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ABSTRACT: Local wind fields can determine the magnitude of coastal benthic secondary production 
(BSP) via regulation of metabolically-important environmental factors (e.g. water temperature, mixing 
depth, food supply, sediment transport) by wind-forced hydrodynamics. This hypothesis was tested 
using 201 published estimates of BSP and local wind field data. Wind stress was significantly correlated 
with Total-, Macro-, and Meio-benthic secondary production in a negative manner ( R ~  = 0.32, 0.12,0.52 
respectively; p < 0.001). Multiple regression analysis demonstrated that wind stress, tidal height, shelter 
indices and water temperature explained - 90 O/O of the variance in Total-BSP. Neither benthic nor 
pelagic primary production contributed to a significant reduction in BSP variance. Data support the 
concept of a physical regulation of coastal benthic energy flow and suggest that the effect of wind stress 
on BSP is mediated largely by sediment transport. 

INTRODUCTION 

Tight vertical coupling has been incorporated consi- 
stently into models describing pelagic-benthic energe- 
tics because the sedimentation of phytoplankton, fecal 
pellets and detritus represents a major source of par- 
ticulate organic matter (POM) for the benthos (Rowe 
1971, Hinga et  al. 1979, Hopkinson 1985). An empirical 
model developed by Hargrave (1973) successfully 
utilized annual primary production (C,) and depth of 
mixing (Z,) to predict the magnitude of benthic respi- 
ration (C,) in predominantly deep-water communities: 
C, = 55(C,/Z,)O 39. It was recognized, however, that this 
model is unlikely to apply in near-shore areas with high 
advective flow, where allochthonous POM could con- 
tribute substantially to the carbon budget. 

The vertical flux of POM is frequently insufficient to 
account for the observed benthic metabolism in numer- 
ous coastal communities, and lateral advective input is 
invariably incorporated to balance the energy budget 
(Graf et al. 1984, Hargrave & Phillips 1986, Gordon et 
al. 1987). Conversely, an apparent excess of POM 
sedimentation has been recognized at a site in the 
lower Bay of Fundy (Emerson et  al. 1986). It was sug- 
gested that this excess was laterally transported to an  
extensive horse mussel bed in an  adjacent area of the 
Bay. Other studies have shown that horizontal POM 
flux resulting from riverine, wind and tidal forcing may 

equal or exceed autochthonous benthic and pelagic 
primary production (Wolff 1977, Hartwig 1978, Lesht & 

Hawley 1987). It is apparent that hydrodynamically- 
active ecosystems must be  modelled in a framework 
which combines these horizontal fluxes with the tradi- 
tional concept of a vertical energy link. 

In the Bay of Fundy (E Canada),  tidal currents may 
be  a major determinant of benthic distribution and 
production by controlling settlement, growth and feed- 
ing of benthic animals (Wildish & Peer 1983). In addi- 
tion, the influence of wind-forced hydrodynamics on 
the plankton and the sedment  has been widely recog- 
nized even in strongly tidal environments (Levasseur et  
al. 1983, Soniat et  al. 1984, Pejrup 1986). Although the 
effects of wind forcing are most apparent in shallow 
depths, storms can generate significant sediment dis- 
turbance at  depths greater than lOOm (Drake & Cac- 
chione 1985). It is likely therefore, that wind-field 
analysis will improve models of benthic energetics 
because the effects of many physical processes on 
biological production can be integrated in the local 
wind stress. 

The development of a surface mixed layer by wind 
forcing may limit the amount of photosynthetically- 
derived POM available to the benthos by determining 
the availability of nutrients and light necessary for 
primary production (Pingree 1980, Lewis et  al. 1984, 
Demers et  al. 1987), and by regulating the residence 
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time (and therefore the utilization) of POM in the water 
column (Hargrave 1973). Oxygenation of anoxic bot- 
tom water (Soniat et al. 1984), and an  increase in the 
depth of oxygen penetration into the sediment by 
wind-forced wave action (Rutgers van der Loeff 1981), 
can potentially increase aerobic benthic metabolism. 

Wind may also influence the benthos by increasing 
bottom currents beyond the critical erosion velocity of 
the sediment. Subsequent sediment transport (i.e. bed- 
load and suspended load) may result in an energetic 
subsidy, whereby previously buried POM is made 
available to a food-limited community. In addition, 
sediment disturbance has been shown to enhance 
metabolic activity in both micro- and macrofauna 
(Findlay et al. 1985, Jumars & Self 1986, Miller & 
Jumars 1986). Alternatively, sediment transport may 
exert an energetic stress via resource depletion, direct 
inhibition of suspension feeding and burial of non- 
motile organisms and removal of epi- and infauna dur- 
ing storms. It follows that a balance between stress and 
subsidy from sediment movement will be reflected in 
the production and community structure of the 
benthos. 

