Influence of seasonally deposited phytodetritus on benthic foraminiferal populations in the bathyal northeast Atlantic: the species response

A. J. Gooday¹, P. J. D. Lambshead²

¹ Institute of Oceanographic Sciences, Deacon Laboratory, Wormley, Godalming, Surrey GU8 5UB, United Kingdom
² Department of Zoology, British Museum (Natural History), Cromwell Road, London SW7 5BD, United Kingdom

ABSTRACT: Cores were obtained with a multiple corer at a bathyal site (1320 to 1360 m depth) in the Porcupine Seabight during April and July 1982. In July (but not April) the sediment surface was overlain by a layer of phytodetritus, material rapidly sedimented from the euphotic zone following the spring bloom. The phytodetrital fraction of samples (0 to 1 cm layer of subcores; 3.46 cm² surface area) removed from the July cores harboured dense, low-diversity populations of benthic foraminifers which resembled the phytodetritus-dwelling assemblages already described from the much deeper (4550 m) BIOTRANS site in the northeast Atlantic. Our new observations consolidate the view that phytodetritus is a microhabitat for some deep-sea benthic foraminiferal species. The bathyal populations were dominated by Alabaminella weddellensis (75% of total) and also included Epistominella exigua and Tinogulmina sp. nov. These 3 species occurred also in the BIOTRANS phytodetrital assemblages. The April samples and the total July samples (phytodetritus plus sediment fractions) yielded diverse foraminiferal populations of similar density and species richness. However, there were some important taxonomic differences. In particular, the 8 species consistently present in the phytodetritus were significantly more abundant in the July samples, while the most common species in the April samples (Ovummina sp. nov. A) was entirely absent during July. We argue that the influence of phytodetritus, rather than spatial variability (patchiness), was responsible for some of the differences in species abundances. Other species, however, maintain more stable population densities. Our results suggest that deep-sea benthic foraminifers, like those living in shallow water, probably display a variety of life-history strategies and population dynamics.

INTRODUCTION

The delivery of organic material to the food-limited deep-sea benthic ecosystem is a central topic in biological oceanography (Angel 1984, Fowler & Knauer 1986, Bruland et al. 1989). One potentially important pathway is provided by rapidly sedimented phytoplankton blooms (Takahashi 1986) which accumulate during the spring and early summer on the sea-floor as a layer of 'phytodetritus'. This material was first reported in sediment cores and bottom photographs taken at depths of 1000 to 4500 m in the Porcupine Seabight (an area centred around 51°30'N; 13°00'W) and on the adjacent abyssal plain (Billett et al. 1983, Lampitt 1985, Rice et al. 1986). Elsewhere in the northeast Atlantic it has been observed in the Rockall Trough (Barnett et al. 1982), the northern Bay of Biscay (Sibuet 1984, p. 105, 1987) and a more centrally oceanic site (47°00' to 47°30'N; 19 to 20°W) sampled intensively during the German BIOTRANS programme (Riemann 1989, Thiel et al. in press). Similar material has been recorded at bathyal and abyssal depths in the northwest Atlantic (Aller & Aller 1986, Grassle & Morse-Porteous 1987) and photographed at 4469 m in the eastern Pacific (Gardner et al. 1984). Phytodetritus is known to be ingested by deposit-feeding echinoderms (Billett et al. 1988) and other megabenthic animals (Thiel et al. in press). Evidence from the BIOTRANS site (4550 m depth) indicates that it is also degraded rapidly by deep-sea bacterial populations (Lochte & Turley 1988) and colonised and eaten by small benthic foraminifers (Gooday 1988a). The present paper explores further the impact of this seasonally deposited detrital material on deep-sea foraminiferal populations.

Gooday (1986) described abundant (> 1000 'living', i.e. rose Bengal stained, individuals per 10 cm²) and...
diverse (>90 species) foraminiferal assemblages in small samples (3.46 cm² surface area) collected in April 1982 from bathyal depths (around 1340 m) in the Porcupine Seabight. These samples were taken with a multiple-corer while the spring bloom was occurring in the surface waters (Billett et al. 1983) but before the resulting phytodetrital material had arrived on the sea bed. A second set of cores was obtained in approximately the same position during July 1982 when the sediment surface was overlain by a layer of phytodetritus some 5 mm thick. In this paper we compare the foraminiferal populations, and their constituent species, from the April (pre-detritus deposition) and July (post-detritus deposition) samples. Two main questions are addressed. First, does the colonisation of phytodetritus by benthic foraminifers, which Gooday (1988a) described from BIOTRANS material, also occur at this much shallower site? Second, what effect, if any, does the presence of phytodetritus have on the overall abundance of benthic foraminifer populations and species?

MATERIALS AND METHODS

The samples were collected in the Porcupine Seabight using a multiple-corer, which recovers simultaneously up to 12 cores with the sediment-water interface virtually undisturbed (Barnett et al. 1984). Cores obtained on 10 April 1982 at Stn 51502 (‘Challenger’ Cruise 6/82) and on 22 to 23 July 1982 at Stn 51615 (‘Challenger’ Cruise 10/82) form the basis for this study. The stations were located within the area 51°35' to 51°36'N, 12°59' to 13°01'W and the depth range 1320 to 1361 m (Table 1; Gooday 1986 Table 1). At each station, the corer was deployed 6 times. On each occasion, 4 cores (a to d) were selected at random and subsampled using a 20 ml syringe (3.46 cm² cross-sectional area) modified by cutting off the end and sharpening the cut edge. The subcores were later cut into 1 cm thick horizontal slices down to a depth of 5 cm and each layer fixed and stored separately in 4% formaldehyde buffered with sodium borate. Only data from the 0 to 1 cm layer (including phytodetritus) of the subcores are considered in this paper.

In the laboratory the sediment was gently washed through a series of small (75 mm diameter) sieves (500, 150, 106, 63, 45 μm meshes) using filtered tap water, and then stained in rose Bengal for several hours. The sieve residues were sorted wet in a petri dish under a stereomicroscope for metazoans and foraminifers. Larger, hard-shelled foraminifers were mounted dry on micropalaeontological slides. Smaller species, including those with soft, flexible tests (Gooday 1986), were either stored in anhydrous glycerine in cavity slides, or mounted permanently in anhydrous glycerine on flat glass slides under supported cover slips (Gooday 1988b).

Phytodetritus was present on the surfaces of all cores collected during July. However, its importance as a foraminiferal habitat was realized only after 4 of the 9 subcores from this station had been already sorted. For the remaining 5 subcores (51615 nos. 1a, 1b, 5c, 5d, 6b), and an additional subcore (5b) which was examined for metazoans (Table 1), phytodetritus was picked out from the stained residues. This material forms coherent, gelatinous lumps (‘aggregates’) which were gently teased apart using fine entomological pins to extract the inhabitants. These were stored as described above.

