Reproductive Ecology of Two Faviid Corals (Coelenterata: Scleractinia)

Barbara L. Kojis* and Norman J. Quinn*

Zoology Department, University of Queensland, Saint Lucia, Queensland 4067, Australia

ABSTRACT: In common with other Faviidae, Favites abdita and Leptoria phrygia on Heron Island reef, Great Barrier Reef, Australia, are simultaneous hermaphrodites with ovary and testis in the same mesentery. During the annual gametogenic cycle oogenesis precedes spermiogenesis by several months. Both species exhibit synchronous spawning; gonads are released intermingled in positively buoyant compact spheres. Because of this it is believed that external self- and cross-fertilization occur in these species. Both species are present, but not abundant, in shallow and deeper water on the reef. Their mode and timing of spawning may largely confine propagule dispersal to the home reef, but not to any specific habitat within the reef. It is suggested that the release of eggs and sperm may be the commonest method of sexual reproduction in Scleractinia.

INTRODUCTION

Studies of reproduction in hermatypic corals have concentrated on planula releasing species (Stimson, 1978; Rinkevich and Loya, 1979a, b). As a result, the total variety of modes of sexual reproduction, both inter- and intra-taxon, is largely unknown. A study of reproduction in Goniastrea cf. favulus (= australensis) (Kojis and Quinn, 1981) confirmed that at least some hermatypic corals release eggs and sperm (Connell, 1973; Stimson, 1978). This led to the following questions about faviids: (1) Is a brief, annual spawning period common? (2) Are there variations in the mode and timing of gamete release? (3) If so, are they correlated with variations among species of within reef distribution and/or abundance?

To answer these questions the mode and timing of sexual reproduction, within reef distribution and abundance of 2 species of Faviidae, Favites abdita (Ellis and Solander, 1786) and Leptoria phrygia (Ellis and Solander, 1786) (nomenclature of Faviidae in accordance with Veron et al., 1977) were studied and compared to other Faviidae.

MATERIALS AND METHODS

Sexual reproduction in Favites abdita and Leptoria phrygia was studied between January and December 1979 on Heron Island reef (23°27'S), Great Barrier Reef, Australia. Here they form massive or encrusting colonies with a maximum diameter of approximately 60 cm. Plastic tags were attached to 5 colonies of each species (> 30 cm in diameter) with monofilament line. Samples (> 2 cm² in diameter) were chiseled at least every second month from each tagged colony and periodically from untagged colonies. We measured spawned eggs on 2 perpendicular diameters using an ocular micrometer. Preserved gonad spheres were embedded in 'Tissue Prep', sec-
tioned at a nominal thickness of 8 μm, and stained with Mayer’s hematoxylin and eosin.

Distribution and abundance of _Favites abdita_ and _Leptoria phrygia_ on the reef flat were determined from 5 transects aligned perpendicular to the beach. All coral colonies 10 cm either side of a transect line were identified to genus or species and the distance each colony paralleled the line was measured (see Kojis and Quinn, 1981 for figure). Using SCUBA, we made casual observations of the presence and relative abundance of these species on the reef slope.

RESULTS

Favites abdita and _Leptoria phrygia_ are simultaneous hermaphrodites with eggs and sperm clusters intermingled in the same mesentery. During the

Fig. 1. _Favites abdita_. (a) Spheres composed of ova and sperm clusters being released. Sphere is in mouth of polyp at left; from polyp on right the sphere has just been released (arrows). (b) Positively buoyant sphere rising to the surface.
Fig. 2. *Favites abdita*. Histological section showing sperm clusters and ova. Note: germinal vesicle and zooxanthellae are absent. SC sperm clusters; O ova.

Annual gametogenic cycle, oogenesis begins several months prior to spermiogenesis. Egg development began in April/May in *F. abdita* and in May/June in *L. phrygia*, while sperm development did not commence until late September/October.

Egg and sperm release is synchronous and seasonal. Both species spawned in aquaria and on the reef flat over a brief period of less than 1 wk. Ova and sperm clusters were released simultaneously intermingled in compact buoyant spheres (Fig. 1a, b; Fig. 2) and began to separate within a few minutes to an hour after reaching the surface (Fig. 3). Eggs averaged 394 μm (range 363 to 424 μm, N = 21) and 421 μm (391 to 440 μm, N = 20) and spheres 3 to 4 and 2 to 3 mm in diameter in *Favites abdita* and *Leptoria phrygia* respectively.

Colonies of *Favites abdita* released pink eggs and white sperm clusters in aquaria in mid-November during the last quarter lunar phase at approximately 20:00 h during low neap tide. Samples from tagged and untagged colonies on the reef flat confirmed that spawning coincided with that in aquaria. Timing of reproduction in tagged colonies did not differ from untagged control colonies.

Gamete release occurred twice in *Leptoria phrygia* held in aquaria. The first time, brown-pink eggs were prematurely aborted on 13 November (last quarter moon; 12 November). No sperm were released. Samples chiseled from colonies in the field shortly after this date contained eggs and sperm. The second time, spheres of red eggs and white sperm clusters were released between 9 and 12 December (last quarter moon; 11 December) at approximately 22:00 h; tagged and untagged reef flat colonies sampled on 7 and 14 December had spawned in the interval. The premature spawning in November was probably triggered by placing colonies in aquaria during the lunar phase on which spawning occurs.

The eggs of both species remained buoyant and were sticky, adhering to the sides of aquaria and subsequently degenerating within 24 h of release. Zooxanthellae were not present in the eggs of either species (Fig. 2).