The utility of wind analysis in investigations of 
benthic energy flow was assessed by (1) determining if 
wind and coastal benthic production are correlated 
using published estimates of benthic secondary pro- 
duction and wind speed, and (2) by including wind in a 
data base of biologically-important environmental var- 
iables which could be used to develop a general empir- 
ical model of benthic production. In addition to provid- 
ing estimates of benthic production on a wide spatial 
scale, it is hoped that this model will stimulate and 
facilitate further research by identifying those variables 
most likely responsible for variations in benthic 
metabolism. 

MATERIALS AND METHODS 

Biotic variables. Estimates of benthic secondary pro- 
duction (BSP) and benthic/pelagic primary production 
(BPPIPPP) were obtained from the literature. BSP was 
partitioned into total benthic secondary production 
(Total-BSP), total macrobenthic secondary production 
(Macro-BSP) and total meiobenthic secondary produc- 
tion (Meio-BSP), where possible. The lack of direct 
measurements of microbenthic secondary production 
prevented the addition of this dependent variable to 
the production models. It was possible, however, to 
determine the relative proportion of Total-BSP 
accounted for by the microbenthos by calculating the 
difference between Total-BSP and [Meio-BSP + 
Macro-BSP] at some study sites. 

Species-specific production estimates were excluded 

unless their contribution to total production was meas- 
ured. Every effort was made to obtain BSP, BPP and 
PPP estimates from the same location and year, how- 
ever pairing of PPP with BSP on tidal flats was fre- 
quently restricted to the use of PPP estimates at adja- 
cent subtidal sites. 

Selection of production data was not restricted to 
those studies which employed identical methods of 
estimation; i.e. it was assumed a priori that 
methodological variation in BSP measurement was less 
than variation due to spatial wind effects. Published 
Macro-BSP estimates were calculated by using either 
the summation of growth increments or by using pro- 
duction: biomass ratios (Crisp 1971). Determination of 
annual production of the total- and meio-fauna (Pa, kcal 
m 2  y r )  from respiration estimates (Ra) followed 
Schwinghamer et al. (1986): 

Chemical oxygen demand of the sediment was sub- 
tracted from estimates of total sediment oxygen uptake 
to calculate benthic respiration. BPP and PPP had been 
determined using either the 14C or O2 exchange techni- 
ques. All units of production were standardized (kJ rn-' 
y r )  using the following conversions (Holme & 
Mclntyre 1971): 1 cal = 4.185 J ;  1 g ash-free dry weight 
= 4.23 kcal; 1 g carbon = 12 kcal; 1 ml Oz (mg 02) 
respired = 4.83 cal (3.38 cal). 

Physical variables. Wind velocities (V) were 
obtained from climatological records (e.g. British 
Meteorology Office 1952, U.S. Navy Marine Climatic 
Atlas 1974, Ruffner 1978). Surface wind stress (To) was 
estimated by: 

where pa = air density (1.3 kg m 3 ) ;  Cd = a V-depend- 
ent drag coefficient (1.14 x l o 3  for V 5 10 m s-I and 
[0.49+0.065(V)] x when V is greater than 10m 
s"'; Thompson et al. 1983). 

Two shelter indices indicated the relative protection 
of a study site from the wind: (1) effective fetch (EF) 
was defined as the maximum distance along the sea 
surface on which the annual mean wind exerts stress, 
and (2) headwind index (HW) was the difference 
between the annual mean wind direction and the 
direction of maximum exposure of the study site (0' = 

min. shelter, 180' = max. shelter). Tidal height was 
included as a rudimentary index of tidal current and 
degree of air exposure at intertidal sites. 

Sediment grain size is important to many processes 
that affect benthic community structure and function, 
however such data were seldom included in published 
studies of benthic production. Accordingly, a qualita- 
tive sediment size index was assigned to each study 
site: 0 to 5 = 4.0 to -1.0 in the Phi grain size scale. 
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Water temperature and salinity were available from the Table 1. Descriptive statistics of biological and environmental 

literature. The data set and sources of all variables are vakbles  in the data set. BSP: benthic secondary production; 

available from the author. B/PPP: BenthidPelagic primary production (kJ m-' yr-'1; CV: 
coefficient of variation 

Statistical analyses. The data distribution of each 
variable was normalized where necessary by log, 
inverse or square-root transformations. Analysis of 
residuals indicated which transformation best removed 
the dependence of variance on the given regressor 
variable, rather than that which maximized R2. Initial 
identification of the environmental variables signifi- 
cantly related to the production variables was accom- 
plished by constructing a Pearson correlation matrix 
(SPSS-X). A model-l least squares regression (Sokal & 
Rohlf 1981) was performed to examine the relationship 
between each dependent variable (Total-BSP, Macro- 
BSP, Meio-BSP) and correlated variables. Analysis of 
covariance was employed to assess differences among 
slopes of all wind stress and production regressions. 