Picking phytodetrital aggregates from sieve residues clearly was not an ideal procedure since the possibility of organisms being either incorporated into, or washed out of the phytodetritus during sample collection, stor-

Table 1. Location and fate of samples obtained at Stn 51615 (22 to 23 July 1982). Samples consisted of the 0-1 cm layer of subcores taken from cores collected with the multiple corer. They contained phytodetritus and sediment which were separated in sieve residues. Equivalent data for Stn 51502 (10 April 1982) are given by Gooday (1986, Table 1).
age and sieving could not be eliminated. A few species which occurred only rarely and sporadically in the phytodetrital fractions (Table 3) may have become attached to aggregates accidentally. However, we believe this to be a minor source of error for the following reasons: (1) The phytodetritus formed coherent, gelatinous aggregates in which the foraminifers were often deeply embedded and from which they were rather difficult to extract. (2) If the association between foraminifers and phytodetritus were accidental, then specimens with rough, agglutinated test walls would tend to become entangled preferentially. In fact, such specimens were common only in the sediment fraction whereas the dominant phytodetrital inhabitants were rotaliins with generally smooth, glassy surfaces. (3) One species dominated the phytodetrital assemblages. There is no obvious reason why this species (Alabaminella weddellensis) should become associated accidentally with phytodetritus while other calcareous species, for example Cassidulina teretis, Nonionella iridea (which are abundant in the sediment at Stn 51615), did not. (4) The taxonomic composition of the phytodetrital assemblages showed a high degree of consistency (Table 3) which is unlikely to have arisen had these assemblages merely been artifacts of the sampling process. (5) A. weddellensis, and 2 other species, were present in phytodetritus from our samples and from the BIOTRANS site. Again, this coincidence is unlikely to have arisen by chance. (6) Finally, a sample of phytodetritus (and some admixed sediment), pipetted from the surface of a core obtained at Stn 51615, contained foraminifers dominated by species which also occurred in the phytodetrital aggregates extracted from our sieve residues (see below and Table 4). This indicates strongly that our detrital assemblages were not artifacts.

A transfer of foraminifers from the phytodetritus to the sediment is more likely, particularly during sample sieving. Unfortunately, the extent of this problem is impossible to assess and therefore we do not regard specimens extracted from the sediment residues (the 'sediment fraction') as constituting a distinct assemblage. While we report some data from the sediment fraction (Tables 5 to 7 and 9), our comparison of the foraminiferal assemblages in the April and July samples is based mainly on total populations.

Criteria for distinguishing live and dead foraminifers were discussed by Gooday (1986, 1988). For the present study, most of the specimens which stained red with rose Bengal were examined in glycerol (which renders the test more transparent) under a high-powered compound microscope to ensure that they contained material which resembled fresh protoplasm. However, it is impossible to be certain that specimens containing stained protoplasm were alive when captured. Stainable protoplasm can persist for weeks or months after a foraminifer dies (Boltovskoy & Lena 1970). Bernhard (1988) has compared the proportion of rose Bengal stained specimens in her Antarctic samples to the proportion of live specimens as determined by ATP assay. As many as half the specimens which stained with rose Bengal were dead. In our material we therefore regard rose Bengal stained tests as being merely 'stained'. When collected they were either alive or had died fairly recently and still contained fresh protoplasm.

For testing the significance of means we used a t-test assuming unequal variances. For testing between variances we used an F-test. Subscores are hereafter referred to as samples.

RESULTS

A considerable effort has been made to identify accurately the abundant species in our samples. Type material housed in the British Museum (Natural History) was examined where necessary. Species which are indicated as new in Tables 7 to 9 will be described elsewhere (Gooday unpubl.). Other important species are characterised and illustrated either by Gooday (1986, Figs. 10, 11, Table 5) or in Fig. 1 and Table 2 of the present paper. With one exception (Alabaminella weddellensis = Epistominella levicula) the names used in this paper are consistent with those used by Gooday (1986). The names and authorships of species mentioned in this paper are listed in the Appendix.

Our suprageneric classification follows Loeblich & Tappan (1988).

Phytodetrital populations

The phytodetrital fractions (each ca 0.5 to 1.0 ml in volume) from 6 July samples yielded 104 to 260 stained benthic foraminifers which represented 97.1% of all colonising organisms (Table 3). Most (87.0%) of the 979 specimens belonged to the suborder Rotaliina. Other higher taxa represented were the suborders Allogromina (4.1%), Lagena (2.6%), Textulariina, superfamilies Spiroplectamminacea (5%), Trochamminacea (1%), and Astrothiazaceae, family Saccaminidae (0.3%). A total of 13 species was recognised, although only 8 of these occurred in 4 or more samples (Table 3). The remaining 5 were rare and possibly contaminants from the underlying sediment (see above). One species, Alabaminella weddellensis, was consistently dominant and accounted for 75% of all specimens. Most species which occurred in the phytodetritus were found also in the sediment fractions (Table
Fig. 1. SEM photographs of foraminiferal species common in the April and July samples. (A) to (C) Morulaepicta sp. nov.; (D) to (F) Alabaminella weddellensis showing involute surface, side view, and evolute surface respectively; (G) ?Alabaminella sp., evolute side; (H), (I) Cassidulina teretis showing entire test and detail of aperture; (J), (K) Epistonella exigua; (L) Gavulinopsis lobatulus; (M) to (O) Trifarina pauperata, showing the progressively larger and more elongate specimens. Scale bars = 50 \mu m (A to G, J, K); 100 \mu m (H, L to O); 20 \mu m (I)
Table 2. Taxonomic comments on important species occurring at Stns 51502 (April) and 51615 (July)

<table>
<thead>
<tr>
<th>Suborder and species</th>
<th>Original description and comments</th>
<th>Illustrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suborder Textulariina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morulaepicta sp. nov.</td>
<td>Tiny textulariinid (L = 60–160 μm long) with early chambers streptospirally coiled around proloculus and after chambers arranged biserially. Differs in several respects from M. bulbosa Hoglund: test is more strongly flared, wall is composed largely of coccoliths rather than mineral grains, and aperture is oval areal opening near base of final chamber.</td>
<td>Fig. 1A–C</td>
</tr>
<tr>
<td>Suborder Rotallina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabarinella weddellensis (Earland)</td>
<td>= Eponides weddellensis Earland (1936, p. 57, Pl. 1, Figs. 65–67). Gooday (1986) identified this species as Epistominella levicula Regis. Van der Zwaan (1980, Pl. 1, Fig. 1) illustrates typical pustulate specimen as Eponides leviculus. Present identification based on comparison with BIOTRANS specimens and type material (Royal Museum of Scotland); generic placement follows Loeblich & Tappan (1988, p. 548). See also Table 10. Our specimens identified according to criteria of Mackensen & Hald (1988). Diameter in our material = 50–230 μm (X = 116 ± 42 μm, n = 302).</td>
<td>Figs. 1D–F, 3A–D</td>
</tr>
<tr>
<td>? Alabarinella sp.</td>
<td>Test 40–120 μm (X = 79 ± 18 μm, n = 45) diameter with chambers increasing more rapidly in size than in A. weddellensis.</td>
<td>Fig. 1G</td>
</tr>
<tr>
<td>Cassidulinula teretis Tappan</td>
<td>See Tappan (1951, p. 7, Pl. 1, Fig. 30). Our specimens identified according to criteria of Mackensen & Hald (1988). See also Table 10.</td>
<td>Fig. 1H, I</td>
</tr>
<tr>
<td>Epistominella exigua (Brady)</td>
<td>= Pulvinulina exigua Brady (1884, p. 696, Pl. 103, Figs. 13, 14)* See also Table 10. Our specimens are identical to those illustrated by Weston (1985, Pl. 2, Fig. 2), which were also from the Porcupine Seabight.</td>
<td>Fig. 1J, K</td>
</tr>
<tr>
<td>Gavinulopsis lobatulus (Parr)</td>
<td>= Discorbis lobatulus Parr (1950, p. 354, Pl. 13, Figs. 23–25). Our specimens are identical to those illustrated by Weston (1985, Pl. 2, Fig. 2), which were also from the Porcupine Seabight.</td>
<td>Fig. 1L</td>
</tr>
<tr>
<td>Trifarina pauperata (Heron-Allen & Earland)</td>
<td>= Uvigerina angulosa Williamson var. pauperata Heron-Allen & Earland (1932, p. 398, Pl. 12, Figs. 40–43)* Our specimens are closely similar to original material from 454–1036 m in the Falkland Islands area. This variety was given specific status by Parr (1950, p. 341).</td>
<td>Fig. 1M–O</td>
</tr>
<tr>
<td>Suborder Lagenina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraffissurina fusuliformis (Loeblich & Tappan)</td>
<td>Loeblich & Tappan (1953, Pl. 14, Figs. 18–19). A tiny, elongate species, usually < 100 μm long, generally occurs attached parasitically to tests of A. weddellensis. Our specimens closely resemble illustrations of Jones (1984, Pl. 6, Figs. 7–8) and Ward & Webb (1986, Pl. 3, Fig. 15).</td>
<td></td>
</tr>
</tbody>
</table>