Leptoria phrygia was present in only 2 of the 5 transects providing 0.6% of the live coral cover. *Favites abdita*, *F. halicora* and *F. fexulosa* were lumped together since they were difficult to identify in the field. This group formed 1.3% of live coral cover and was present in all of the 5 transects.

DISCUSSION

Sexual reproduction by gamete release is similar in all species of Faviidae studied thus far on the Great Barrier Reef (Marshall and Stephenson, 1933; Kojis and Quinn, 1981). Similar reproductive patterns are found in faviids in other parts of the world, but information is limited (Table 1).

Faviid species studied to date are uniformly hermaphroditic with ovary and testis intermingled in the same mesentery. Although oogenesis precedes spermiogenesis by several months, ovaries and testes mature simultaneously (Table 1). Gonads develop as local thickenings of the mesentery in contrast to the gonads of Pocilloporidae which are connected by a short stalk to the mesenteries and project into the body cavity (Rinkevich and Loya, 1979a).

While gonad development follows a similar pattern, different species may either brood larvae or spawn...
Among *Favites abdita*, *Leptoria phrygia* and *Goniastrea cf. favulus* both cross-fertilization and self-fertilization are promoted by the mode and timing of spawning. Populations of all 3 exhibit synchronous spawning, increasing the chances of cross-fertilization where colonies are numerous. However, when colonies are isolated from other conspecifics, self-fertilization of ova may occur. Eggs of *G. cf. favulus* were successfully self-fertilized when colonies were isolated in aquaria and developed into planulae which later settled (Kojis and Quinn, 1981).

Among faviids, the mode and timing of reproduction varies between species and may be related to habitat differences. Species able to live in a wide range of habitats on the reef may have a dispersive mode of reproduction while those occupying a relatively narrow range of habitats may have a means of retaining propagules in the parental habitat.

Of the 3 species of Faviidae studied on Heron Island reef, only *Goniastrea cf. favulus* is primarily a shallow water species (Kojis and Quinn, 1981). *Leptoria phrygia* and *Favites abdita*, while present in shallow water, have a wider local distribution being also present on the reef slope. While all species spawned eggs and sperm, the mode and timing of spawning and the location in the water column of initial larval development differed among them.

![Fig. 3. *Favites abdita*. Single sphere breaking up on surface of aquaria; ova are separating and sperm clusters rupturing. O ova; SC sperm cluster.](image)

<table>
<thead>
<tr>
<th>Location</th>
<th>Species</th>
<th>Source</th>
<th>Hermaphroditic</th>
<th>Gonads intermingled on same mesentery</th>
<th>Synchronous gonad maturation within colonies</th>
<th>Simultaneous gonad maturation between colonies</th>
<th>Annual protogynous gonad development</th>
<th>Gonads constituting local recruitment</th>
<th>Vitruparous</th>
<th>Voviparous</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Great Barrier Reef</td>
<td>Favia pallida</td>
<td>Marshall & Stephenson (1933)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Favites abdita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goniastrea cf. favulus (t. australensis)</td>
<td>Kojis & Quinn (1981)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leptoria phrygia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Sea</td>
<td>Favia favus</td>
<td>Rinkevich & Loya (1979a)</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Favites abdita</td>
<td>Rinkevich & Loya (1979a)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Platygyra lamellina</td>
<td>Rinkevich & Loya (1979a)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caribbean</td>
<td>Favia fragum</td>
<td>Duerden (1902)</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manicina areolata</td>
<td>'Wilson (cited in Duerden, 1902)</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawai`i</td>
<td>Cyphastrea ocellina</td>
<td>Stimson (1978)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(×) Characteristic of species; blanks occur where information was not supplied or cited by author.
The manner of spawning of *Goniastrea cf. favulus* and subsequent larval development facilitated retention of propagules in the habitat in which the adult achieved sexual maturity – the reef flat. Heron Island reef has a tidal range of > 3 m, resulting in a strong current velocity during spring tides. Thus, the combination of at least 3 attributes increases the possibility that the propagules are retained on the reef flat: (1) The precise timing of gonad release to coincide with neap low tide; (2) the nature of the egg masses, which are sticky and demersal; (3) the pattern of larval development (Kojis and Quinn, 1981).

Conversely, *Favites abdita* and *Leptoria phrygia*, present in both shallow and deep water habitats, release buoyant gonadal spheres. The spheres and subsequently buoyant eggs may be easily transported. Spawning on the neap tide decreases the probability of long distance dispersal and may be an adaptation to retain propagules in the vicinity of the home reef rather than within the narrow region of the parental habitat.

A brief gamete release period occurs in other reef building corals. A brief spawning period has been observed in species of *Acropora* (Bothwell, 1981), *Faviidae* (Rinkevich and Loya, 1979a) and *Porites* (Kojis and Quinn, 1982). Also, coral spatfall appears to be distinctly seasonal on the Great Barrier Reef occurring primarily during the spring/summer months (Wallace and Bull, 1981).

In summary, we suggest that a brief annual gamete release period with larval development occurring external to the parent colony may be the dominant mode of sexual reproduction among hermatypic corals. However, differences in the timing and manner of gamete release may affect the local distribution and abundance of species.

Acknowledgements. This research was supported by grants from the University of Queensland, The Great Barrier Reef Marine Park Authority and the Ecological Society of Australia. We would like to thank Professor M. Pichon of James Cook University for identifying specimens. Ms. V. Harriot, L. Keyes, I. Stejskal and many others kindly assisted with the field work. The use of Heron Island Research Station facilities is gratefully acknowledged.

LITERATURE CITED