The relationship of wind stress and the remaining 
environmental variables to benthic secondary produc- 
tion was examined through stepwise multiple regres- 
sions (SPSS-X) that selected the best predictors at a = 

0.05. Because the number of study sites where the 
headwind index could be  calculated was limited, 2 
multiple regressions were performed for each dependent 
BSPvariable. First, a regression was calculated using the 
entire data set (but excluding HW), and second, the 
regression was re-calculated using data only from those 
study sites where HW could be  calculated. 

RESULTS 

Data set 

A total of 201 published estimates of benthic secondary 
production were obtained without restrictions based on 
location of study site. Many diverse geographical areas 
were represented in the data set (e.g. New Zealand, 
Bermuda, southern India, Venezuela), however the pre- 
valence of north temperate data sources (Canada and 
western Europe) should be  noted (Appendix 1). 

The maximum production of a n  entire benthic com- 
munity in these data (- 8000 kJ mP2 yr-l) was relatively 
similar to that of the Meio-BSP (- 6500 kJ m-2 p-'; 
Table 1). Mean annual production of macrofauna and 
meiofauna were not significantly different (X = 703 and 
800 kJ m-' yr-' respectively; p >0.05). Mean annual 
pelagic and benthic primary production (-7000 and 
5000 kJ m-2 yr-', respectively) were greater than 
Total-BSP by a factor of 2 to3. 

The contribution of the microbenthos to Total-BSP 
(- 60 O/O; Fig. 1) is consistent with recent suggestions 
that the bacterial contribution to Total-BSP should be 
lower than the 90% level traditionally assumed 

Variable Mean CV (%) Min Max N 

Biotic 
Total-BSP 2833 (81) 197 7969 70 
Macro-BSP 703 (101) 16 3895 93 
Meio-BSP 800 (157) 2 6430 38 
BPP 4492 (97) 0 27187 89 
PPP 7248 (119) 200 43921 105 

Abiotic 
Temp. (C) 11.8 (44.9) 3 29 145 
Salinity (S) 25.3 (28.1) 6 37 143 
Depth (m) 13.7 (200.7) 0.5 200 145 
Tidal height (m) 2.6 (126.9) 0 14 145 
Sediment (0-5) 3.0 2 5 145 
Headwind (deg.) 86.1 (59.8) 1 180 62 
Fetch (km) 42.8 (161.0) 0.05 323 145 
Wind stress (Pa) 0.05 (38.0) 0.01 0.08 144 

Fig. 1. Relative contributions of macro-, meio- and micro- 
benthic secondary production to total benthic secondary pro- 
duction (obtained from the literature). Calculations were per- 
formed only from study sites where Total-BSP and one of the 
remaining size fractionated production estimates were 
known. Microbenthic production was calculated by difference 

(Schwinghamer et  al. 1986). Meiofaunal metabolism 
has been considered to be  a small fraction of macro- 
fauna1 metabolism (e.g. Gerlach 1971), but it is not 
apparent in this data set; Macro- and  Meio-BSP both 
represented - 20 to 30 % of Total-BSP. 

Low mean annual water temperature illustrates the 
prevalence of temperate study sites (Table l ) .  A 
number of estuarine sites resulted in a relatively low 
mean salinity (25.3%0). Mean depth, tidal height and 
effective fetch had high coefficients of variation. The 
majority of benthic study sites were less than 20m in 
depth. The range in mean annual wind stress was 
relatively narrow (0.01 to 0.08 Pa). 

Wind stress and benthic production 

The correlation matrix (Table 2) shows that every 
component of primary and secondary production was 
significantly correlated with at  least one of the wind 
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Table 2. Pearson correlation matrix of biological production (kJ m-' yr-l) and environmental variables: Tot, Mac, and Mei are 
total-, macro-, and meio-benthic secondary production. BPP and PPP represent benthic and pelagic primary production 

Tot Mac Mei BPP PPP Te Z Sal TH Sed EF HW WS 

Total 

Macro 

Meio 

BPP 

I PPP 

I Temperature ("C) 

Depth (m) 

Salinity (%) 

Tidal height (m) 

Sediment type (0-5) 

Effective fetch (km) 

Headwind index (deg.) 

Wind stress (Pa) 

' ~ ~ 0 . 0 5 ,  " p<O.Ol, ' p < 0.001, -: not significant 

variables (wind stress, effective fetch, headwind index). 
In particular, wind stress and effective fetch were signifi- 
cantly correlated with all size components of benthlc 
secondary production. These relationships indicate that 
as wind stress increases and shelter from the wind 
decreases, mean annual benthic production decreases. 

Although there was considerable variance in the 
relationship between Macro-BSP and wind stress (Fig. 
2b), wind stress accounted for 32 and 52% of the 
variance in Total-BSP and Meio-BSP respectively (Fig. 
2a, c). The intercepts of each regression equation were 
very similar (b = 3), and analysis of covariance indi- 
cated that slopes for each regression were significantly 
different (p = 0.028). 