* Original material examined in the British Museum (Natural History)

8]. However, 2 species, *?Alabarinella sp. A* and *Paraffissurina fusuliformis* (the latter usually was attached epiparasitically to the test of *A. weddellensis*), were concentrated largely in the phytodetritus. The foraminifers varied in size from 40 to 300 μm and therefore fell within the meiofaunal size range. The most abundant species, *Alabarinella weddellensis*, was 40 to 160 μm (mean 88.0 ± 21.7 μm, n = 750) in diameter, half the specimens were smaller than 90 μm and ca 80% were smaller than 110 μm (Fig. 2).

An additional sample (1 to 2 ml volume) consisting of phytodetritus and some sediment (collected and made available by Dr R. S. Lampitt) was also examined. It had been removed from the surface of a core (Stn 51615 Deployment 1) using a Pasteur pipette. This sample yielded 157 stained benthic foraminifera of which 20 were found within lumps of sediment and 5 (all *Tingulina sp. nov.*) inside the moults of crustaceans (<1 mm in length), probably harpacticoid copepods (Gooday in press) (Table 4). The remaining 132 specimens occurred within aggregates of phytodetritus or lumps consisting of phytodetritus mixed with sediment. This sample contained more species (19) than phytodetritus extracted from the sieve residues. Also, *Alabarinella weddellensis* constituted < 50% of the total numbers of specimens. These differences probably reflect the fact that the sample comprised an unsieved and unwashed mixture of phytodetritus and superficial sediment.

Total and sediment populations

The April samples yielded 253 to 491 (mean 385 ± 79) stained benthic foraminifers and the July samples yielded 356 to 1218 (mean 713 ± 218) specimens of which 161 to 958 (mean 474 ± 216) were found in the sediment fractions (Table 5). None of these mean val-
Table 3. Species extracted from the phytodetrital fractions of Stn 51615 (July) samples. Those occurring in 4 or more fractions are indicated by an asterisk. Except for those in the final column and bottom 2 lines, all values are percentages.

<table>
<thead>
<tr>
<th>Species</th>
<th>Fraction</th>
<th>Overall</th>
<th>Mean number per sample ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1a</td>
<td>1b</td>
<td>5b</td>
</tr>
<tr>
<td>Suborder Allogromiina</td>
<td>Tinogullmia sp. nov. A</td>
<td>5.43</td>
<td>3.85</td>
</tr>
<tr>
<td>Indet.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suborder Textulariina</td>
<td>Saccamminid sp.</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td></td>
<td>P. aff. pygmaea</td>
<td>2.17</td>
<td>~</td>
</tr>
<tr>
<td></td>
<td>Morusaeplcta sp. nov. A</td>
<td>6.52</td>
<td>3.85</td>
</tr>
<tr>
<td>Suborder Rotaliina</td>
<td>A. weddellensis</td>
<td>71.44</td>
<td>75.38</td>
</tr>
<tr>
<td></td>
<td>Bolivina sp. A</td>
<td>3.16</td>
<td>3.46</td>
</tr>
<tr>
<td></td>
<td>C. teretis</td>
<td>0.54</td>
<td>~</td>
</tr>
<tr>
<td></td>
<td>C. pseudungerianus</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td></td>
<td>E. exigua</td>
<td>5.43</td>
<td>2.69</td>
</tr>
<tr>
<td></td>
<td>G. lobatulus</td>
<td>1.53</td>
<td>3.09</td>
</tr>
<tr>
<td></td>
<td>G. globulosa</td>
<td>~</td>
<td>0.38</td>
</tr>
<tr>
<td>Indet.</td>
<td></td>
<td>1.63</td>
<td>0.38</td>
</tr>
<tr>
<td>Suborder Lageniina</td>
<td>P. fusuliformis</td>
<td>1.63</td>
<td>4.62</td>
</tr>
<tr>
<td>Total forams</td>
<td></td>
<td>184</td>
<td>260</td>
</tr>
<tr>
<td>Total Metazoans</td>
<td></td>
<td>~</td>
<td>16</td>
</tr>
</tbody>
</table>

Fig. 2. Size distributions of *Cassidulina teretis* (specimens from sediment) and *Alabaminella weddellensis* (specimens from phytodetritus) in July samples.

Values are significantly different (p > 5%). However, the total July populations have a significantly greater variance (p < 1%) than the April populations. Overall, foraminifers represent 59.0% (April), 56.7% (July sediment fraction) and 65.3% (July total population) of the meiofauna. Although the same higher taxa were present in both sets of samples (Table 6), Rotaliina, the dominant taxon present in the phytodetritus, were more than twice as abundant in the total July populations (> 50%) as in the April populations (< 25%).

Both sets of samples contained about the same number of putative species, the overall range being between 58 and 94 per sample (Table 5). A total of 116 species were consistently recognised during this study. Table 7 shows the mean abundances of the top 30 species in the April samples compared with their abundances during July. Table 8 shows the equivalent data for the top 31 species in the July total populations. There are some notable differences between these populations. For example, the top 14 ranked species in the July populations were all significantly more abundant in July than in April (Table 8) while *Ovammina* sp. nov., the top-ranked April species, was entirely absent during July (Table 7). The differences can be condensed into a list of 23 species divided into 3 groups.

Group A. Five species (including *Ovammina* sp. nov.) were significantly more abundant in the April populations than in the July total populations and sediment fractions (Table 7).

