundance of this species. T. ventricosus, in contrast, 
was susceptible to density-dependent process within 
the range of natural densities. 

Evidence consistent with a lack of mortality with 
increasing density has been found in the echinoids 
Diadema antillarum (Sammarco 1980, Levitan 1988), 
Evechinus chloroticus (Andrew 1986, Choat & Andrew 
1986), Strongylocentrotus droebachiensis (Larson et  al. 
1980, Thompson 1982), and S. franciscanus (Vadas 
1977). Ebert (1977) confined S. franciscanus and S. 
purpuratus in experimental enclosures and found that, 
within the treatments in which individuals were at  
higher densities, density decreased over time. How- 
ever, diffusion of sea urchins among enclosures was 
sufficient for Ebert to conclude ' .  . that density- 
dependent mortality was not a significant feature of the 
experiment' (Ebert 1977, p. 19). Similarly a number of 
studies did not find density-dependent mortality in 
gastropods (e.g. Frank 1965, Black 1977, Choat 1977, 
Branch & Branch 1981, Underwood 1984, Schmitt 1985, 
Choat & Andrew 1986). 

An essential caveat in the acceptance of these con- 
trasts of the prevalence of density-dependent mortal- 
ity in the sea urchins and herbivorous gastropods lies 
in the nature of the tests that provide evidence 'for' or 

'against' density-dependent mortality. Demonstrations 
of density-dependence caused by intra-specific com- 
petition require not only that competition have a 
measurable effect on numbers of individuals, but also 
that the researcher correctly recognises the resource(s) 
for which competition is postulated (Peterson & Andre 
1980, Underwood 1984). Further, comparisons of the 
frequency of occurrence of density-dependent mortal- 
ity require that those resources be  placed under suffi- 
ciently severe but realistic, and comparable, degrees 
of short-supply. Failure to do so will mean that density 
dependence may not be  detected when it is a real 
determinant of numbers in nature. There is, therefore 
an  asymmetry in the worth, and meaning, of experi- 
mental tests for density-dependence that produce 'sig- 
nificant' results and those that do not. A lack of statis- 
tical significance does not mean that density depend- 
ence does not contribute to the abundance of sea 
urchins. These qualities of a falsificationist methodol- 
ogy mean that simple ratios of the number of studies 
'for'/number of studies 'against' are inappropriate 
indicators of the relative prevalence of density- 
dependence in the 2 groups. These cautions not- 
withstanding, the overwhelming imbalance in the 
relative frequency of demonstrations of density- 
dependent mortality between the sea urchins and her- 
bivorous gastropods suggests a broad generality. 
Clearly, more experimental tests of hypotheses con- 
cerned with the occurrence of density-dependent mor- 
tality in the 2 groups are required before any inductive 
argument based on the frequency of occurrence can 
gain general acceptance. 

Several reasons for the relative invulnerability of sea 
urchins to density-dependent mortality may be sug- 
gested. In reviewing the nutrition of postmetamorphic 
echinoderms, Lawrence & Lane (1982) stated that one 
of several characteristics of echinoderms is a low 
requirement of nutrients for respiration. Lawrence & 
Lane believed that one of the reasons for this low 
energy requirement is the lack of muscular develop- 
ment in the echinoderms. Webster (1975) contrasted 
the respiration rates of species from several inverte- 
brate phyla and concluded that the respiration rates of 
echinoderms were consistently among the lowest. 
Webster cited 3 possible causes for a low respiration 
rate in echinoderms: (1) a relatively inefficient oxygen 
transport system; (2) a relatively high proportion of 
metabolically inert skeletal material and a large vol- 
ume of perivisceral fluid which has a low level of 
metabolic activity; and (3) a low level of activity. 

If we accept that there is a major difference between 
the 2 groups in their energy requirements and, more 
importantly, in the consequences of a shortage of food, 
then the obvious ecological implication is that a tighter, 
and therefore more predictable, relationship should 
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exist between the density of gastropods and the abun- 
dance of food than for sea urchins. Sea urchins are 
more able to accommodate food-stressed situations 
through adjustments in growth, and therefore the total 
biomass of echinoids in a population (Ebert 1968), 
rather than reductions in population size. 