The correlation matrix also revealed significant rela- 
tions among water temperature, water depth, salinity, 
tidal height and various biological variables (Table 2). 
Sediment type was not correlated with any other vari- 
able. 

Multiple regression models 

Four of the 5 regression models incorporated wind 
stress as the most significant variable accounting for 
the observed variation in benthic secondary production 

(Table3). Only in the 'Total-BSP model was wind 
stress subordinate; tidal height was the primary predic- 
tor variable. In the full Total- and Macro-BSP models, 
all predictor variables were directly wind-related (t, 
EF, HW) except for mean annual water temperature in 
the Total-BSP model, and water depth in the Macro- 
BSP model. 

The addition of the headwind index to the Total-BSP 
model increased the amount of variance which could 
be explained from 64 to -90%. In addition, the high 
degree of scatter In the observed versus modelled plot 
of Macro-BSP was significantly reduced (R2 = 0.60 from 
0.23) with the inclusion of the headwind index (Fig. 3; 
Table 3). The equation intercepts in all size group 
production models were equal to - 4. 

All models included physical variables exclusively, 
although the correlation matrix (Table 2) indicated a 
significant relation existed between both benthic and 
pelagic primary production and total benthic secondary 
production. Meio-BSP and Macro-BSP were not signifi- 
cantly correlated with either BPP or PPP. Mean annual 
water temperature was included in the Total-BSP mod- 
els, however, its contribution was relatively low. The 
established relation between bacterial concentration, 
POM and sediment surface area (Yamamoto & Lopez 
1985), was not apparent in the data, however the ab- 
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Fig. 2. Simple linear regressions of wind stress and (A) total-, 
(B) macro-, and (C) meio-benthic production. Coefficient of 
determination, number of data points and regression equation 

are listed 

sence of significant correlations of BSP (or BPP) with 
sediment type must be interpreted with regard to the 
very qualitative index and narrow range by which 
sediment type was described. 

DISCUSSION 

Of 10 biological and physical variables considered, 
mean annual wind stress accounted for the most varia- 
tion in 4 out of 5 models of benthic secondary produc- 
tion. This is consistent with the trophic group mutual 
exclusion hypothesis (Wildish 1977) which states that 
benthic productivity is food limited and that current 
acts as the exclusion mechanism; i.e. hydrodynamics 
control benthic energy flow. 

It is apparent, from the significant negative correla- 
tions between wind stress and benthic secondary pro- 
ductivity, that the positive influence of wind forcing on 
production (e.g. increased organic seston flux: 
Frechette & Bourget 1985, and a lowered redox poten- 
tial discontinuity: Boynton et al. 1981, Rutgers van der 
Loeff 1981) is often subordinate to wind-related biolog- 
ical stress. Detrimental effects of wind-forced hydrody- 
namics on the benthic community can be partitioned 
into (1) those resulting from water movement below the 
critical shear velocity (U..,,) of the sediment, and (2) the 
effects of wind-forced currents whlch exceed UmCri,. 

Below U.cfit, wind mixing can decrease the availabil- 
ity of primary production to the benthos by directly 
inhibiting photosynthesis and by increasing the resi- 
dence time of particulate organic matter within the 
water colun~n. The first effect has been summarized in 

Table 3. Stepwise multiple regression models describing log-transformed Total-, Macro- and Meio-benthic secondary production 
(kJ m-2 yr-l). ' Models for those sites where the headwind index (HW) could be calculated. r: mean wind stress (Pa); TH: tidal 

height (m), Te: mean water temperature ("C) EF: effective fetch (km), 2: depth (m). lg: log-transformed 

Step Dependent variable Model F Signif. 

1. Total =3.8-10.4(-~) 0.34 0 0000 
2. (N=70) =3.9-13.2(~)-0.3(lg TH) 0.47 0,0000 
3. =3.6-11.7(r)-0.3(lg TH) +0.02(Te) 0.52 0.0000 
4. =3.7-11.4(r)-0.3(1g TH)+O.O2(Te)-O.l(EF) 0.64 0.0000 

1. 'Total -3.4-0.4(1g TH) 0.36 0.0014 
2. (N=39) =3.9-0.4(1g TH)-13.0(t) 0.64 0.0000 
3.  -3.9-0.2(1g TH)-18.4(r)-O.l(lg EF/HW) 0.83 0.0000 
4. =3.7-0.2(1g TH)-16.9(~)-O.l(lg EF/HW)+O.O2(Te) 0.87 0.0000 

1. Macro =3.1-8.6(r) 0.12 0.0006 
2. (N=93) =3.2-9.?(r)-O.l(lg 2) 0.23 0.0000 

1. 'Macro =3.4-18.2(t) 0.28 0.0007 
2. (N=37) =4.2-16.8(-~)-0.4(1g EF/HW) 0.41 0.0001 