Group B. Ten species which occurred only (or mainly) in the sediment fractions were significantly more abundant in both the total July populations and the July sediment fractions than in the April samples (Table 8).
Table 4. Abundance of species in sample pipetted from core surface (Stn 51615, Deployment 1). The number of specimens occurring in lumps of phytodetritus mixed with variable amounts of sediment, lumps of sediment without phytodetritus, and crustacean moults, are shown separately.

<table>
<thead>
<tr>
<th>Suborder Allgromiina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinogullina sp. nov. A</td>
</tr>
<tr>
<td>Phytodetritus/sediment</td>
</tr>
<tr>
<td>Sediment only</td>
</tr>
<tr>
<td>Crustacean moults</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suborder Textulariina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seccamminid sp. F</td>
</tr>
<tr>
<td>2 (15%)</td>
</tr>
<tr>
<td>A. glomeratum</td>
</tr>
<tr>
<td>1 (9.8%)</td>
</tr>
<tr>
<td>P. aff. pygmaea</td>
</tr>
<tr>
<td>1 (0.8%)</td>
</tr>
<tr>
<td>Morulaepecta sp. nov. A</td>
</tr>
<tr>
<td>23 (17.8%)</td>
</tr>
<tr>
<td>Indet</td>
</tr>
<tr>
<td>1 (0.8%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suborder Rotaliina</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. wecdellensis</td>
</tr>
<tr>
<td>62 (48.4%)</td>
</tr>
<tr>
<td>? Albaminella sp. A</td>
</tr>
<tr>
<td>9 (7.9%)</td>
</tr>
<tr>
<td>Bolivina sp. A</td>
</tr>
<tr>
<td>1 (0.8%)</td>
</tr>
<tr>
<td>Bulimina sp.</td>
</tr>
<tr>
<td>1 (0.8%)</td>
</tr>
<tr>
<td>C. teretis</td>
</tr>
<tr>
<td>1 (0.8%)</td>
</tr>
<tr>
<td>E. exigua</td>
</tr>
<tr>
<td>6 (4.6%)</td>
</tr>
<tr>
<td>C. lobatulus</td>
</tr>
<tr>
<td>6 (4.6%)</td>
</tr>
<tr>
<td>N. iridea</td>
</tr>
<tr>
<td>4 (20%)</td>
</tr>
<tr>
<td>T. pauperata</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suborder Miliolida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indet. species</td>
</tr>
<tr>
<td>1 (0.8%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suborder Lageniina</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. fusuliformis</td>
</tr>
<tr>
<td>6 (4.6%)</td>
</tr>
</tbody>
</table>

Total numbers: 129 20 5

Table 5. Abundance and diversity of foraminifers in samples from Stns 51502 (April) and 51615 (July)

<table>
<thead>
<tr>
<th>Station/Deployment</th>
<th>Subsample</th>
<th>Sediment fractions only</th>
<th>Sediment plus phytodetrital fractions*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Specimens</td>
<td>Species</td>
</tr>
<tr>
<td>51615/1</td>
<td>a</td>
<td>427</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>958</td>
<td>85</td>
</tr>
<tr>
<td>51615/4</td>
<td>b</td>
<td>172</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>322</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>548</td>
<td>93</td>
</tr>
<tr>
<td>51615/5</td>
<td>c</td>
<td>509</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>562</td>
<td>91</td>
</tr>
<tr>
<td>51615/6</td>
<td>a</td>
<td>315</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>250</td>
<td>76</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td></td>
<td>474 ± 216</td>
<td>82 ± 10</td>
</tr>
<tr>
<td>51502/1</td>
<td>d</td>
<td>412</td>
<td>88</td>
</tr>
<tr>
<td>51502/2</td>
<td>a</td>
<td>461</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>491</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>334</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>388</td>
<td>92</td>
</tr>
<tr>
<td>51502/6</td>
<td>b</td>
<td>235</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>308</td>
<td>80</td>
</tr>
<tr>
<td>51502/8</td>
<td>a</td>
<td>445</td>
<td>89</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td></td>
<td>385 ± 79</td>
<td>86 ± 6</td>
</tr>
</tbody>
</table>

*Stn 51615 only: phytodetritus did not occur at Stn 51502
ND: no data
Table 6. Gross taxonomic composition of foraminiferal populations in samples from Stns 51502 (April) and 51615 (July). Except for the bottom 2 lines, figures are mean percentages ± SD

<table>
<thead>
<tr>
<th></th>
<th>Stn 51502</th>
<th>Sediment</th>
<th>Sediment fraction</th>
<th>Stn 51615</th>
<th>Phytodetrital fraction</th>
<th>Sediment + phytodetrital fractions (Total population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allogromiina</td>
<td>8.90 ± 2.30</td>
<td>11.82 ± 3.01</td>
<td></td>
<td>4.16 ± 2.41</td>
<td>10.44 ± 3.11</td>
<td></td>
</tr>
<tr>
<td>Globigerinacean inhabitants</td>
<td>8.00 ± 3.40</td>
<td>3.74 ± 3.30</td>
<td></td>
<td>–</td>
<td>1.95 ± 0.50</td>
<td></td>
</tr>
<tr>
<td>Agglutinated tubes (Astrorhizacea)</td>
<td>2.72 ± 0.73</td>
<td>3.50 ± 2.12</td>
<td></td>
<td>–</td>
<td>3.22 ± 1.90</td>
<td></td>
</tr>
<tr>
<td>Saccamminidae</td>
<td>30.44 ± 8.51</td>
<td>21.27 ± 2.45</td>
<td></td>
<td>0.44 ± 0.65</td>
<td>14.01 ± 4.70</td>
<td></td>
</tr>
<tr>
<td>Komokiacea</td>
<td>2.91 ± 1.28</td>
<td>1.26 ± 1.21</td>
<td></td>
<td>–</td>
<td>0.62 ± 0.59</td>
<td></td>
</tr>
<tr>
<td>Multilocular agglutinated forms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Hormosinacea</td>
<td>8.18 ± 3.29</td>
<td>3.29 ± 1.40</td>
<td></td>
<td>–</td>
<td>2.01 ± 0.96</td>
<td></td>
</tr>
<tr>
<td>(b) Others</td>
<td>10.99 ± 2.95</td>
<td>13.62 ± 3.27</td>
<td></td>
<td>5.95 ± 2.11</td>
<td>11.75 ± 2.02</td>
<td></td>
</tr>
<tr>
<td>Calcareaeous forms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Rotalina</td>
<td>24.44 ± 7.56</td>
<td>39.00 ± 11.70</td>
<td>87.27 ± 16.39</td>
<td>53.25 ± 6.80</td>
<td>11.36 ± 2.02</td>
<td></td>
</tr>
<tr>
<td>(b) Lagenina</td>
<td>0.59 ± 0.34</td>
<td>0.71 ± 0.34</td>
<td>2.00 ± 1.67</td>
<td>1.10 ± 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Miliolina</td>
<td>0.63 ± 0.43</td>
<td>1.22 ± 0.95</td>
<td></td>
<td>–</td>
<td>1.34 ± 0.90</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>2.21 ± 1.15</td>
<td>0.66 ± 0.65</td>
<td></td>
<td>–</td>
<td>0.31 ± 0.23</td>
<td></td>
</tr>
<tr>
<td>No. of samples</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total no. of specimens</td>
<td>2663</td>
<td>4263</td>
<td>979</td>
<td>3565</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group C. Eight species which occurred in 4 or more phytodetrital fractions were also significantly more abundant in the total July populations (Table 8); all were ranked among the top 12 July species. These 23 species are listed in Table 9 together with their abundances in individual samples. For certain species, Table 9 includes additional data from Stns 51502 (Samples 1d and 8b to d) and 51615 (Sample 5b) which were not used in compiling Tables 7 and 8. With 2 exceptions, the samples taken during April (Stn 51502) and July (Stn 51615) were collected in 2 rather distinct areas, about 1 n mile (1.85 km) apart. The exceptions are Samples 1a and 1b which were obtained in July at a position close to the April Sample 8a. The data in Table 9 are arranged so that species abundances in these samples can be easily compared (see below).