The decoupling of food availability and survivorship 
has important consequences for studies that seek to 
understand the regulation of numbers of echinoids, for 
it makes great variability in the density of local popula- 
tions more explicable, but less predictable. If external 
forces operate to a greater degree to control their num- 
bers, then variation is to be expected. By their very 
nature, processes that act on the individual from with- 
out will be more variable and less predictible than 
intrinsic processes. 

If freed from compensatory mortality, variability in 
recruitment will become more important in determin- 
ing population densities and may provide substantial 
explanation for large fluctuations in density. Variable 
recruitment has been documented in both echinoids 
and gastropods (Ebert 1968, Foreman 1977; see Under- 
wood 1979, Ebert 1983 for reviews); however, the con- 
sequences will differ considerably between groups. 
The morphology and physiology of the echinoids 
would, all else being equal, allow a greater survivor- 
ship than would occur in gastropods. 

Attempts to explain large fluctuations in the density of 
sea urchins have often invoked changes in the mag- 
nitude of a regulatory process, such as predation (e.g. 
Estes & Palmisano 1974, Breen & Mann 1976, Duggins 
1980, Tegner 1980; see Lawrence 1975, Lawrence & 
Sammarco 1982 for reviews). Variations in the abun- 
dance of echinoids, and consequent effects on commun- 
ity structure, may also be a consequence of the combined 
effects of variable recruitment and an ability to survive 
stress. The degree to which predation is density- 
dependent is unclear. The crevice-dwehng behaviour of 
diadematid species may expose them to greater preda- 
tion pressure where suitable refuges are in short supply 
(Nelson & Vance 1979, Carpenter 1984). Strongylocen- 
trotids, in contrast, may find refuge from predation in 
dense aggregations (Duggins 1983). In recent years 
several case-histories have documented decimation of 
populations of echinoids by disease over large geo- 
graphic regions, e.g. California (Pearse et al. 1977), Nova 
Scotia (Miller & Colodey 1983), and the Caribbean sea 
(Lessios e t  al. 1983). The extent to which this pathogen 
operates in a density-dependent manner is unknown. 

Although I have concentrated on the contrasting 
morphologies and physiologies of sea urchins and gas- 
tropods, other echinoderms share some of the same 
morphological attributes that would buffer them from 
the compensatory effects of density-dependent mortali- 
ty (see Emson & Wilkies 1980 for review). Asteroids are 

commonly found at high densities and can have a great 
impact on their environment (Paine 1969, Sloan 1980). 
For example, the large asteroid Acanthaster planci is 
often found in dense aggregations and can increase in 
density to populations of sufficient magnitude to earn 
the appellation 'outbreaks' (see Potts 1981, Moran 1986 
for reviews). The devastating effect this species can, and 
does, have on coral communities throughout the tropical 
Indo-Pacific region has resulted in a continuing con- 
troversy concerning the processes that regulate the 
abundance of A. planci (see Potts 1981, Moran 1986 for 
reviews). If the ideas presented have any generality 
then the numbers of A. planci will not be regulated by 
food availability. Hypotheses concentrating on recruit- 
ment variability and foraging behaviour may be more 
profitable than those that seek a n  explanation via the 
actions of a man-induced change in predation intensity. 

I have argued that the consequences of intra-specific 
con~petition for food to the population ecology of sea 
urchins, and by extension asteroids, is much less ser- 
vere than for the herbivorous gastropods. In taking this 
line of reasoning it was implicitly assumed that the 
intensity of competition is correlated with its impor- 
tance in the determination of population size. Welden 
& Slauson (1986) have made a convincing case that this 
need not be so. The importance of competition to the 
population ecology of a species cannot be considered 
without reference to other processes, such as predation 
or disease. Few of the studies considered provide infor- 
mation that allows a direct assessment of the relative 
importance of competition for food. I reason that mor- 
phology and physiology acts to decrease the impor- 
tance of competition by increasing the range of states 
between 'optimal' and lethal. Competition of the same 
intensity will therefore be of proportionally less impor- 
tance in the echinoids. 

The sensibilities gained from the study of organisms 
such as gastropods seem ill suited to the study of the 
population dynamics of echinoderms such as echinoids 
and asteroids. I predict that competition for food will be 
found to play a less important role in determining the 
population densities of these organisms than it does in 
other groups, such as  the gastropod molluscs. Extrinsic 
processes such as predation and the forces that deter- 
mine the number of recruits entering a benthic popula- 
tion will have a greater role to play than the more 
deterministic and stabilising effects of density-depend- 
ent  mortality. 
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