=4.5-16.8(?)-0.5(lg EF/HW)-0.2(lg 2) 0.60 0.0000 

1. Meio =3.5-22.4(?) 0.52 0.0000 
2. (N=38) =3.5-19.7(?)-0.2(lg 2 )  0.63 0.0000 
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Flg. 3. Observed (A) total-, (C) macro-, and (E) meio-benthic production plotted against predicted producbon derived from 
regression analyses. Plotted line represents a 1: 1 relationship. (B) Total- and (D) macro-production plots include only those data 

from sites for whlch headwind index could be calculated. SI: shelter index 

Sverdrup's critical depth model of phytoplankton 
photosynthesis (Parsons et  al. 1984). Simply stated, if 
the critical depth (the depth at which photosynthesis 
equals respiration) is less than the depth of mixing, no 
net primary production can take place. It is reasonable 
to assume, therefore, that annual primary production 
would be lower in areas where high winds frequently 
mix the phytoplankton below the critical depth. Sec- 
ondly, the increase in retention time of photosyntheti- 
cally-derived POM within the water column will favour 
the consumption of POM by planktonic heterotrophs. 

The former effect is not likely to be significant 
because the shallow mean depth represented in the 
data set (14 m) minimizes possible light limitation 
resulting from plankton downwelling. The significance 
of the latter effect will be minimal because the food 
supply to shallow benthic communities is not solely 
dependent on the passive sinking of POM. Intertidal 
suspension feeders have been shown to rapidly filter a 
large proportion of the water column, thus effectively 
competing with the plankton for available seston 
(Nichols 1985, Smaal et al. 1986, Emerson et al. 1988). 
Alternative mechanisms which would contnbute to 
lower community productivity at high wind stress (vis- 
a-vis increased water turbulence) include direct inhibi- 

tion of suspension feeding (Wildish & Kristmanson 
1979, Wildish & Peer 1983) and a decreased likelihood 
of larval settlement (Rhoads & Young 1970). It is likely. 
however, that the dominant negative effects of wind 
forcing on shallow, coastal communities occur when 

is exceeded. 
The cumulative effect of the many biologically- 

important processes associated with sediment transport 
are manifest in the productivity of the benthos. When 

is exceeded, the erosion and transport of fine, 
organic-rich particles initially will subsidize a food- 
limited community (De Jonge & Van den Bergs 1987, 
Grant et al. 1987). However, prolonged erosion, or an 
increased shear velocity (U-), will raise the proportion 
of non-nutritive inorganic particles in the seston, lower 
primary production via shading from an increased sus- 
pended particulate load, and deplete POM in the sedi- 
ment. This scenario is analogous to the 'reverse ramp 
function' described for scallop growth (Wildish et al. 
1987); after initial increases in growth with current 
speed, growth inhibition was observed with flows of 
> 10 to 20 cm S-'. The postulated mechanism of scallop 
growth inhibition involved a reduction in food ration 
due to a reduction in filtration rate. 

The importance of sediment movement to benthic 
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energetics has been highlighted in the scaling argu- 
ments of Miller et al. (1984). They contend that food 
availability to epibenthic deposit feeders can be deter- 
mined primarily from the examination of sediment 
transport rate and particle residence time, along with 
several biological factors. Organism removal (Thistle 
1988) and direct mortality resulting from abrasion and 
burial (Yeo & h s k  1979, Maurer et al. 1986) are some of 
the more catastrophic phenomena associated with 
increased bedload at higher current speeds. 

The requisite conditions for bulk sediment transport at 
the study sites subject to high wind stress are present if it 
is assumed that as the water depth approaches zero (e.g. 
on intertidal flats) the bottom shear stress can be approxi- 
mated by the estimated surface wind stress. If t = 0.07 Pa 
(in the higherrange of the wind-stress data set), U. = 23.2 
cm S-' ,  which is well above (20x) the U.,,, of natural 
sediment (U.,,, = 0.66 to 1.38 cm S-';  Grant & Bathmann 
1987). The probable overestimate of U. resulting from the 
above assumptions is balanced by underestimates inhe- 
rent in the wind stress formula (Eq. 2; see Thompson et al. 
1983) and by additional interactive tidal and residual 
shear stresses imposed on the sea bed (Pattiaratchi & 
Collins 1985). Furthermore, my approximation of U. is 
consistent with observations of significant POM resus- 
pension at depths greater than 6 m caused by winds less 
than 4 m S-' (t = 0.02 Pa; Demers et al. 1987). Even at 
depths greater than 100 m, winter storms can generate a 
U. 10 timeslarger than U. ,~, ,  and can transport - 1000 kg 
m-2 d-' of resuspended sediment across the continental 
shelf (Drake & Cacchione 1985). 