In addition to these more or less obvious differences in species abundances, the densities of individual species tended to be more variable following phytodetritus deposition. This is shown by the significantly greater variances of 3 abundant species in the total July populations (for *Nonionella inidea* and *Trifarina pauperata* p = 0.1 to 1.0%, for *Cassidulina teretis* p < 0.1%).

DISCUSSION

Phytodetritus populations

Our results from this bathyal site consolidate earlier observations (Gooday 1988a) that seasonally deposited phytodetrital aggregates are occupied by abundant, low diversity populations of benthic foraminifers in the deep-sea. For the reasons discussed above, the Porcupine Seabight assemblages may have been modified by the way in which the samples were collected and processed. However, we are convinced that they are natural assemblages and not artifacts. The single unsieved sample examined (Table 4) suggests that the phytodetritus was, to some extent, mixed with superficial sediment on the core surface, probably through the activities of benthic animals. Hence, the phytodetritus should probably be regarded as part of the sedimentary environment rather than a distinct, suprabenthic microhabitat comparable to that provided, for example, by manganese nodules for encrusting foraminifera (Mullineaux 1987).

These phytodetrital populations could have arisen in several ways (Varon & Thistle 1988). First, the disproportionate abundance of certain species may develop incidentally from higher rates of dispersion into a habitat initially devoid of benthic organisms (apart from bacteria and flagellates; Lochte & Turley 1998). Second, these species may colonise the detritus in order to avoid competitors or predators. Third, they may be attracted because the detritus provides a good food source. Only the second and third explanations involve an active response by the foraminifers to the phytodetritus (Varon & Thistle 1988).

Without careful field and laboratory experiments, such as those conducted by Varon & Thistle (1988) on harpacticoid copepods from a shallow water marine locality, it is difficult to eliminate any of these possible explanations. Different rates of movement for deep-sea
Table 7. The 30 most abundant species in samples from Stn 51502 (April) and their corresponding abundances at Stn 51615 (July). Data for the July total populations are derived from Samples 1a, 1b, 5a, 5d, 6b; data for the July sediment fractions are derived from Samples 1a, 1b, 4b-d, 5c, 5d, 6a, 6b. \(\bar{x} \) = mean abundance per sample ± standard deviation; \(\% \) = overall \% of total population. Mean April abundances which are significantly greater than mean July abundances are underlined (\(p < 5\% \)). See Appendix for full taxonomic names of species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Stn 51502</th>
<th>Total population</th>
<th>Stn 51615</th>
<th>Sediment fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{x} \pm SD)</td>
<td>%</td>
<td>(\bar{x} \pm SD)</td>
<td>%</td>
</tr>
<tr>
<td>Ovammina sp. nov. A</td>
<td>35.4 ± 25.0</td>
<td>9.27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N. inidea</td>
<td>28.9 ± 10.0</td>
<td>7.55</td>
<td>64.8 ± 34.5</td>
<td>9.11</td>
</tr>
<tr>
<td>Lagenammina sp. A</td>
<td>13.6 ± 4.0</td>
<td>3.55</td>
<td>2.4 ± 0.8</td>
<td>0.34</td>
</tr>
<tr>
<td>Tnodellum sp. nov. A</td>
<td>10.4 ± 10.0</td>
<td>2.73</td>
<td>3.8 ± 3.8</td>
<td>0.53</td>
</tr>
<tr>
<td>P. aff. pygmaea</td>
<td>8.9 ± 2.1</td>
<td>2.32</td>
<td>20.2 ± 5.2</td>
<td>2.84</td>
</tr>
<tr>
<td>C. teretis</td>
<td>8.6 ± 7.6</td>
<td>2.24</td>
<td>73.4 ± 79.7</td>
<td>10.32</td>
</tr>
<tr>
<td>Crithionina sp. A</td>
<td>7.6 ± 3.9</td>
<td>1.98</td>
<td>1.0 ± 1.1</td>
<td>0.14</td>
</tr>
<tr>
<td>T. pauperata</td>
<td>7.4 ± 3.8</td>
<td>1.94</td>
<td>27.6 ± 13.5</td>
<td>3.88</td>
</tr>
<tr>
<td>S. biformis</td>
<td>7.0 ± 4.5</td>
<td>1.83</td>
<td>7.6 ± 6.2</td>
<td>1.07</td>
</tr>
<tr>
<td>R. micaeae</td>
<td>6.3 ± 3.2</td>
<td>1.65</td>
<td>2.2 ± 1.3</td>
<td>0.31</td>
</tr>
<tr>
<td>R. aff. subsulciformis</td>
<td>6.1 ± 4.7</td>
<td>1.61</td>
<td>2.2 ± 1.2</td>
<td>0.31</td>
</tr>
<tr>
<td>L. aff. catenulae</td>
<td>5.3 ± 3.7</td>
<td>1.38</td>
<td>1.2 ± 1.9</td>
<td>0.17</td>
</tr>
<tr>
<td>A. weddellensis</td>
<td>5.3 ± 3.7</td>
<td>1.38</td>
<td>145.6 ± 51.4</td>
<td>20.47</td>
</tr>
<tr>
<td>Tnodellum sp. nov. B</td>
<td>5.1 ± 1.5</td>
<td>1.35</td>
<td>1.4 ± 1.4</td>
<td>0.26</td>
</tr>
<tr>
<td>G. lobatulus</td>
<td>5.0 ± 2.9</td>
<td>1.31</td>
<td>22.8 ± 9.5</td>
<td>3.21</td>
</tr>
<tr>
<td>Crithionina sp. B</td>
<td>5.0 ± 3.0</td>
<td>1.31</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rotalin sp. M</td>
<td>4.0 ± 2.4</td>
<td>1.05</td>
<td>2.8 ± 2.0</td>
<td>0.39</td>
</tr>
<tr>
<td>Allogromin sp. C</td>
<td>3.7 ± 2.3</td>
<td>0.97</td>
<td>7.8 ± 4.7</td>
<td>1.10</td>
</tr>
<tr>
<td>Lagenammina sp. C</td>
<td>2.8 ± 3.4</td>
<td>0.75</td>
<td>0.4 ± 0.8</td>
<td>0.06</td>
</tr>
<tr>
<td>Reophax sp. A</td>
<td>2.8 ± 2.9</td>
<td>0.75</td>
<td>0.2 ± 0.4</td>
<td>0.03</td>
</tr>
<tr>
<td>Rotalin sp. A</td>
<td>2.6 ± 2.7</td>
<td>0.67</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. argentea</td>
<td>2.6 ± 2.7</td>
<td>0.67</td>
<td>0.8 ± 0.4</td>
<td>0.11</td>
</tr>
<tr>
<td>Saccamminid sp. A</td>
<td>2.4 ± 4.4</td>
<td>0.64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trochammanaceae sp. A</td>
<td>2.3 ± 2.0</td>
<td>0.60</td>
<td>2.0 ± 1.8</td>
<td>0.28</td>
</tr>
<tr>
<td>Reophax sp. B</td>
<td>2.3 ± 4.4</td>
<td>0.60</td>
<td>1.0 ± 1.3</td>
<td>0.14</td>
</tr>
<tr>
<td>Lagenammina sp. B</td>
<td>2.3 ± 1.9</td>
<td>0.60</td>
<td>1.0 ± 1.5</td>
<td>0.14</td>
</tr>
<tr>
<td>A. glomeratum</td>
<td>2.1 ± 2.3</td>
<td>0.56</td>
<td>8.8 ± 6.2</td>
<td>1.24</td>
</tr>
<tr>
<td>Reophax sp. C</td>
<td>2.1 ± 3.1</td>
<td>0.56</td>
<td>2.2 ± 2.3</td>
<td>0.31</td>
</tr>
<tr>
<td>Saccamminid sp. D</td>
<td>2.1 ± 2.9</td>
<td>0.56</td>
<td>2.4 ± 2.1</td>
<td>0.34</td>
</tr>
<tr>
<td>Lagenammina sp. D</td>
<td>2.0 ± 1.3</td>
<td>0.53</td>
<td>4.8 ± 6.2</td>
<td>0.67</td>
</tr>
<tr>
<td>Samples</td>
<td>7</td>
<td></td>
<td>3556</td>
<td>4263</td>
</tr>
<tr>
<td>Total numbers</td>
<td>2663</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
lations at the species level. The specimens which we and those belonging to abyssal populations of species (Fig. 3). Bathyal specimens of sp. bathyal and abyssal populations of . There are a number of morphological differences and only partly obscures the aperture in BIO-straight and entirely obscures the aperture (Figs. 1J, K the final chamber on the evolute side of the test is fairly parts of the surface (Fig. 1D, features not apparent in and fine pustules (ca 1 μm diameter) developed over and 139.0 ± 21.7 Itm, 2.1 ± 0.34 2.2 ± 3.8 0.47 2.1 ± 2.9 0.56