The relationships between wind stress and the 3 size 
classes of BSP in the data set are consistent with the 
effects of burial, abrasion, and organism removal 
associated with wind-forced bedload transport. In 
regressions of w n d  stress and BSP, the highest correla- 
tion and steepest slope was observed for meiobenthic 
secondary production. Total-BSP, 80 % of which is 
accounted for by micro- and meiofaunal production 
(Fig. l), was also highly correlated with wind stress. 
Because these smaller organisms (< l mm) inhabit the 
sediment interstices or live directly on grain surfaces, 
they are particularly vulnerable to the effects of sedi- 
ment transport (Palmer & Molloy 1986, Fegley 1987). 
Macrofauna are less susceptible because of their rela- 
tive size, mobility or ability to burrow (Grant 1981). 
Removal of food supply, inhibition of feeding, injury 
from abrasion and direct mortality will translate a high 
susceptibility to sediment transport into a lower annual 
secondary production. If the wind stress-production 
correlations were a consequence of bedload transport, 
the coefficient of determination should increase as the 
size of organism responsible for production decreases. 
Results from both multiple and simple regression ana- 
lyses have clearly reflected these patterns. 

Although these regression results cannot be uniquely 
attributed to the effects of sediment transport, the 
differential expression of other wind-forced effects are 
more likely to be observed between mode of feeding 
(deposit vs. suspension feeders) than between size of 
organism. A wind-related decrease in primary produc- 
tion would induce acute restrictions in food supply to 
suspension feeders, yet only affect deposit feeders 
(regardless of size) over a longer term. 

Benthic production models 

My empirical approach to describing benthic 
energetics has identified the dominant role of physical 
variables; ca 90 % of the variation in total benthic 
secondary production can be explained by wind 
stress, effective fetch, headwind index, tidal height, 
and mean annual water temperature. Benthic and 
pelagic primary production were not selected as pre- 
dictor variables in any benthic production model. The 
results are particularly intriguing in view of previous 
studies which have emphasized the dominant role of 
primary production in benthic energy flow. It should 
be re-emphasized however, that the lack of spatial 
and temporal correlations between sites of published 
primary production data and those of benthic secon- 
dary production may be responsible for the absence of 
primary production from the multiple regression mod- 
els. Although the results of the regression analyses do 
not exclude the possibility that low benthic production 
at high wind stress was a consequence of a decrease 
in photosynthetically-derived food (from Light Limita- 
tion due to increased turbidity; Hargrave et al. 1983), 
the absence of B/PPP in the models substantiates the 
hypothesis of Wildish & Kristmanson (1979) that an 
impoverished community is limited by effects of hy- 
drodynamic forcing (e.g. sediment instability or a 
direct feeding inhibition) and not by a food supply 
limitation. 

The relatively high Qlo  of bacteria and other mi- 
crofauna should imply that water temperature con- 
tributes significantly to the variance in Total-BSP. 
Indeed, this is reflected in the results (TableS), how- 
ever the inclusion of annual mean water temperature 
resulted in only a minimal improvement to the model 
(- 5 O/O). Previous studies have indicated that changes 
in water temperature alone accounted for > 50 % of the 
short-term variation in benthic metabolism (Hargrave 
1969, Grant 1986). These discrepancies may be re- 
solved through the refinement of data collection; better 
spatial and temporal matches between BSP estimates 
and environmental variables, and an emphasis on var- 
iance rather than on mean values (e.g. frequency of 
storms) will improve the models. 
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Appendix 1. Sources of data used in regression analysis (X) of benthic production and environmental variables. Depth (Z, m), 
number of stations, secondary production (meio-, macro-, and total-benthic), and primary production (benthic and pelagic) are 

hsted. ' Intertidal tidal height (m) 

Location Z No. Mei Mac Tot BPP PPP Source 
stns 

Australia 34" 04' S, 151" 09' E 5 1 - X - - X Rainer (1982) 

Belgium 51" 15' N, 03" 00' E 55 6 X - - - - Heip et al. (1984) 

Bermuda 32" 30' N, 64" 40' W 2 2 X X X - X Smith et al. (1972) 

Britain 57'20' N, 02" 00' W 3' 1 X X - X X Baird & Milne (1981) 
57" 20' N ,  02" 00' W 3' 1 - X - X - Leach (1970), Chambers & Milne (1975) 
57" 48' N, 02" 00' W 25 1 - - X - X Steel & Baird 1968, Davles (1975) 
57' 48' N, 05" 36' W 5' 1 - X X X X MC Intyre & Eleftherion (1968), Van Es (1982) 
55" 10' N, 01'25' W 58 1 - X - - - Buchanan & Warwick (1974) 
55" 00' N, 03" 00' E 50 1 X X - X X Jones (1984) 
50" 50' N ,  01" 10' W 3'  1 - X - - - Hibbert (1976) 
35" 15' N, 04" 03' W 8 1 - X - - - Hughes (1970) 
50' 14' N, 04" 16' W 2' 1 - X - X X Joint (1978) 
50" 24' N, 04' 16' W 2' 1 X X X X - Warwick & Price (1975). Warwick et al. (1979), 

Colijn & de  Jonge (1984) 
51'30' N, 00" 45' E 2' 1 - X - - - Mossrnann (1978) 
51'40' N,  04' 28' W 14 1 - X - - - Warwick et al. (1978) 
50' 27' N, 04' 13' W 3 '  1 X X X X - Ellison (1984) 

Canada 44" 37' N, 63" 30' W 60 1 - - X - X Hargrave (1980) 
54" 31' N, 05" 33' W 1 '  1 X X X X - Boaden & Elhag (1984) 
45' 44' N, 64' 29' W 12' 1 X X X X X Prouse et al. (1984), Schwinghamer et al. (1986) 
45' 44' N ,  64' 29' W 12' 1 - - X X X Hargrave et al. (1983) 
45" 44' N, 64' 29' W 12' 1 - X - X X Colijn & de Jonge (1984), Cranford et al. (1985) 
45'44' N, 64'29' W 12' 2 - X - X X Hawluns (1985) 
45" 44' N, 64'29' W 12' 1 - X - - - Peer (1984) 
45" 49' N, 64' 20' W 14' 1 - X - X - Cranford et al. (1985) 
45" 46' N ,  64' 40' W 14' 1 - X - X - Cranford et al. (1985) 
45" 47' N, 64' 32' W 14' 1 - X - X - Cranford et al. (1985) 
45" 45' N, 64' 37' W 14' 1 - X - X - Cranford et al. (1985) 
45" 20' N, 64" 37' W 12' 7 - - X X X Hargrave et al. (1983) 
45" 50' N, 64" 20' W 12' 1 - X - X X Peer (1984), Prouse et al. (1984) 
45" 45' N, 64" 37' W 11' 1 - X - X X Peer (1984), Prouse et al. (1984) 
45" 20' N,  64" 10' W 10' 3 - X - X X Peer (1984), Prouse et al. (1984) 
45" 10' N, 64' 15' W 12' 2 - X - X X Peer (1984), Prouse et al. (1984) 
45" 00' N, 66' 00' W 100 1 - X - - X Wildish & Peer (1983), Emerson et al. (1986) 
44" 45' N, 56' 10' W 2' 1 - X - - X Burke & Mann (1974) 
44" 37' N, 63' 30' W 2' 1 - X X X - Hargrave & Phillips (1981), Grant (1986) 
44" 37' N ,  66" 30' W 2' 1 - - X X - Van Raalte (1978) 
49" 09' N, 123" 54' W 6'  1 X - X X - Nairnann & Silbert (1979) 
44" 15' N, 63'00' W 60 1 - X - - X Mills & Fournier (1979) 
42" 15' N, 68" 00' W 50 1 X X - X X Sissenwine et al. (1984) 
44" 25' N, 64" 00' W 60 1 - X - - X Platt (1971), MacKinnon (19731 
44" 35' N, 64" 00' W 60 1 - X - - X Hargrave & Phillips (1986) 
44" 25' N, 64" 00' W 60 1 - - X - X Hargrave (1973) 
45" 43' N, 61" 32' W 30 1 - X - - X Hargrave & Phillips (1986) 

Denmark 55" 03' N, 08" 25' E 1' 3 - X X X X Asmus (1982a, b), Reise (1985) 
55" 43' N. 11" 43' E 0.5 3 - X - X X Birklund (1977), Colijn & d e  Jonge (1984) 
55" 58' N, 12" 41' E 28 1 - X X X X Gargas (1970), Kanneworff & Christensen (1986) 
56" 55' N ,  09" 10' E 8 1 - - X X - Van Es (1982) 
55" 03' N, 08" 25' E 2' 2 - X X X X Asmus & Asmus (1985) 
56" 20' N, 12" 50' E 20 5 - - X X - Graneli & Sundback (1986) 

Finland 59" 50' N. 23' 12' E 46 1 - X - - X Kuparinen et al. (1984) 

F R. 54" 40' N, 10" 00' E 22 1 X X - - X Nichols (1977a) 
Germany 54" 40' N, 10" 00' E 1 1 - - X - X Van Es (1982) 

54" 40' N, 10" 00' E 11 1 X X X - X Van Es (1982) 
54" 40' N, 10' 00' E 15 1 X X X - X Arntz & Brunswig (1975), Von Brockel (1975) 
54" 40' N, 10' 00' E 20 1 X - X - X Arntz & Brunswig (1976), Von Brockel (1975) 
54" 01' N,  07" 49' E 34 1 X X X - - Gerlach et al. (1985) 
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Appendix l (continued) 

Loca t ~ o n  Z No. Mei Mac Tot BPP PPP Source 
stns 

India 09" 42' N, 76" 18' E 1 '  2 - X X - X Ansell et al. (1978) 

Malays~a 05" 00' N. 100" 00' E 3'  1 - X X - X Berry & Othmann (1983) 

The 53" 15' N, 05" 00' E 1 '  1 - X - X X Postma & Rommets (1970), Cadee (1980), 
Netherlands Beukema (1982) 