<table>
<thead>
<tr>
<th>Species</th>
<th>Total population</th>
<th>Sediment fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x ± SD</td>
<td>%</td>
</tr>
<tr>
<td>A. weddeliensis</td>
<td>145.6 ± 51.4</td>
<td>20.47</td>
</tr>
<tr>
<td>C. teretis</td>
<td>73.4 ± 79.7</td>
<td>10.32</td>
</tr>
<tr>
<td>N. irisia</td>
<td>64.8 ± 34.5</td>
<td>9.11</td>
</tr>
<tr>
<td>T. sauserana</td>
<td>27.6 ± 13.5</td>
<td>3.88</td>
</tr>
<tr>
<td>E. exigua</td>
<td>27.2 ± 19.0</td>
<td>3.82</td>
</tr>
<tr>
<td>T. angulata</td>
<td>25.8 ± 14.3</td>
<td>3.62</td>
</tr>
<tr>
<td>L. obtusulus</td>
<td>22.6 ± 8.5</td>
<td>3.21</td>
</tr>
<tr>
<td>M. polylepta sp. nov.</td>
<td>22.4 ± 11.1</td>
<td>3.15</td>
</tr>
<tr>
<td>P. aff. pygmaea</td>
<td>20.2 ± 5.2</td>
<td>2.84</td>
</tr>
<tr>
<td>Allogromin sp. B</td>
<td>13.2 ± 9.9</td>
<td>1.88</td>
</tr>
<tr>
<td>A. serrata</td>
<td>12.6 ± 25.2</td>
<td>1.77</td>
</tr>
<tr>
<td>A. alabaminella sp. A</td>
<td>10.4 ± 4.6</td>
<td>1.48</td>
</tr>
<tr>
<td>Psammosphaerida sp. nov. A</td>
<td>9.2 ± 7.7</td>
<td>1.29</td>
</tr>
<tr>
<td>Hyperammina sp. A</td>
<td>8.8 ± 5.1</td>
<td>1.24</td>
</tr>
<tr>
<td>A. glomeratum</td>
<td>8.8 ± 6.2</td>
<td>1.24</td>
</tr>
<tr>
<td>Allogromin sp. C</td>
<td>7.8 ± 4.7</td>
<td>1.10</td>
</tr>
<tr>
<td>S. biformis</td>
<td>7.6 ± 6.2</td>
<td>1.07</td>
</tr>
<tr>
<td>P. lusulfous</td>
<td>6.0 ± 3.1</td>
<td>0.84</td>
</tr>
<tr>
<td>Peleasina sp</td>
<td>6.0 ± 4.2</td>
<td>0.84</td>
</tr>
<tr>
<td>S. schlumbergeri</td>
<td>5.6 ± 2.4</td>
<td>0.79</td>
</tr>
<tr>
<td>Lagenammina sp. D</td>
<td>4.8 ± 6.2</td>
<td>0.67</td>
</tr>
<tr>
<td>C. pseudosquamosus</td>
<td>4.8 ± 1.7</td>
<td>0.67</td>
</tr>
<tr>
<td>Hyperammina sp. B</td>
<td>4.6 ± 7.7</td>
<td>0.65</td>
</tr>
<tr>
<td>Brizalina sp. A</td>
<td>4.4 ± 2.1</td>
<td>0.62</td>
</tr>
<tr>
<td>Nodella sp. nov. A</td>
<td>3.8 ± 3.8</td>
<td>0.53</td>
</tr>
<tr>
<td>Tosaia sp. A</td>
<td>3.4 ± 1.0</td>
<td>0.48</td>
</tr>
<tr>
<td>Rotaliin sp. M</td>
<td>2.8 ± 2.0</td>
<td>0.39</td>
</tr>
<tr>
<td>Brizalina sp. B</td>
<td>2.4 ± 0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>B. aculeata</td>
<td>2.4 ± 0.5</td>
<td>0.34</td>
</tr>
<tr>
<td>Lagenammina sp. A</td>
<td>2.4 ± 0.8</td>
<td>0.34</td>
</tr>
<tr>
<td>Saccamminid sp. D</td>
<td>2.4 ± 2.1</td>
<td>0.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Samples</th>
<th>Total specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3556</td>
</tr>
<tr>
<td></td>
<td>4263</td>
</tr>
<tr>
<td></td>
<td>2663</td>
</tr>
</tbody>
</table>
Table 9. Species abundances in samples from Stns 51502 (April) and 51615 (July). Group A includes species which are significantly more abundant during April; Group B includes species which are significantly more abundant during July but present only (or mainly) in the sediment fraction; Group C includes species significantly more abundant during July and consistently present in the phytodetrital fractions. Included are data from Stns 51502 Samples 1d, 8b-d and Stn 51615 Sample 5b which were sorted for selected species only. For Group C species, data are given only for samples where foraminifers were extracted from the phytodetrital fractions. -- no data

<table>
<thead>
<tr>
<th>Species</th>
<th>Stn 51502</th>
<th>Stn 51615</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1d 2a 2b 2c 2d 6b 6d 8a 8b 8c 8d 1a 1b 4b 4c 4d 5b 5c 5d 6a 6b</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crithionina sp. A</td>
<td>13 11 9 4 4 4 2 10 - - -</td>
<td>3 0 2 0 1 - 1 0 4 1</td>
</tr>
<tr>
<td>Lagenammina sp. A</td>
<td>21 14 11 15 10 8 6 6 - - -</td>
<td>3 1 3 2 3 2 3 3 3</td>
</tr>
<tr>
<td>Ovammina sp. nov. A</td>
<td>69 68 15 52 24 4 16 3 11 2</td>
<td>0 0 0 0 0 - 0 0 0 0</td>
</tr>
<tr>
<td>R. micaceus</td>
<td>9 5 5 4 3 5 13 0 1 1</td>
<td>0 4 2 0 1 1 1 0 4 1</td>
</tr>
<tr>
<td>Saccamminid sp. A</td>
<td>1 0 0 3 0 0 13 - - -</td>
<td>0 0 0 0 0 - 0 0 0 0</td>
</tr>
<tr>
<td>Group B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adercotryma sp. A</td>
<td>0 0 0 0 0 0 0 0 - - -</td>
<td>0 63 0 0 0 - 0 0 0 0</td>
</tr>
<tr>
<td>Allogromin sp. B</td>
<td>0 0 0 0 0 0 0 0 - - -</td>
<td>2 25 5 1 7 - 23 3 15 2</td>
</tr>
<tr>
<td>C. teretis</td>
<td>11 5 8 8 9 1 2 26 16 1 0</td>
<td>57 226 10 26 102 41 22 47 27 9</td>
</tr>
<tr>
<td>C. pseudungerianus</td>
<td>5 3 0 1 1 2 1 2 1 2 1 0</td>
<td>6 5 0 1 1 3 4 7 8 3</td>
</tr>
<tr>
<td>N. inidea</td>
<td>43 16 34 27 33 11 40 39 23 5 8</td>
<td>46 115 17 16 63 5 49 92 39 21</td>
</tr>
<tr>
<td>Hyperammina sp. A</td>
<td>0 0 1 0 0 0 0 0 - - -</td>
<td>8 10 1 0 3 - 17 8 2 1 1</td>
</tr>
<tr>
<td>Psammosphaera sp. nov. A</td>
<td>0 0 0 0 0 0 0 0 - - -</td>
<td>3 9 0 0 12 - 0 0 0 6</td>
</tr>
<tr>
<td>?Pelosina sp.</td>
<td>1 1 0 0 1 2 0 - - -</td>
<td>5 3 0 2 1 - 4 3 0 2</td>
</tr>
<tr>
<td>Tosaia sp. A</td>
<td>5 15 6 7 2 10 7 10 - - -</td>
<td>21 52 1 10 23 - 27 21 11 11</td>
</tr>
<tr>
<td>Group C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinogullmia sp. nov. A</td>
<td>0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 29 45 - - -</td>
<td>25 12 34 - 10</td>
</tr>
<tr>
<td>E. exigua</td>
<td>0 0 1 0 0 0 0 0 1 0 1 0</td>
<td>28 63 - - - 11 15 21 - 9</td>
</tr>
<tr>
<td>A. weddelensis</td>
<td>3 7 7 3 2 13 2 - - -</td>
<td>146 238 - - - 100 152 108 - 89</td>
</tr>
<tr>
<td>G. lobatulus</td>
<td>3 7 4 11 3 2 5 - - -</td>
<td>18 39 - - - 12 24 23 - 10</td>
</tr>
<tr>
<td>Morulaepecta sp. nov. A</td>
<td>0 0 0 0 0 0 0 - - -</td>
<td>20 44 - - - 9 24 18 - 8</td>
</tr>
<tr>
<td>P. aff. pygmaea</td>
<td>6 13 9 10 9 8 7 - - -</td>
<td>21 27 - - - 9 21 21 - 11</td>
</tr>
<tr>
<td>?Alabaminella sp. A</td>
<td>0 0 0 0 0 0 0 - - -</td>
<td>6 15 - - - 7 15 12 - 6</td>
</tr>
<tr>
<td>P. fusuliformis</td>
<td>0 0 0 0 0 0 0 - - -</td>
<td>4 6 - - - 1 4 2 - 3</td>
</tr>
</tbody>
</table>

assign to *E. exigua* differ from *E. vitrea*, the shallow-water counterpart of *E. exigua*, in having 5 rather than 6 to 6½ chambers in the final whorl (Todd & Low 1967). The rather more inflated later chambers in *A. weddelensis*, and the smaller size of *E. exigua*, may indicate that the bathyial site is a stressful environment for these species, perhaps because it lies near the limit of their bathymetric ranges (Boltovskoy & Wright 1976, p. 91, Wang & Lutze 1986). Weston (1985) found that *E. exigua* only became the dominant species in the dead foraminiferal assemblage in the Porcupine Seabight below about 2400 m.

The occurrence, albeit occasionally, of the allogromin *Tinogullmia* sp. nov. inside small crustacean (copepod) moults (Table 4) is of interest. These structures are small enough (<1 mm) to fall within the operational range (ambit) of individual foraminifers. They probably provide refuges stocked with large populations of bacteria on which *Tinogullmia* appears to feed (Gooday & Turley in press). Some allogromin and saccomminid foraminifers, as well as nematodes, seek refuge inside empty *Globigerina* tests (Gooday 1984). Jumars (1976) illustrated a presumed faecal pellet (1.5 cm long) from the Santa Catalina Basin which provided a microhabitat for encrusting entoprocts and an agglutinated foraminifer. Moults, and other small organic remains, represent pockets of organic enrichment which contribute towards the small-scale (centimetre to submillimetre) fabric of the sedimentary environment and thereby probably help to maintain high levels of diversity among meiofaunal taxa such as the Foraminifera. Grassle & Morse-Porteous (1987) and Grassle (1989) have recently emphasized the decisive role played by somewhat larger (millimetre to metre sized) organic patches in the maintenance of high macrofaunal diversity in deep-sea sediments.