53" 45' N, 02" 55' E 50 1 X X X X X Colijn & de  Jonge (1984), De Wilde et  al. (1984) 
53" 10' N, 05" 00' E 2' 1 - X - X X Postma & Rommets (1970), Kuipers et  al. (1981) 
53" 20' N, 06- 55' E 1 '  3 - - X X X Colijn & Venekamp (1977), Van Es (1977, 1982) 
52" 56' N. 04 53' E 2'  1 X - - X X Cadee & Hegeman (1977), Witte & Zijlstra (1984 
52" 56' N, 04" 53' E 2' 15  X X - X X Beukema & Cadee (1986) 
51" 45' N. 04" 00' E 0.3' 1 - X - X X Wolff (1977), Wolff & DeWolff (1977) 

New 42" 00' S, 171' 00' W 200 1 X X X X X Juniper (1982), Probert (1986) 
Zealand 41' 12' S, 173" 55' W 11 2 - - X X - Kaspar et  al. (1985) 

Norway 60" 16' N, 05" 06' E 0.2 1 - X - - X Johannessen (1973) 

South 34" 10' S, 18" 20' E 3 '  1 X X X - - Koop & Griffiths (1982) 
Africa 33" 58' S, 25" 39' E 2' 1 - X X - - Dye (1981) 

33" 58' S, 25" 39' E 2 '  1 - X X - - McLachlan et  al. (1981) 

Sweden 58" 47' N, 17'41' E 46 1 - X - X X Cederwall (1977) 
58' 15' N. 11" 28' E 1 2 X X - X X Rosenberg e t  al. (1977). Evans (1983) 
58" 23' N, 11" 30' E 0.2' 7 - X - X X Rosenberg e t  al. (1977), 

Moller & Rosenberg (1982) 
58'45' N, 17'52' E 10 1 X X X - X Jansson et al. (1984) 
58" 45' N. 17' 52' E 3 1 X X X X X Schwinghamer et  al. (1986) 

USA 41" 06' N,  73'00' M' 10 1 X X X X X Riley, (1956), Carey (1967) 
41" 00' N,  73'00'W 10 1 - X - - X Hargrave & Phillips (1986) 
41" 20' N, 72' 10' W 2 1 X - - X X Marshal1 (1970) 
41" 25' N. 71' 27' W 2 1 X - - X X Marshall (1970) 
41" 15' N. 72" 47' W 1'  1 - X - X X Marshal1 et  al. (1971). Platt (1971), Edwards & 

Welsh (1982) 
41" 30' N, 70'40' W 15 1 - - X - X Kanwisher (1962) 
40" 30' N,  74'00' W 40 1 - - X - X Smith (1978) 
41" 35' N. 71" 20' W 7 1 X X - - X Durbin & Durbin (1981), Rudnik e t  al. (1985) 
38" 25' N. 76" 25' W 9 2 - - X - X Postma & Rommets (1970), 

Kemp & Boynton (1980) 
38'25' N, 76" 25' W 4 2 - - X - X Postma & Rommets (1970), 

Kemp & Boynton (1980) 
44'33' N. 124" 04' W 3 1 - X - X - h z n y k  & Phinney (1972), Kemp (1987) 
47" 35' N. 122" 30' W 22 1 - - X - X Hargrave (1973) 
38" 25' N. 76" 25' W 1 '  5 - - X X - h z z o  & Wetzel (1985) 
31' 27' N, 81" 12' W 5 1 X X - X X Hopkinson ll985) 
31" 23' N,  81" 13' W 7 1 X X X X X Smith (1973) 
31" 23' N. 81" 17' W 9 1 X X X X X Fallon et  al. (1983), Colljn & de  Jonge (1984) 
31" 23' N. 81" 17' W 1 1 X X X X X Van Es (1982) 
47' 44' N. 122' 30' W 140 1 - X - - X Pamatmat & Banse (1969). Nichols (1975) 
48'30' N. 123" 05' W 4' 1 - X X X X Pamatmat (1968) 
37" 45' N, 122" 15' W 3 '  3 - X - - - Nichols (197713) 
33" 45' N, 118" 15' W 2' 1 - X X - - Murphy & Kremer (1985) 
32" 45' N, 117" 20' W 50 2 - - X X - Hartwig (1976) 
34" 06' N. 119O05' W 2'  3 - - X X - Shaffer & Onuf (1983) 

Venezuela 10°30' N, 64" 15' W 4' 2 - X X X X Edwards (1973) 

In summary, the empirical models presented in this however it is hoped that with the identification of these 
study have suggested that wind, tidal and temperature dominant variables, elucidation of the mechanisms 
data (all easily and routinely measured) can be regulating benthic production will be facilitated. In 
employed to predict the annual secondary production addition, the results show that investigations of vertical 
of the benthos in coastal, soft-bottom communities. At energy exchange must consider horizontal fluxes of 
present, the exact mechanism linking these environ- particulate matter in order to clearly define pelagic- 
mental variables to benthic production is uncertain, benthic energy coupling. 
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