Total and sediment populations

Total foraminiferal population densities were higher in July, when phytodetritus was present, than in April (Table 4), but not significantly so. However, the total population densities were significantly more variable.
in the July samples. There were also some significant differences in the abundance and variance of species in the total populations (Tables 7 to 9). Patchy distributions of benthic foraminiferal populations are well documented in both shallow water (Buzas 1968, 1970, Lee et al. 1969, Matera & Lee 1972, Bernhard 1987, Hohenegger et al. 1989) and the deep-sea (Bernstein et al. 1978, Bernstein & Meador 1979, Kaminski 1985). Such spatial heterogeneity may have contributed to at least some of the differences observed between the April and July assemblages. For example, species (Adeocotryma sp. A, Peolosina sp. saccamminid sp. A) occurred in only a few samples (Table 9, Groups A, B) and seem to display obvious spatial patchiness. On the other hand, the significantly greater abundance in the July samples of 8 phytodetritus-dwelling species (Group C in Table 9) is more likely to be a seasonal phenomenon related to phytodetrital deposition. These species are all ranked among the top 12 in the July total population (Table 8). Note that they are consistently more numerous in Samples 1a and 1b (July) than in Sample 8a (Table 9), which was taken in the same area during April (see above). This indicates that spatial heterogeneity alone is unlikely to account for differences in their abundances. The increased abundance in the July samples of Alabaminella weddellensis (the dominant species of the phytodetrital fractions) is particularly striking (Tables 8 and 9).

Ovammina sp. nov. A has a different pattern of abundance. It is the top ranked species in the April samples but is entirely absent from July samples (Table 7). This pattern, which is the inverse of that displayed by phytodetritus-dwelling (Group C) species, could have arisen by chance from spatial variability. Another possible explanation is that Ovammina sp. is out-competed during summer by seasonally abundant species. Muller (1975) described saltmarsh foraminiferal communities in which Allogromia laticolarians Arnold, normally a rare species, became abundant when populations of the dominant species declined. Some of the less abundant species present in our samples, for example Spiroplectammina biforis, seem to maintain fairly stable populations irrespective of whether phytodetritus is present or absent (Tables 7 and 8). Thus, deep-sea foraminifers may display a range of life-history strategies and population dynamics comparable to those of their shallow-water relatives (Erskine & Lipps 1987).

Cassidulina teretis is the top-ranked species in the July sediment fractions and is significantly (p < 0.1%) more abundant in the total July populations than in the April samples (Tables 7 and 8). These July populations are dominated by small individuals (Fig. 2). Out of 361 specimens ranging in diameter from 45 to 245 μm, almost half were <106 μm and three-quarters <145 μm. This size distribution suggests that, like some phytodetritus-dwelling species (see above), C. teretis may be actively reproducing during July. However, this species occurred only rarely in the phytodetritus (probably as a contaminant) and is almost certainly a sediment-dweller. Its apparent reproductive response may be linked to a relative abundance of food in the form of large bacterial populations. Bacterial densities are known to be higher in sediment beneath phytodetritus than in sediment collected before phytodetritus deposition (Thiel et al. in press). The distribution of C. teretis was also very patchy in July, a disproportionate number of specimens being present in a few samples (Table 9). This pattern suggests that C. teretis may reproduce most vigorously in localized areas where food (probably bacteria) is concentrated. Correlations between the small-scale distributions of benthic foraminifers and their probable food (cyanobacteria and diatoms) have been established in the intertidal North Adriatic (Hohenegger et al. 1989).

Sediment-dwelling species which are abundant in the July samples, for example Cassidulina teretis, Psammosphaera sp. nov. and Triarina pauperata, probably live on or within the soft, flocculent surface
Appendix. Full names and authorships of species included in Tables 7 to 9

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aduncaria glomerata</td>
<td>Brady (1878)</td>
</tr>
<tr>
<td>Alabamineella weddelliensis</td>
<td>Earland (1936)</td>
</tr>
<tr>
<td>Bucella culea d'Orbigny</td>
<td>1826</td>
</tr>
<tr>
<td>Cassidulina teretis</td>
<td>Tappan (1951)</td>
</tr>
<tr>
<td>Cubicides pseudodentigerianus</td>
<td>Cushman (1922)</td>
</tr>
<tr>
<td>Cystammina argentea</td>
<td>Earland (1934)</td>
</tr>
<tr>
<td>Epistominella exigua</td>
<td>Brady (1884)</td>
</tr>
<tr>
<td>Gavulinopsis lobatulus</td>
<td>Parr (1950)</td>
</tr>
<tr>
<td>Leptohalys aff. catenulata</td>
<td>(Högland 1947)</td>
</tr>
<tr>
<td>Nonionella iridea</td>
<td>Heron-Allen & Earland (1932)</td>
</tr>
<tr>
<td>Paratrophina fusiformis</td>
<td>Loeblich & Tappan (1953)</td>
</tr>
<tr>
<td>Pseudotrochammina aff. pygmaea</td>
<td>Högland (1947)</td>
</tr>
<tr>
<td>Reophax micaceus</td>
<td>Earland (1934)</td>
</tr>
<tr>
<td>Reophax aff. subfusiformis</td>
<td>Earland (1933)</td>
</tr>
<tr>
<td>Sigmoilina schlumbergeri</td>
<td>Silvestri (1904)</td>
</tr>
<tr>
<td>Spiroplectammina biformis</td>
<td>Parker & Jones (1865)</td>
</tr>
<tr>
<td>Trifarina pauperata</td>
<td>Heron-Allen & Earland (1932)</td>
</tr>
</tbody>
</table>

CONCLUSIONS

(1) Seasonally deposited aggregates of phytodetritus provide a microhabitat for some benthic foraminiferal species at depths of around 1350 m in the northeast Atlantic. The most abundant inhabitant is Alabamineella weddelliensis; others include Epistominella exigua and Tinothamnus sp. nov. The same species were found also in phytodetrital aggregates from the much deeper (4550 m) BIOTRANS site (Gooday 1988a).

(2) Certain species, including those which inhabit the phytodetritus, are significantly more abundant in the total (phytodetrital plus sediment) July populations than in the April populations. Others are either more abundant during April or display no significant fluctuations in abundance. These results suggest that some foraminiferal species respond opportunistically to phytodetritus while others react negatively or not at all.

Acknowledgements. We thank Drs M. V. Angel and A. L. Rice for critically reading the manuscript, Prof. P. Brönnimann and Dr R. W. Jones for taxonomic guidance, Dr R. S. Lampitt for the gift of a sample, Dr J. A. Whittaker for access to the British Museum (Natural History) collections, Mr M. D. Conker for carefully printing the photographs, Miss P. E. Williamson for preparing Fig. 2 and Mrs P. H. Talbot for secretarial assistance.

LITERATURE CITED

Buzas, M. A. (1970). Spatial homogeneity: statistical analyses...
of unspecies and multispecies populations of Foraminifera. Ecology 51: 874-879
Earland, A. (1936). Foraminifera. Part IV. Additional records from the Weddell Sea sector from material obtained by the S Y 'Scotia'. Discovery Reps. 10: 1-76, pls 1-2
Fowler, S. W., Knauer, G. A. (1986). Role of large sinking particles in the transport of elements and organic compounds through the water column. Prog. Oceanogr. 16: 147-194

Manuscript first received: March 28, 1989
Revised version accepted: July 26, 1989